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Introduction

Cadmium (Cd) is a heavy metal that ranks among the 
top ten chemicals in the Agency for Toxic Substances and 
Disease Registry priority list of hazardous substances.1 It 
is widespread in the environment, found in byproducts of 
industrial processes, contaminated water or soil, certain foods, 
and tobacco products.2 Cd is a known lung carcinogen and a 

putative carcinogen in other tissues including the liver, prostate, 
kidney, bladder, stomach, and pancreas.3-5 In addition to its role 
as a carcinogen, Cd has also been associated with other health 
endpoints, including developmental effects early in life. For 
example, prenatal Cd exposure has been inversely associated 
with fetal growth parameters such as newborn length, weight, 
height, and head circumference,6-13 as well as adverse cognitive 
developmental effects later in life.12,14
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cadmium (cd) is prevalent in the environment yet understudied as a developmental toxicant. cd partially crosses the 
placental barrier from mother to fetus and is linked to detrimental effects in newborns. here we examine the relationship 
between levels of cd during pregnancy and 5-methylcytosine (5mc) levels in leukocyte DNa collected from 17 mother-
newborn pairs. The methylation of cytosines is an epigenetic mechanism known to impact transcriptional signaling 
and influence health endpoints. a methylated cytosine-guanine (cpG) island recovery assay was used to assess over 
4.6 million sites spanning 16 421 cpG islands. Exposure to cd was classified for each mother-newborn pair according 
to maternal blood levels and compared with levels of cotinine. subsets of genes were identified that showed altered 
DNa methylation levels in their promoter regions in fetal DNa associated with levels of cd (n = 61), cotinine (n = 366), or 
both (n = 30). Likewise, in maternal DNa, differentially methylated genes were identified that were associated with cd  
(n = 92) or cotinine (n = 134) levels. While the gene sets were largely distinct between maternal and fetal DNa, functional 
similarities at the biological pathway level were identified including an enrichment of genes that encode for proteins that 
control transcriptional regulation and apoptosis. Furthermore, conserved DNa motifs with sequence similarity to specific 
transcription factor binding sites were identified within the cpG islands of the gene sets. This study provides evidence for 
distinct patterns of DNa methylation or “footprints” in fetal and maternal DNa associated with exposure to cd.
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Health effects associated with moderate to low levels of 
Cd exposure are of growing concern, particularly among sus-
ceptible populations such as pregnant women and children.15 
Highlighting this issue, among pregnant women studied in the 
Fourth National Report on Human Exposure to Environmental 
Chemicals (NHANES IV), 66% had detectable blood Cd levels 
with an average level of 0.22 μg/L.16 The presence of Cd in the 
blood is particularly concerning as it has a half-life ranging up 
to 10 y.17 Cd is a component of cigarette smoke and concur-
rent exposure occurs. In utero exposure to both Cd and ciga-
rette smoke is associated with lower newborn birth weight6,9,18 
where Cd has been suggested to be the component of cigarette 
smoke that affects fetal skeletal growth.19 Cotinine, the primary 
metabolite of nicotine and biomarker of cigarette smoke expo-
sure, is a reliable measure of actual dose received with a half-life 
of less than 1 d.20,21 Thus, cotinine is a general measure of recent 
exposure to tobacco products, whereas Cd can represent long-
term and/or historic tobacco exposure. For non-smokers, diet is 
the major source of Cd exposure.17

The mechanism(s) of action of the detrimental health effects 
related to prenatal Cd exposure are not well established. An epi-
genetic mechanism has been hypothesized,22 but is understud-
ied. The addition or removal of methyl groups from cytosine at 
the 5′ position (5mC) is an epigenetic mechanism that plays a 
key role in mediating gene expression and subsequent biological 

processes,23 possibly contributing to subsequent health effects 
resulting from environmental toxicant exposure. Indeed there 
is evidence from animal and cell culture studies that Cd alters 
DNA methyltransferase activity and subsequently DNA meth-
ylation patterns.3,22,24-29 In addition, prenatal tobacco smoke 
exposure is a known modifier of DNA methylation patterns,30-32 
and is therefore an important consideration in this study.

In an effort to understand potential impacts of prenatal Cd 
exposure, in the present study we assess DNA methylation in 
blood leukocytes and distinguish between Cd- and cotinine-
associated changes in a cohort of mother-baby pairs from 
Durham County, North Carolina. Maternal cotinine and 
Cd levels were used to compare and contrast the DNA 
methylation levels associated with either contaminant, 
enabling the differentiation between Cd-specific patterns in 
DNA methylation from those associated with cotinine. DNA 
methylation changes of more than 16 000 promoter-based 
cytosine-phosphate-guanine (CpG) islands were assessed in 
fetal and maternal DNA associated with maternal and thus in 
utero Cd and cotinine levels.

Results

This study consisted of 34 subjects, 17 mother–newborn 
pairs, selected as a nested cohort from the CEHI Healthy 

Figure 1. heat map of genes with differential DNa methylation levels in fetal and maternal DNa associated with cd (A), or cotinine (B). Venn diagram 
representing the total number of cd-or cotinine-associated genes in fetal DNa (C) or maternal DNa (D). heat maps represent average DNa methylation 
levels of exposure-associated gene sets. Data are z-score normalized for each gene. Individuals are ordered from left to right based on increasing level of 
exposure. Red indicates a relative increase in average DNa methylation and blue represents a relative decrease in average DNa methylation. In the Venn 
diagrams, the number in parentheses indicates the number of hypomethylated genes contained in each set. LE, lower exposed; hE, higher exposed;  
UE, unexposed; E, exposed.
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Pregnancy, Healthy Baby study in Durham, North Carolina. 
The pairs were selected from the larger cohort based on stratified 
maternal blood Cd levels. Maternal and infant characteristics 
are presented in Table 1. The average maternal age was 
28 y. Most of the women had more than one child (n = 13; 
76.5%), inclusive of the infants described in this study. There 
were similar proportions of male (n = 9; 52.9%) and female 
children (n = 8; 47.1%). All newborns, with one exception, 
had a birth weight greater than 2500 g (range: 2495–3740 g). 
Levels of maternal Cd ranged from below the detection limit 
to 1.05 μg/L with an average maternal blood concentration of 
0.44 μg/L. Ten women in the study had Cd levels above the 
NHANES median level in pregnant women and were classified 
as the “higher cadmium-exposed” group (See Materials and 
Methods). Maternal cotinine levels ranged from below the 
detection limit to 166.96 μg/L with an average of 14.5 μg/L. 
While 11 women had detectable blood levels of cotinine, only 
two had levels above 10 μg/L, a level associated with active or 
passive smoking activity.20 The two individuals with elevated 
cotinine reported active smoking during pregnancy. As we 

were also interested in the effect of exposure due to second-
hand or inactive smoking, cotinine exposure was classified as 
any detectable level vs. none. Eleven women had a detectable 
level of cotinine and were classified as “cotinine-exposed.” The 
exposure data for each of the 17 mother-baby pairs is provided 
(Tables S1 and S2).

Regression analysis revealed that maternal Cd or cotinine 
levels did not vary significantly with respect to maternal age, 
race, parity, child’s sex, or birth weight. Exclusion of the low 
birth weight infant from the data set did not significantly 
affect the results (data not shown). Generally, younger women 
had higher levels of Cd, but this finding was not statistically 
significant (P > 0.05). Spearman rank correlation revealed a 
positive relationship between maternal serum cotinine and Cd 
(r = 0.45, P = 0.07).

Cd-associated gene-specific DNA methylation
Methylated maternal and newborn DNA was isolated using 

a methyl-CpG-binding domain protein complex (MBD2b/
MBD3L1) and hybridized onto Affymetrix Human Promoter 
1.0R arrays. These arrays contain more than 4.6 million probes 

Figure 2. significantly enriched DNa motifs identified within the cd and cotinine-associated gene lists in fetal DNa (A) and maternal DNa (B) as identi-
fied by MEME. The motifs shown have standard orientation 5′ to 3′. Estimates of sequence conservation at each nucleotide position within the motif are 
shown where a higher bit score is represented by increased font size.
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that cover more than 25 500 human gene promoter regions. 
Computational methods were used to summarize the DNA 
methylation levels at a gene-specific CpG island level annotated 
to the reference Human Genome 18 (HG18) as in our recent 
publications33,34 (see Materials and Methods). More than 16 000 
CpG islands were included in this study.

Prior to analysis for the exposures of interest, differences in 
average DNA methylation levels associated with maternal age, 
race, and infant sex were identified. Analysis of the maternal 
DNA revealed there was a significant difference in gene-specific 
methylation levels associated with maternal age (n = 596 genes) 
and race (n = 83 genes). In fetal DNA, there was a significant 
difference in gene-specific DNA methylation levels associated 
with maternal age (n = 39 genes), race (n = 949 genes), and infant 
sex (n = 176 genes) (Table S3).

In relation to newborn environmental exposures of Cd and 
cotinine, two gene sets were identified with significantly different 
average DNA methylation abundances in fetal DNA including a 
Cd-associated gene set (n = 61) and a cotinine-associated gene set 
(n = 366) (Fig. 1A and B; Table S4). Of these, one gene showed 
hypomethylation with increasing Cd, and five genes showed 
hypomethylation with respect to increasing cotinine (Fig. 1C). 
A total of 30 genes overlapped between the Cd and cotinine gene 
sets and all were hypermethylated (Fig. 1C; Table S4).

In maternal DNA, distinct sets of Cd-associated (n = 92) 
or cotinine-associated genes (n = 134) were identified (Fig. 1A  
and B; Table S5). Of these, 11 of the 92 Cd-associated 
differentially methylated genes were hypomethylated, whereas 
four  of 134 cotinine-associated genes were hypomethylated. 
There were no overlapping genes between the Cd- or cotinine-
associated genes in maternal DNA (Fig. 1D).

A comparison of the Cd-associated genes between maternal 
and fetal DNA showed no overlap. Very few (n = 12) of the 

cotinine-associated genes were differentially methylated in 
both fetal and maternal DNA (data not shown). The majority 
of differentially methylated genes showed increasing promoter 
methylation with increasing Cd or cotinine level for both fetal 
and maternal DNA (Fig. 1A and B).

In addition to identifying genes that are differentially 
methylated and associated with Cd or cotinine levels, a 
comparison was also performed between the DNA methylomes 
of the women and their newborns. Regardless of environmental 
exposure, this comparison of the 34 individuals’ methylomes 
showed that there were 12 820 genes significantly differentially 
methylated between fetal and maternal DNA that were not due 
to differences in maternal age, race, or infant sex (Fig. S1). All of 
the 12 820 genes showed lower average methylation abundance 
in maternal DNA when compared with fetal DNA.

Differential methylation does not reflect shifts in leukocyte 
cell types

The Cd- and cotinine-associated gene sets were compared 
with known differentially methylated regions (DMRs) that 
correspond to shifts in the abundance of white blood cell types.35 
Within a list of 500 genes with DMRs known to predict cell 
type in an adult population, 227 of these genes were contained 
on the MIRA array. No blood cell type-associated genes were 
contained in the maternal Cd- or cotinine-associated genes 
lists in this study. A single gene, UNC84 domain containing 1 
(UNC84A), was present in the Cd-associated fetal DNA gene set 
and 4 genes: neutrophil cytosolic factor 4 (NCF4), CBP80/20-
dependent translation initiation factor (KIAA0427), sorting 
nexin 8 (SNX8), and scavenger receptor class F (SCARF) were 
present in the cotinine-associated gene set in fetal DNA.

Biological functions are enriched among differentially 
methylated genes

The identified Cd- and cotinine-associated gene sets in 
mother–baby pairs were analyzed to determine whether they 
encode proteins with similar functionality in the cell. Each of 
the gene sets was analyzed for enriched biological functions 
using two independent methods (see Materials and Methods). 
The most significantly enriched biological functional categories 
were gene expression, cell cycle, cell death, and nervous system 
development (Table 2). Interestingly, while there was no overlap 
between the individual gene sets, genes that encode proteins 
that play a role in regulation of transcription were enriched 
among Cd-associated genes in both fetal and maternal DNA 
(P < 0.001). Apoptosis was an enriched biological process in the 
Cd and cotinine-associated gene sets identified as differentially 
methylated within both maternal and fetal DNA (P < 0.05). 
Specifically, there were 14 apoptosis-associated genes including 
proline rich 13 (PRR13) in the fetal gene set and 20 additional 
genes among the maternal gene set (Table S6).

Common DNA motifs identified in gene sets
We hypothesized that the identified differentially methylated 

genes may contain common underlying sequences or motifs. 
To examine this, the promoter regions of the CpG islands for 
each of the differentially methylated genes were analyzed for 
statistically enriched common sequence patterns (e.g., motifs). 
The motifs were then compared with known transcription 

Table 1. characteristics of mother-newborn pairs (n = 34 subjects)

Mean ± SD (range)/N (%)

Maternal cadmium (μg/L) 0.44 ± 0.31 (0–1.05)

Maternal cotinine (μg/L) 14.5 ± 42.23 (0–166.96)

Maternal age (years) 28 ± 7 (19–42)

Maternal race*

NhB /12 (70.6)

NhW /4 (23.5)

Other /1 (5.8)

Parity

First /4 (23.5)

second /5 (29.4)

Third or higher /8 (47.1)

Child’s Sex

M /9 (52.9)

F /8 (47.1)

Birth weight (g) 3210 ± 377 (2495–3740)

*This study intentionally over-sampled NhB women.
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factor binding sites. Among the Cd- and cotinine-associated gene 
sets, significantly enriched motifs representing conserved DNA 
sequences were identified (Fig. 2). The conserved motifs showed 
sequence similarity to binding sites for several transcription factors 
including: transcription factor 7-like 1 (TCF7L1 also known 
as TCF3), metal-responsive transcription factor-1 (MTF-1), 
transcription factor AP-2-eplison (TCFAP2E), and serum 
response factor (SRF) (Table 3). Notably, for the Cd-associated 
gene sets identified both in maternal and fetal DNA, the enriched 
motifs had significant sequence similarity to the binding sites of 
MTF-1 and TCF7L1.

Validation of MIRA DNA methylation results
Validation of the MIRA-based methylation results was 

performed using two methodologies for both fetal and maternal 
DNA. First using a gene-specific analysis, the promoter region of 
the apoptosis-associated PRR13 gene was targeted for methylation-
specific quantitative polymerase chain reaction (qPCR)-based 
analysis. Primers were designed to amplify the promoter region 
comparable to the MIRA-assessed site (see Materials and 
Methods). DNA collected from 15 newborns representing a range 
of Cd levels was bisulfite converted and assessed. The data show 
a significant Spearman’s rank correlation (r = 0.53, P < 0.05) 
between the MIRA-based methylation assessment and the qPCR-
based methylation for PRR13 (Fig. S2). Second, the results from 
the MIRA platform were compared with data obtained using the 
Illumina 450K platform using 2 maternal DNA samples. While 
the Spearman’s rank correlation for the genome-wide (n = 11, 347) 
assessment was not statistically significant (r = 0.01, P = 0.1), the 
methylation levels for 83 of the 92 Cd-specific genes that could be 
compared between platforms were significantly correlated (r = 0.35,  
P = 0.0009). A majority of the Cd-associated CpG islands (82%) 
had concordant relative hyper- or hypo-methylation on the 450K 
platform as compared with the MIRA assay (Table S5). Of the 20 
Cd-associated genes enriched for apoptosis, 17 could be compared 
on both platforms and these had significant Spearman’s rank 
correlation (r = 0.41, P = 0.07).

Discussion

There is growing evidence that the prenatal environment 
may influence the burden of disease in adult life, and that this 
relationship is associated with epigenetic modifications altered 
during the prenatal period.23,36 The suggested impacts of Cd 
exposure include enzyme inhibition, generation of reactive 
oxygen species, and perturbation of apoptosis or cell cycle;37 
however, the ability to induce genomic instability without 
genotoxic action has implicated a possible epigenetic mechanism 
of Cd toxicity.22 Cd-associated genome-wide DNA methylation 
has not been previously assessed in human samples. Given the 
relationship of Cd with birth outcomes in humans6,9 and its 
known role as a mediator of DNA methyltransferase activity,22 
we set out to identify whether patterns of differential promoter 
DNA methylation in fetal and maternal leukocyte DNA 
associated with exposure to Cd. The data were compared with 
cotinine-associated patterns of differential DNA methylation.

Here differences in gene-specific levels of DNA methylation 
were observed and linked to Cd exposure in utero. These genes 
were largely independent of those associated with cotinine. 
Overall, the majority of the differentially methylated genes 
showed increased or hypermethylation associated with Cd 
exposure. The Cd-associated genes were classified into their 
known ontologies, and transcription regulatory processes 
emerged as significantly enriched in both fetal and maternal 
DNA. Cell death, specifically apoptosis, was a significantly 
enriched function for each gene list. The altered Cd-associated 
DNA methylation in maternal DNA was validated using 
an alternate genome-wide approach, as well as for a subset of 
apoptosis-enriched genes. In addition, a gene-specific approach 
was used for PRR13 in fetal DNA, known to play a role in 
apoptosis.38 Cd has been shown in vitro to perturb pathways 
involved in inflammatory response, cell survival, apoptosis, 
tumorigenesis, and oxidative stress.22,39-42 In animal models, 
in utero exposure to Cd is associated with a wide range of 

Table 2. Enriched biological functions within the differentially methylated gene sets

Fetal DNA (P values) Maternal DNA (P values)

Category Function Annotation Cda Cotininea Cda Cotininea

Gene expression Regulation of transcription 0.001* [0.01] – 0.001* [0.001] –

Tissue morphology adipose tissue quantity 0.004 – – –

cancer hyperplasia 0.004 – – –

Lipid metabolismb Lipid accumulation 0.005 – – –

cell death apoptosis 0.02 [0.05] 0.001* 1.2 × 10–4* [0.04] 0.05

cell cycle Delay in G1, interphase – 3.0 × 10–5* [0.003] – –

Nervous systemc Neuronal quantity – 0.002 [0.03] 5.2 × 10–5* [0.03] –

cell proliferation Tumor proliferation – 0.002 – 0.03

protein degradation proteolysis – 0.003 [0.003] – 0.01

Infectious disease Replication of virus – – – 0.01

Neurological disease Movement disorder – – – 0.02

*P < 0.001; [ ] = P value of gene ontology terms in DaVID.aassociated contaminant exposure in fetal or maternal DNa. bLipid metabolism, molecular  
transport, small molecule biochemistry. cNervous system development and function.
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cell cycle and proliferative genomic responses.43 The data 
presented here may support an epigenetic mechanism, namely 
DNA methylation, by which genes involved in transcriptional 
regulation and apoptosis could be influenced by Cd exposure. 
As RNA is not available for the specific study subjects 
analyzed here, gene expression analysis cannot be performed. 
It is important to note that it is not anticipated that all of the 
changes in DNA methylation will have functional consequence 
and impact gene expression.

Relative to Cd, cotinine was associated with a greater number 
of genes with differential DNA methylation in both maternal 
DNA and fetal DNA. Three previous studies of prenatal cigarette 
smoke exposure examined gene-specific DNA methylation.30-32 
One study reported global hypomethylation with gene-specific 
hypermethylation of eight genes investigated30 while the other 
found largely gene-specific hypo-methylation among 38 total 
genes.31 The third study reported 26 significant CpGs mapped 
to 10 genes with both hyper- and hypomethylation associated 
with plasma cotinine levels.32 Interestingly, none of the genes 
identified were common between the three studies and none 
are similarly reported in the present study. There are several 
factors that could potentially influence differences in observed 
DNA methylation patterns that include exposure type, 
exposure duration, tissue type (i.e., buccal vs. placental vs. cord 
blood), subject’s age at sampling, type of assay used, or other 
unaccounted for co-exposures.

It is important to mention that a woman’s current Cd levels 
may reflect prior exposure to cigarette smoke. Although we have 
accounted for cotinine exposure (a measure of recent and active 
smoking) in the analysis, it cannot be ruled out that some of the 
Cd-associated changes may be due to historic cigarette smoke 
exposure. Our data are supported by previous in vitro and ex 
vivo studies showing that Cd exposure led to hypermethylation 
of DNA after prolonged chronic exposures, whereas 
hypomethylation was present after acute Cd exposure.22,25,26

Our data highlight that regardless of exposure, there were 
significant differences in DNA methylation profiles between 
maternal and fetal samples that were not due to differences in 
maternal age, race, or infant sex. This is supported by a recent 
study that demonstrated that relative to newborn DNA, there 
is less methylation is observed among CpG island promoters 
in older individuals.15 The increased methylation levels in 
fetal DNA may have relevance for developmental biology. 
Further evaluation of these basic processes may increase our 
understanding of how early life exposures resulting in epigenetic 
shifts can have long-term health effects.

Of interest, many of the genes contained in the Cd and 
cotinine gene sets showed common sequences in their CpG 
islands within promoters. Among these conserved motif 
regions, binding sites for a common set of transcription factors 
were identified. The specific binding of transcription factors 
to target sites is a mechanism that protects CpG islands from 
methylation.44,45 Very recently studies have demonstrated 
that transcription factor binding results in local regions of 
low methylation and in contrast, absence of DNA-binding 
factors triggers the remethylation of local promoter regions,46,47 
however this phenomenon has not been described related to 
environmental exposures. Here we identify conserved motifs 
with sequence similarity to binding sites for transcription 
factors including MTF-1. Notably, MTF-1 is known to respond 
to changes in cellular concentrations of multiple metals 
and coordinate expression of genes protective against metal 
toxicity.48,49 All of the identified transcription factors (e.g., 
TCF7L1, TCFAP2E, MTF-1, SRF) are known to regulate 
developmental processes within cells and represent targets for 
future investigation.50-53 Taken together, we hypothesize that 
these results suggest that patterns of DNA methylation that 
are associated with Cd may represent “footprints” indicating 
transcription factor presence or absence that occur during 
periods of DNA methylation.

As a limitation, the cord blood sampling done here is 
representative of newborn leukocyte DNA rather than potential 
target organ systems such as the kidney, liver, or bone. There are 
obvious ethical and technical reasons to use leukocyte DNA as a 
proxy for target tissue analysis. Moreover, the use of circulating 
white blood cells as proxies for disease has been shown.54,55 
While patterns of DNA methylation can differ between white 
blood cell types,32,35,56 our data support that the Cd and cotinine 
gene sets are not simply due to shifts in blood cell types. There 
is increasing evidence that there are contaminant-specific 
changes to leukocyte DNA methylation associated with various 
environmental contaminant exposures.33,57,58 Future studies 
should aim to compare the Cd-associated changes here to tissue-
specific changes.

In summary, the data from the present study provide evidence 
of Cd- and cotinine-associated patterns in DNA methylation 
present in the leukocyte DNA of newborns and their mothers. 
We identify gene-specific changes in DNA methylation levels 
associated with in utero Cd exposure, and distinguish these 
from methylation changes attributable to cotinine exposure, 
a general proxy measure for exposure to tobacco products. 
These distinct patterns of environmentally-associated DNA 

Table 3. Transcription factors with response element sequence similarity to the identified motifs within the cd- or cotinine-associated gene sets

Fetal DNA (P values) Maternal DNA (P values)

Transcription Factor cda cotininea cda cotininea

TcFap2E 2.3 × 10–5* 9.2 × 10–4* – 4.9 × 10–3

TcF7L1 6.7 × 10–5* 2.0 × 10–5* 5.1 × 10–4* 1.5 × 10–4*

sRF 2.2 × 10–4* 3.2 × 10–4* 1.5 × 10–3 5.0 × 10–3

MTF1 3.1 × 10–4* 1.6 × 10–4* 3.5 × 10–4* 2.0 × 10–3

*P < 0.001. aassociated contaminant exposure in fetal or maternal DNa.
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methylation alterations or “footprints” in fetal and maternal 
DNA may have functional consequences in the cell and warrant 
further research. Metal exposure continues to be an important 
area of public health concern for both maternal and child health. 
Increased education about the potential risks of environmental 
contaminants including Cd and cigarette smoke will be key to 
reducing and preventing harm to infants.

Materials and Methods

Study participants
The Children’s Environmental Health Initiative (CEHI) 

conducted a prospective cohort study of pregnant women living 
in Durham County, North Carolina from 2005–2011. This study 
is a key component of the Southern Center on Environmentally-
Driven Disparities in Birth Outcomes (SCEDDBO), 
an interdisciplinary center aimed at understanding how 
environmental, social, and host factors jointly contribute to health 
disparities (http://cehi.snre.umich.edu/projects/sceddbo/). The 
CEHI Healthy Pregnancy, Healthy Baby study was reviewed 
and approved by the Institutional Review Boards at Duke 
University (Pro00007633) and the University of North Carolina 
(#09-0866). All women participating in this study consented for 
maternal venous and newborn cord blood collection for chemical 
and genetic analysis.

Women receiving prenatal care at either the Duke Obstetrics 
Clinic or the Durham County Health Department Prenatal Clinic 
were eligible to participate if they planned to deliver at Duke 
University Medical Center, were at least 18 y of age, were English-
literate, lived in Durham County, and did not have a multi-fetal 
gestation or any known fetal genetic or congenital anomalies. 
Additional methods on subject recruitment, enrollment, and data 
collection have been described previously.59 Women were enrolled 
between 18 and 28 weeks of pregnancy, and demographic data 
were collected including maternal age, race, and parity, as well 
as child’s sex and birth weight. At delivery, biological samples 
including maternal venous blood and newborn cord blood were 
collected. From the CEHI study, we selected a nested subcohort 
of 17 mother-infant pairs stratified as above or below a maternal 
Cd level of 0.2 μg/L (see Supplemental Materials).

Methylated CpG island recovery assay (MIRA)
Venous maternal blood and newborn cord blood samples 

were obtained at delivery. DNA was extracted using Qiagen’s 
PAXgene Blood DNA kit (Qiagen) according to manufacturer’s 
protocol. DNA was re-suspended in nuclease-free water and 
stored at –80 °C prior to DNA methylation assessment. CpG 
methylated DNA was collected using the MethylCollector Ultra 
Kit (Active Motif) and enriched DNA was amplified using the 
WGA3 kit (Sigma) according to manufacturer instructions 
with the following modification: 10 mM dATP, 10 mM dCTP,  
10 mM dGTP, 8 mM dTTP, and 2 mM dUTP. Amplified DNA 
was then hybridized to the Affymetrix Human Promoter 1.0R 
arrays (Affymetrix) which assess over 4.6 million sites.

Statistical Analyses
Linear regression analyses were performed using the statistical 

package SAS 9.3 (SAS Institute Inc.) to examine relationships 

between maternal blood Cd levels, serum cotinine levels and 
demographic characteristics for women and children. Maternal 
demographics included age, race, and parity, and children’s 
demographics included sex and birth weight. The relationship 
between Cd and cotinine was assessed with linear regression as 
well as Spearman rank correlation. Cd and cotinine levels below 
detect were treated as zero.

For each of the study subjects, the DNA methylation 
abundance data obtained through the MIRA assay assessing 
4.6 million probes were normalized using robust multi-chip 
average.60 The DNA methylation levels were then summarized at 
a gene-specific CpG island level annotated to the reference HG18 
where islands were defined as in Davies et al.61-63 The resulting 
average methylation abundances for 16 421 CpG islands were 
compared using ANOVA (Partek Genomic Suite 6.4) where 
differential DNA methylation levels were assessed for each 
island and statistically defined as: (1) average island promoter 
methylation with a minimum absolute change of 30%; and (2) a  
P value < 0.05. Additionally, a false discovery rate (FDR) corrected 
q-value estimate was calculated and is reported. After identifying 
covariate-associated DNA methylation patterns within CpG 
islands (see Supplemental Materials), differential methylation 
was also examined according to sample type (maternal vs. 
newborn), higher vs. lower Cd-exposed, and cotinine-exposed 
vs. cotinine-unexposed (see Supplemental Materials). The same 
statistical requirements were applied to all analyses.

Gene ontology/pathway enrichment analysis
Gene ontology/pathway enrichment analysis was performed 

using two independent methodologies. The differentially 
methylated genes were analyzed in the context of interacting 
networks using Ingenuity Pathway Analysis Software (Ingenuity 
Systems, Inc.) and functional clustering using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
(available online: http://david.abcc.ncifcrf.gov/tools.jsp).

Enriched DNA motif identification
CpG island sequences were retrieved from the UCSC genome 

browser website64 for each exposure-associated gene set. These 
sequences are representative of CpG islands within promoter 
regions of the genome. Position-specific letter probability 
matrices, also known as motifs, were identified using Multiple 
EM for Motif Elicitation (MEME) version 4.8.1.65 A first order 
Hidden Markov Model and negative position specific priors 
were calculated from a background set of 200 randomly selected 
CpG island sequences that were not differentially methylated. 
Additional parameter specifications are reported in the 
Supplemental Materials. The motif with the highest statistical 
significance (P value) for each group of differentially methylated 
genes was compared with known transcription factor binding 
sites using TOMTOM.65

Validation of MIRA results
For gene-specific analysis, DNA from 15 newborn leukocyte 

samples was selected. DNA was bisulfite converted using the Zymo 
EZ DNA Methylation-Lightening kit (Zymo Research) according 
to the manufacturer’s instructions. Methylation was assessed 
using the EpiTect MethyLight Assay (Qiagen). Methylation-
independent sequence-specific primers were designed for the 
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apoptosis-associated gene PRR13 with forward primer sequence: 
(5′ GGTTTGGGTG ATTAGGAAGAGT 3′) and reverse 
primer sequence: (5′ AAAATCCAAA TACCCCATCA C 3′). 
A methyl-specific reporter probe for quantification was also 
designed (5′ 6FAM-GCCGCCTAAA CTTACTACGT 3′). 
The amplified region of PRR13 represents promoter region on 
chromosome 12, position 52121562–52121835, based upon 
HG18. Amplicons were assessed using qPCR in technical 
triplicate. qPCR methylation abundance was determined as 
100/(1 + cycle threshold [CT]) for each sample, averaged across 
triplicates. A Spearman rank correlation and corresponding  
P value were calculated to compare the methylation abundances 
between the qPCR and MIRA assays.

Genome-wide comparison was performed on two maternal 
DNA samples stratified by maternal blood Cd levels using 
the 0.2 μg/L exposure cutoff and matched on maternal race, 
age, and insurance status. Bisulfite conversion was performed 
using the Zymo EZ DNA Methylation kit (Zymo Research) 
according to the manufacturer’s instructions. Methylation was 
assessed at 485 577 CpGs in maternal DNA using the Illumina 
Infinium HumanMethylation450 BeadChip (Illumina Inc.). 
BeadChip processing was performed at Expression Analysis Inc. 
(www.expressionanalysis.com) and processed with Illumina’s 
GenomeStudio Methylation module Version 1.8 (Illumina 
Inc.). The proportion of methylation (β) for each CpG was 
calculated as the ratio of methylated signal intensity divided 
by the sum of both methylated and unmethylated signals. For 
quality control, probes with detection P value < 0.0001 were 
required. β values were excluded from analysis for probes which 

did not meet this minimum threshold for detection. The data 
were further filtered for probes positioned within CpG islands 
for comparison with the MIRA assay. For statistical comparison, 
average β values were calculated and a ratio of β Cd-exposed/ 
β Cd-unexposed determined for each gene. A Spearman rank 
correlation was calculated to compare the β ratio to the MIRA 
FC for all comparable genes (n = 11 347), the focused set of 92 
Cd-associated genes in maternal DNA, and the subset of 20 
Cd-associated apoptosis-related genes.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This research was funded in part by grants from the NIEHS 
(T32-ES007018, P42-ES005948, ES019315, and P30-ES010126), 
the USEPA (RD83329301), and in part by the North Carolina 
Translation and Clinical Sciences Institute (NC TRaCS) grants 
UL1RR025747, KL2RR025746, and TLRR025745 from the 
NIH National Center for Research Resources and the National 
Center for Advancing Translational Sciences, National Institutes 
of Health. We acknowledge researchers at Expression Analysis 
in Durham, NC for their assistance with the processing of the 
Illumina 450K microarrays.

Supplemental Materials 

Supplemental materials may be found here:
www.landesbioscience.com/journals/epigenetics/article/26798

References
1. ATSDR. Priority List of Hazardous Substances. 

Online at: http://wwwatsdrcdcgov/spl/ 2011.
2. ATSDR. Toxicological Profile for Cadmium. Atlanta, 

GA: Centers for Diseaes Control, 2008.
3. Arita A, Costa M. Epigenetics in metal carcinogenesis: 

nickel, arsenic, chromium and cadmium. Metallomics 
2009; 1:222-8; PMID:20461219; http://dx.doi.
org/10.1039/b903049b

4. Waalkes MP. Cadmium carcinogenesis in review. J 
Inorg Biochem 2000; 79:241-4; PMID:10830873; 
http://dx.doi.org/10.1016/S0162-0134(00)00009-X

5. IARC. Volume 58. Cadmium. 1993:119-238
6. Fréry N, Nessmann C, Girard F, Lafond J, Moreau T, 

Blot P, Lellouch J, Huel G. Environmental exposure 
to cadmium and human birthweight. Toxicology 
1993; 79:109-18; PMID:8497864; http://dx.doi.
org/10.1016/0300-483X(93)90124-B

7. Lin CM, Doyle P, Wang DL, Hwang YH, Chen PC. 
Does prenatal cadmium exposure affect fetal and 
child growth? Occup Environ Med 2011; 68:641-
6; PMID:21186202; http://dx.doi.org/10.1136/
oem.2010.059758

8. Nishijo M, Tawara K, Honda R, Nakagawa H, Tanebe 
K, Saito S. Relationship between newborn size and 
mother’s blood cadmium levels, Toyama, Japan. Arch 
Environ Health 2004; 59:22-5; PMID:16053205; 
http://dx.doi.org/10.3200/AEOH.59.1.22-25

9. Salpietro CD, Gangemi S, Minciullo PL, Briuglia 
S, Merlino MV, Stelitano A, Cristani M, Trombetta 
D, Saija A. Cadmium concentration in maternal and 
cord blood and infant birth weight: a study on healthy 
non-smoking women. J Perinat Med 2002; 30:395-
9; PMID:12442603; http://dx.doi.org/10.1515/
JPM.2002.061

10. Ronco AM, Arguello G, Muñoz L, Gras N, Llanos M. 
Metals content in placentas from moderate cigarette 
consumers: correlation with newborn birth weight. 
Biometals 2005; 18:233-41; PMID:15984568; 
http://dx.doi.org/10.1007/s10534-005-0583-2

11. Llanos MN, Ronco AM. Fetal growth restriction 
is related to placental levels of cadmium, lead and 
arsenic but not with antioxidant activities. Reprod 
Toxicol 2009; 27:88-92; PMID:19103280; http://
dx.doi.org/10.1016/j.reprotox.2008.11.057

12. Tian LL, Zhao YC, Wang XC, Gu JL, Sun ZJ, 
Zhang YL, Wang JX. Effects of gestational cadmium 
exposure on pregnancy outcome and development in 
the offspring at age 4.5 years. Biol Trace Elem Res 
2009; 132:51-9; PMID:19404590; http://dx.doi.
org/10.1007/s12011-009-8391-0

13. Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y. 
Maternal exposure to low-level heavy metals during 
pregnancy and birth size. J Environ Sci Health A 
Tox Hazard Subst Environ Eng 2010; 45:1468-74; 
PMID:20694885; http://dx.doi.org/10.1080/10934
529.2010.500942

14. Bonithon-Kopp C, Huel G, Moreau T, Wendling 
R. Prenatal exposure to lead and cadmium and 
psychomotor development of the child at 6 years. 
Neurobehav Toxicol Teratol 1986; 8:307-10; 
PMID:3736760

15. Heyn H, Li N, Ferreira HJ, Moran S, Pisano 
DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, 
Carmona FJ, et al. Distinct DNA methylomes of 
newborns and centenarians. Proc Natl Acad Sci U S A 
2012; 109:10522-7; PMID:22689993; http://dx.doi.
org/10.1073/pnas.1120658109

16. Woodruff TJ, Zota AR, Schwartz JM. Environmental 
chemicals in pregnant women in the United States: 
NHANES 2003-2004. Environ Health Perspect 
2011; 119:878-85; PMID:21233055; http://dx.doi.
org/10.1289/ehp.1002727

17. Järup L, Akesson A. Current status of cadmium as 
an environmental health problem. Toxicol Appl 
Pharmacol 2009; 238:201-8; PMID:19409405; 
http://dx.doi.org/10.1016/j.taap.2009.04.020

18. Yu XD, Yan CH, Shen XM, Tian Y, Cao LL, Yu 
XG, Zhao L, Liu JX. Prenatal exposure to multiple 
toxic heavy metals and neonatal neurobehavioral 
development in Shanghai, China. Neurotoxicol 
Teratol 2011; 33:437-43; PMID:21664460; http://
dx.doi.org/10.1016/j.ntt.2011.05.010

19. Godfrey K, Walker-Bone K, Robinson S, Taylor 
P, Shore S, Wheeler T, Cooper C. Neonatal bone 
mass: influence of parental birthweight, maternal 
smoking, body composition, and activity during 
pregnancy. J Bone Miner Res 2001; 16:1694-703; 
PMID:11547840; http://dx.doi.org/10.1359/
jbmr.2001.16.9.1694

20. Klebanoff MA, Levine RJ, Clemens JD, DerSimonian 
R, Wilkins DG. Serum cotinine concentration and 
self-reported smoking during pregnancy. Am J 
Epidemiol 1998; 148:259-62; PMID:9690362; 
ht tp : //dx.doi.org /10.1093/oxfordjourna ls .aje.
a009633

21. Jarvis MJ, Russell MA, Benowitz NL, Feyerabend 
C. Elimination of cotinine from body fluids: 
implications for noninvasive measurement of tobacco 
smoke exposure. Am J Public Health 1988; 78:696-
8; PMID:3369603; http://dx.doi.org/10.2105/
AJPH.78.6.696

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



220 Epigenetics Volume 9 Issue 2

22. Takiguchi M, Achanzar WE, Qu W, Li GY, 
Waalkes MP. Effects of cadmium on DNA-
(Cytosine-5) methyltransferase activity and DNA 
methylation status during cadmium-induced cellular 
transformation. Exp Cell Res 2003; 286:355-
65; PMID:12749863; http://dx.doi.org/10.1016/
S0014-4827(03)00062-4

23. Wilson AG. Epigenetic regulation of gene 
expression in the inflammatory response and 
relevance to common diseases. J Periodontol 2008; 
79(Suppl):1514-9; PMID:18673005; http://dx.doi.
org/10.1902/jop.2008.080172

24. Martinez-Zamudio R, Ha HC. Environmental 
epigenetics in metal exposure. Epigenetics 
2011; 6:820-7; PMID:21610324; http://dx.doi.
org/10.4161/epi.6.7.16250

25. Benbrahim-Tallaa L, Waterland RA, Dill AL, 
Webber MM, Waalkes MP. Tumor suppressor gene 
inactivation during cadmium-induced malignant 
transformation of human prostate cells correlates with 
overexpression of de novo DNA methyltransferase. 
Environ Health Perspect 2007; 115:1454-9; 
PMID:17938735

26. Huang DJ, Zhang YM, Qi YM, Chen C, Ji WH. 
Global DNA hypomethylation, rather than reactive 
oxygen species (ROS), a potential facilitator of 
cadmium-stimulated K562 cell proliferation. Toxicol 
Lett 2008; 179:43-7; PMID:18482805; http://
dx.doi.org/10.1016/j.toxlet.2008.03.018

27. Benbrahim-Tallaa L, Tokar EJ, Diwan BA, Dill AL, 
Coppin JF, Waalkes MP. Cadmium malignantly 
transforms normal human breast epithelial cells into 
a basal-like phenotype. Environ Health Perspect 
2009; 117:1847-52; PMID:20049202; http://dx.doi.
org/10.1289/ehp.0900999

28. Doi T, Puri P, McCann A, Bannigan J, Thompson 
J. Epigenetic effect of cadmium on global de novo 
DNA hypomethylation in the cadmium-induced 
ventral body wall defect (VBWD) in the chick model. 
Toxicol Sci 2011; 120:475-80; PMID:21278052; 
http://dx.doi.org/10.1093/toxsci/kfr022

29. Jiang GF, Xu L, Song SZ, Zhu CC, Wu Q, Zhang 
L, Wu L. Effects of long-term low-dose cadmium 
exposure on genomic DNA methylation in human 
embryo lung fibroblast cells. Toxicology 2008; 
244:49-55; PMID:18077075; http://dx.doi.
org/10.1016/j.tox.2007.10.028

30. Breton CV, Byun HM, Wenten M, Pan F, Yang A, 
Gilliland FD. Prenatal tobacco smoke exposure 
affects global and gene-specific DNA methylation. 
Am J Respir Crit Care Med 2009; 180:462-7; 
PMID:19498054; http://dx.doi.org/10.1164/
rccm.200901-0135OC

31. Suter M, Ma J, Harris AS, Patterson L, Brown KA, 
Shope C, Showalter L, Abramovici A, Aagaard-Tillery 
KM. Maternal tobacco use modestly alters correlated 
epigenome-wide placental DNA methylation 
and gene expression. Epigenetics 2011; 6:1284-
94; PMID:21937876; http://dx.doi.org/10.4161/
epi.6.11.17819

32. Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset 
SE, Murphy SK, Huang Z, Hoyo C, Midttun Ø, 
Cupul-Uicab LA, et al. 450K epigenome-wide scan 
identifies differential DNA methylation in newborns 
related to maternal smoking during pregnancy. 
Environ Health Perspect 2012; 120:1425-31; 
PMID:22851337

33. Smeester L, Rager JE, Bailey KA, Guan XJ, Smith N, 
García-Vargas G, Del Razo LM, Drobná Z, Kelkar 
H, Stýblo M, et al. Epigenetic changes in individuals 
with arsenicosis. Chem Res Toxicol 2011; 24:165-
7; PMID:21291286; http://dx.doi.org/10.1021/
tx1004419

34. Bailey KA, Wu MC, Ward WO, Smeester L, Rager JE, 
García-Vargas G, Del Razo LM, Drobná Z, Stýblo M, 
Fry RC. Arsenic and the epigenome: interindividual 
differences in arsenic metabolism related to distinct 
patterns of DNA methylation. J Biochem Mol Toxicol 
2013; 27:106-15; PMID:23315758; http://dx.doi.
org/10.1002/jbt.21462

35. Houseman EA, Accomando WP, Koestler DC, 
Christensen BC, Marsit CJ, Nelson HH, Wiencke 
JK, Kelsey KT. DNA methylation arrays as surrogate 
measures of cell mixture distribution. BMC 
Bioinformatics 2012; 13:86; PMID:22568884; 
http://dx.doi.org/10.1186/1471-2105-13-86

36. Bollati V, Baccarelli A. Environmental 
epigenetics. Heredity (Edinb) 2010; 105:105-12; 
PMID:20179736; http://dx.doi.org/10.1038/
hdy.2010.2

37. Waisberg M, Joseph P, Hale B, Beyersmann D. 
Molecular and cellular mechanisms of cadmium 
carcinogenesis. Toxicology 2003; 192:95-117; 
PMID:14580780; http://dx.doi.org/10.1016/
S0300-483X(03)00305-6

38. Lih CJ, Wei W, Cohen SN. Txr1: a transcriptional 
regulator of thrombospondin-1 that modulates 
cellular sensitivity to taxanes. Genes Dev 2006; 
20:2082-95; PMID:16847352; http://dx.doi.
org/10.1101/gad.1441306

39. Benton MA, Rager JE, Smeester L, Fry RC. 
Comparative genomic analyses identify common 
molecular pathways modulated upon exposure to 
low doses of arsenic and cadmium. BMC Genomics 
2011; 12:173; PMID:21457566; http://dx.doi.
org/10.1186/1471-2164-12-173

40. Andrews GK. Regulation of metallothionein gene 
expression by oxidative stress and metal ions. Biochem 
Pharmacol 2000; 59:95-104; PMID:10605938; 
http://dx.doi.org/10.1016/S0006-2952(99)00301-9

41. Shin HJ, Park KK, Lee BH, Moon CK, Lee MO. 
Identification of genes that are induced after cadmium 
exposure by suppression subtractive hybridization. 
Toxicology 2003; 191:121-31; PMID:12965115; 
http://dx.doi.org/10.1016/S0300-483X(03)00210-5

42. Robinson JF, Yu XZ, Moreira EG, Hong SW, 
Faustman EM. Arsenic- and cadmium-induced 
toxicogenomic response in mouse embryos 
undergoing neurulation. Toxicol Appl Pharmacol 
2011; 250:117-29; PMID:20883709; http://dx.doi.
org/10.1016/j.taap.2010.09.018

43. Robinson JF, Yu X, Hong S, Griffith WC, Beyer 
R, Kim E, Faustman EM. Cadmium-induced 
differential toxicogenomic response in resistant and 
sensitive mouse strains undergoing neurulation. 
Toxicol Sci 2009; 107:206-19; PMID:18974090; 
http://dx.doi.org/10.1093/toxsci/kfn221

44. Brandeis M, Frank D, Keshet I, Siegfried Z, 
Mendelsohn M, Nemes A, Temper V, Razin A, 
Cedar H. Sp1 elements protect a CpG island 
from de novo methylation. Nature 1994; 
371:435-8; PMID:8090226; http://dx.doi.
org/10.1038/371435a0

45. Macleod D, Charlton J, Mullins J, Bird AP. Sp1 sites 
in the mouse aprt gene promoter are required to 
prevent methylation of the CpG island. Genes Dev 
1994; 8:2282-92; PMID:7958895; http://dx.doi.
org/10.1101/gad.8.19.2282

46. Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, 
Schübeler D. Identification of genetic elements that 
autonomously determine DNA methylation states. 
Nat Genet 2011; 43:1091-7; PMID:21964573; 
http://dx.doi.org/10.1038/ng.946

47. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, 
Schöler A, van Nimwegen E, Wirbelauer C, Oakeley 
EJ, Gaidatzis D, et al. DNA-binding factors shape the 
mouse methylome at distal regulatory regions. Nature 
2011; 480:490-5; PMID:22170606

48. Selvaraj A, Balamurugan K, Yepiskoposyan H, 
Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner 
W. Metal-responsive transcription factor (MTF-
1) handles both extremes, copper load and copper 
starvation, by activating different genes. Genes Dev 
2005; 19:891-6; PMID:15833915; http://dx.doi.
org/10.1101/gad.1301805

49. Andrews GK. Cellular zinc sensors: MTF-1 
regulation of gene expression. Biometals 2001; 
14:223-37; PMID:11831458; http://dx.doi.
org/10.1023/A:1012932712483

50. Cole MF, Johnstone SE, Newman JJ, Kagey MH, 
Young RA. Tcf3 is an integral component of the core 
regulatory circuitry of embryonic stem cells. Genes 
Dev 2008; 22:746-55; PMID:18347094; http://
dx.doi.org/10.1101/gad.1642408

51. Merrill BJ, Gat U, DasGupta R, Fuchs E. Tcf3 and 
Lef1 regulate lineage differentiation of multipotent 
stem cells in skin. Genes Dev 2001; 15:1688-705; 
PMID:11445543; http://dx.doi.org/10.1101/
gad.891401

52. Winger Q, Huang J, Auman HJ, Lewandoski 
M, Williams T. Analysis of transcription factor 
AP-2 expression and function during mouse 
preimplantation development. Biol Reprod 2006; 
75:324-33; PMID:16672719; http://dx.doi.
org/10.1095/biolreprod.106.052407

53. Nelson TJ, Balza R Jr., Xiao Q, Misra RP. SRF-
dependent gene expression in isolated cardiomyocytes: 
regulation of genes involved in cardiac hypertrophy. J 
Mol Cell Cardiol 2005; 39:479-89; PMID:15950986; 
http://dx.doi.org/10.1016/j.yjmcc.2005.05.004

54. Anglim PP, Alonzo TA, Laird-Offringa IA. DNA 
methylation-based biomarkers for early detection of 
non-small cell lung cancer: an update. Mol Cancer 
2008; 7:81; PMID:18947422 ; http://dx.doi.
org/10.1186/1476-4598-7-81

55. Sinnaeve PR, Donahue MP, Grass P, Seo D, 
Vonderscher J, Chibout SD, Kraus WE, Sketch M 
Jr., Nelson C, Ginsburg GS, et al. Gene expression 
patterns in peripheral blood correlate with the extent 
of coronary artery disease. PLoS One 2009; 4:e7037; 
PMID:19750006; http://dx.doi.org/10.1371/
journal.pone.0007037

56. Deaton AM, Webb S, Kerr AR, Illingworth RS, 
Guy J, Andrews R, Bird A. Cell type-specific 
DNA methylation at intragenic CpG islands in 
the immune system. Genome Res 2011; 21:1074-
86; PMID:21628449; http://dx.doi.org/10.1101/
gr.118703.110

57. Pilsner JR, Hu H, Ettinger A, Sánchez BN, Wright 
RO, Cantonwine D, Lazarus A, Lamadrid-Figueroa 
H, Mercado-García A, Téllez-Rojo MM, et al. 
Influence of prenatal lead exposure on genomic 
methylation of cord blood DNA. Environ Health 
Perspect 2009; 117:1466-71; PMID:19750115

58. Perera F, Tang WY, Herbstman J, Tang DL, Levin L, 
Miller R, Ho SM. Relation of DNA methylation of 
5′-CpG island of ACSL3 to transplacental exposure 
to airborne polycyclic aromatic hydrocarbons and 
childhood asthma. PLoS One 2009; 4:e4488; 
PMID:19221603; http://dx.doi.org/10.1371/journal.
pone.0004488

59. Miranda ML, Edwards S, Maxson PJ. Mercury levels 
in an urban pregnant population in Durham County, 
North Carolina. Int J Environ Res Public Health 
2011; 8:698-712; PMID:21556174; http://dx.doi.
org/10.3390/ijerph8030698

60. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs 
B, Speed TP. Summaries of Affymetrix GeneChip 
probe level data. Nucleic Acids Res 2003; 31:e15; 
PMID:12582260; http://dx.doi.org/10.1093/nar/
gng015

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



www.landesbioscience.com Epigenetics 221

61. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit 
A, Lovestone S, Coarfa C, Harris RA, Milosavljevic 
A, Troakes C, et al. Functional annotation of the 
human brain methylome identifies tissue-specific 
epigenetic variation across brain and blood. Genome 
Biol 2012; 13:R43; PMID:22703893; http://dx.doi.
org/10.1186/gb-2012-13-6-r43

62. Psychiatric Epigenetics Data KCL. [http://
epigenetics.iop.kcl.ac.uk/brain%5D.

63. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger 
TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, 
Nielsen C, Zhao Y, et al. Conserved role of intragenic 
DNA methylation in regulating alternative promoters. 
Nature 2010; 466:253-7; PMID:20613842; http://
dx.doi.org/10.1038/nature09165

64. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, 
Sugnet CW, Haussler D, Kent WJ. The UCSC 
Table Browser data retrieval tool. Nucleic Acids Res 
2004; 32(Database issue):D493-6; PMID:14681465; 
http://dx.doi.org/10.1093/nar/gkh103

65. Bailey TL, Boden M, Buske FA, Frith M, Grant 
CE, Clementi L, Ren J, Li WW, Noble WS. 
MEME SUITE: tools for motif discovery and 
searching. Nucleic Acids Res 2009; 37(Web Server 
issue):W202-8; PMID:19458158; http://dx.doi.
org/10.1093/nar/gkp335

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.




