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Summary

Evaluation of antimalarial efficacy is difficult because recurrent parasitemia can be due to 

recrudescence or reinfection. PCR is used to differentiate between recrudescences and reinfections 

by comparing parasite allelic variants before and after treatment. However, PCR-corrected results 

are susceptible to misclassification: false recrudescences, due to reinfection by the same variant 

present in the patient before treatment; and false reinfections, due to variants that are present but 

too infrequent to be detected in the pre-treatment PCR, but are then detectable post-treatment. This 

article aims to explore factors affecting the probability of false recrudescences and proposes a 

Monte Carlo uncertainty analysis to adjust for both types of misclassification. Higher levels of 

transmission intensity, increased multiplicity of infection, and limited allelic variation resulted in 

more false recrudescences. The uncertainty analysis exploits characteristics of study data to 

minimize bias in the estimate of efficacy and can be applied to areas of different transmission 

intensity.

Introduction

The World Health Organization (WHO) recommends that first-line antimalarial treatment 

policies be changed when a drug’s cure rate falls below 90%, and that new treatments not be 

recommended unless they have a cure rate greater than 95%.[1] However, defining the 

antimalarial cure rate is difficult in falciparum malaria clinical trials because recurrent 

parasitemias can result from either recrudescence (drug failure) or reinfection during follow-

up.

One tool used to distinguish between reinfection and recrudescence is PCR-correction (or 

PCR-adjustment). PCR-correction most often uses nested PCR (nPCR) to categorize 

recurrences by comparing size polymorphisms in genetic markers [merozoite surface 

proteins 1 and 2 (msp1, msp2) and glutamate rich protein (glurp)] before and after treatment. 
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PCR-correction of cure rates has been in use for more than 20 years and there is an extensive 

literature on the substantial impact it can have on estimates of treatment efficacy, as 

previously reviewed.[2, 3] Variations in PCR-correction techniques exist, especially with 

regard to the interpretation of results. In response to this variability, the Medicines for 

Malaria Venture (MMV) collaborated with the WHO to generate guidelines for PCR-

correction including a definition of a recrudescent infection, namely a recurrence in which 

one or more allelic variants are shared in the pre-treatment (day 0) sample and the recurrent 

(day R) parasitemia.[4]

PCR-correction is fallible. Incorrect identification of a reinfection as a recrudescence occurs 

when the patient is infected with same variant before and after treatment; this is more likely 

to occur in an area with limited allelic diversity or high transmission intensity.[5, 6] This 

type of misclassification results in underestimation of the cure rate. Additionally, there are 

often multiple genetically distinct allelic variants present within a single host and nPCR is 

not capable of detecting minority variants representing <20% of the population.[7] Thus, 

PCR-correction could misclassify a recrudescence as a reinfection because an apparently 

“new” variant which appears in the day R sample was present, but not detected, in the day 0 

sample.[8] This may be particularly important if drug resistant variants are at levels below 

detection initially but become more prevalent in the patient as other variants are cleared by 

the treatment. This type of misclassification results in overestimation of the cure rate.

This present work has two aims. First, to demonstrate the effect of the distribution of allelic 

variants, transmission intensity and multiplicity of infection (MOI) on the probability of 

misclassification of recurrent infections. Second, to develop a practical approach for 

adjusting PCR-corrected results for misclassification of both reinfections and 

recrudescences. A worked example using data from areas of both high and low transmission 

intensity is provided.

Methods

Characteristics affecting the probability of false positives

We used simulations of the infection, cure, and re-infection process to demonstrate the effect 

of allelic diversity, transmission intensity and MOI on the probability of a false positive. In 

this context, a false positive refers to a reinfection that is misclassified as a recrudescence 

because allelic variants in the day 0 and day R samples match by chance. We used MATLAB 

R2008a (Natick, MA) software to simulate infections (and re-infections) of individual 

patients after specifying the population-wide distribution of allelic variants. For each of 

100000 simulated patients, we assigned a specified number of day 0 variants drawn 

randomly from the distribution. We set treatment success at 100% and assigned a specified 

number of day R variants the same way. We tested all patients for matching day 0 and day R 

variants, and calculated the probability of a false positive as the number of patients with a 

match divided by 100000, the number of simulated patients.

We first assessed the effect of allelic diversity in the parasite population on the probability of 

a false positive. As in routine PCR-correction, allelic variants were distinguished by the 

number of base pairs (bp); due to the insensitivity of nPCR to small variations in the number 
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of bp, variants that were different by no more than 20bp were considered to be the same to 

replicate the degree of precision routinely allowed. We assumed that the sizes of the variants 

followed a normal distribution. We generated ten distributions, each with a mean equal to 

350bp (a relevant value based on the size of bands amplified during genotyping of msp1). 

Each distribution had a different variance; we included variances within the range of realistic 

values as well as extremes to demonstrate the effect of allelic diversity on false positives (the 

variances ranged from 1575 to 6475). The resulting distributions are shown in Figure 1. For 

each distribution, we simulated the infection and reinfection of 100000 patients by assigning 

each a single day 0 variant and a single day R variant drawn randomly from the distribution.

We assessed the effect of transmission intensity on the probability of a false positive by 

assigning each patient one day 0 variant and one, two, three or four day R variants, each 

reflecting an infectious bite (for simplicity, we assumed each infectious bite transmitted a 

single variant). We simulated the effect of MOI similarly, assigning each patient one through 

four day 0 variants and the same number of day R variants.

Monte Carlo uncertainty analysis

To accurately measure treatment success, estimates of the cure rate need to be adjusted for 

two types of misclassification: false positives (reinfections incorrectly being classified as 

recrudescent) and false negatives (true recrudescent infections misclassified as reinfections 

because a minority variant in the day 0 sample was not detected by nPCR). To adjust for this 

misclassification, we developed an uncertainty analysis that requires two sources of external, 

or prior, information: the distributions of false positives and false negatives. These 

distributions can be estimated using data from antimalarial efficacy studies.

We developed a method for estimating the distribution of false positives that reflects our 

understanding of the factors that influence the probability of a chance match and exploits 

characteristics of the study data themselves, allowing the probability of a false positive to 

appropriately be tailored to the study setting. False positive probabilities were calculated 

using the same simulation procedure described above, except that the number of allelic 

variants observed in each patient at day 0 and day R, and the population-wide distribution of 

allelic variants were set to match study data. We used MATLAB R2008a (Natick, MA) to 

simulate the infection and reinfection of N patients, where N was the number of patients 

who participated in the study. Each patient was assigned X day 0 and Y day R infections 

from the observed day 0 and day R distributions of allelic variants (the X for each patient 

was randomly selected from the observed distribution of the number of day 0 infections, the 

Y randomly selected from the distribution of the number of day R infections) and tested for 

matches. The false positive probability for this simulated study was then calculated as the 

number of chance matches divided by N. We repeated this process 10000 times (generating 

10000 false positive probabilities) and fit a normal distribution to their values; this provided 

the mean and variance for the distribution of the proportion of recrudescent infections that 

were false positives.

To estimate the distribution of false negatives, we made use of the observation that nPCR has 

limited sensitivity to variants comprising less than 20% of a patient’s parasite population.

[10,11] Misclassification of a recrudescence as a reinfection, a false negative, requires that 
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each day R variant be undetected in the day 0 variants, as a single shared variant will result 

in the classification of the recurrence as a recrudescence according to the MMV/WHO 

guidelines.[4] To our knowledge, the only published information on the role of false 

negatives comes from Juliano et al. who used heteroduplex tracking assays (HTAs), a 

molecular method more sensitive to minority variants and genetic variation than nPCR, and 

found that five of six new infections (83%) identified by PCR-correction were truly 

recrudescent infections.[8] However, their study population was at negligible risk of 

reinfection, likely making their results an overestimate in the context of an average 

antimalarial trial. Therefore, to estimate the proportion of reinfections that were false 

negatives we used the median number of variants observed in the day R samples, assumed 

each variant carried with it a 20% chance of being missed in the day 0 sample, and 

calculated the probability that all were missed at day 0 resulting in a false negative using this 

formula: proportion of false negatives equals (0.2)v, where v is the median number of 

variants. The 20% chance was based on existing literature and expert opinion. Figure 2 

shows our estimate of the effect of the number of variants in the day R sample on the 

probability that a recrudescence was misclassified as a reinfection (a false negative). We also 

conducted a sensitivity analysis varying the probability of a band being missed in the day 0 

sample from 0 to 80%.

We conducted a Monte Carlo uncertainty analysis to adjust the observed number of 

recrudescent infections as determined by PCR-correction after genotyping msp2 by the 

estimated distributions of false positives and false negatives. Using an approach similar to 

that described by Jurek et al.,[12] we calculate the adjusted cure rate using this formula:

(1)

Where Nt is the total number of patients, Nrecru is the number of recrudescent infections 

identified by PCR-correction, FP is the proportion of recrudescent infections that were false 

positives, Nnew is the number of reinfections identified by PCR-correction, and FN is the 

proportion of reinfections that were false negatives.

We used Oracle Crystal Ball, Fusion Edition (Redwood Shores, CA) software to run 100000 

trials in which the number of recrudescent infections as determined by PCR-correction after 

genotyping msp2 in each study area was adjusted and the cure rate calculated using formula 

1 (above). As the last step in each trial, we included a bootstrap step to allow for sampling 

error by generating a random value from a binomial distribution.[13] The binomial 

distribution is parameterized by n, the number of trials, and p, the probability of success. In 

this case, the number of trials equaled the number of patients in the study and the probability 

of success was the uncertainty-adjusted probability of treatment failure. We drew a single 

random value from the distribution and treated it as the number of recrudescences which 

allowed us to calculate the final cure rate, adjusted for both uncertainty and sampling error. 

We also ran 100000 trials without the bootstrap step to explore the effect of uncertainty in 

the absence of sampling error, and finally, also calculated traditional 95% confidence 

intervals around the PCR-corrected cure rate with no adjustment for outcome 

misclassification to demonstrate the effect of sampling error in the absence of uncertainty 

about the outcome.
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Example data

To provide an example of our proposed uncertainty analysis, we used genotyping data from 

two randomized antimalarial efficacy trials conducted in areas of differing transmission 

intensity. The data from the high transmission area came from a study in Tororo, Uganda 

(N=401); the researchers were comparing the efficacy of an amodiaquine plus artesunate 

regimen compared to an atemether-lumefantrine regimen.[14] The data from the low 

transmission area were generated by a study conducted in Bobo-Dioulasso, Burkina Faso 

(N=827); the researchers were comparing the efficacy of amodiaquine, sulfadoxine-

pyrimethamine and amodiaquine plus sulfadoxine-pyrimethamine.[15] In both studies, the 

different therapies did demonstrate different levels of efficacy[14, 15]; however, because we 

are not interested in a particular treatment’s efficacy, and instead are simply providing an 

example of the uncertainty analysis, we did not stratify by treatment arm. The data for each 

patient included the number and identity of allelic variants. Greenhouse et al. used two sets 

of primers for amplification to capture two allelic families of msp2, IC3D7 and FC27.[5] 

Alleles were considered different if they were from different allelic families or if they were 

not the same length.

Results

Characteristics affecting the probability of false positives

The simulations compared the effect of transmission intensity and MOI on the probability of 

a false positive across ten normal distributions comprising alleles with the same mean size 

(350bp) but different variances (Figure 1); increased variance signified higher levels of 

genetic diversity in the population under study. We drew 100000 samples of allelic variants 

from each distribution, assumed 100% treatment success, and drew a second variant to allow 

us to calculate the probability of a false positive. We calculated these probabilities at 

different levels of transmission intensity and different MOI.

At any level of allelic variance, the greater the number of post-treatment bites, or the more 

variants a patient had at day 0 and day R, the more likely a false positive. Conversely, higher 

levels of allelic diversity had lower probabilities of false positives regardless of transmission 

intensity or MOI (Figure 3).

Example of Monte Carlo uncertainty analysis

We used two data sets to provide examples of our Monte Carlo uncertainty analysis, which 

adjusted the number of recrudescent infections identified by PCR-correction by false 

positives (the proportion of nPCR identified recrudescent infections misclassified due to a 

variant in the day 0 and day R sample matching by chance) and false negatives (the 

proportion of nPCR reinfections misclassified due to nPCR insensitivity).

Patients from Tororo, the high transmission area, had one to eight day 0 variants (median of 

four) and one to eight day R variants (median of three). There were 40 variants in the day 0 

sample when divided into 20 base pair bins with variants ranging in size from 181 to 611bp. 

There were 38 variants in the day R sample with sizes ranging from 212 to 663bp.
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Patients from Bobo-Dioulasso, the low transmission area, had one to eight day 0 variants 

(median of two) and one to six day R variants (median of two). There were 39 variants in the 

day 0 sample with sizes ranging from 195 to 637bp. There were 25 variants in the day R 

sample with sizes ranging from 232 to 504bp.

False positives—There was slightly less allelic diversity in Bobo-Dioulasso, however 

individuals with single pre-treatment and post-treatment variants had very similar 

probabilities of a false positive (in Tororo the probability was 0.050 vs. 0.045 in Bobo-

Dioulasso). In patients with the sites’ median numbers of pre-treatment and post-treatment 

variants (four and three respectively in Tororo; two and two in Bobo-Dioulasso), the 

probability of a false positive was considerably higher in Tororo (0.327) when compared to 

Bobo-Dioulasso (0.163).

We used the probability of a day 0 and day R variant matching by chance to inform our 

distribution of false positives. We did this by running 10000 simulations, each with the 

number of participants in the study. Each participant was assigned X day 0 and Y day R 

variants from the observed day 0 and day R distributions of allelic variants (the X for each 

patient was randomly selected from the observed distribution of the number of day 0 

variants, the Y randomly selected from the distribution of the number of day R variants) and 

tested for matches. We created a distribution of these 10000 probabilities and determined its 

mean and standard error. The mean proportion of recrudescent infections that were false 

positives was 0.423 in Tororo (standard error = 0.0007) and 0.193 in Bobo-Dioulasso 

(standard error = 0.0004).

False negatives—False negatives occur when a minority variant is undetected by the 

nPCR and results in misclassification of a recrudescent infection as a reinfection. The 

proportion of variants likely to be false negatives was equal to (0.2)v, where 0.2 is the 

probability that a variant was missed in day 0 and v is the median number of variants in the 

site’s day R samples (Figure 2). The proportion of reinfections that were false negatives was 

0.008 in Tororo and 0.04 in Bobo-Dioulasso.

Adjusted number of recrudescent infections—There were 232 recurrent 

parasitemias among the 401 study participants from Tororo. After genotyping msp2, 145 

were classified as recrudescent and 87 as reinfection, corresponding to a cure rate of 63.8%. 

After conducting our uncertainty analysis, we determined that the 95% simulation interval of 

likely cure rates ranged from 74.6 to 83.3% (Table 1).

Among the 827 study participants from Bobo-Dioulasso, there were 75 recurrent 

parasitemias. After genotyping msp2, 50 were classified as recrudescent and 25 as 

reinfection, corresponding to a cure rate of 94.0%. After conducting our uncertainty 

analysis, we determined that the 95% simulation interval of likely cure rates ranged from 

93.5 to 96.5% (Table 1).

We evaluated the effect of uncertainty due to outcome misclassification and sampling error 

independently. The adjustment for uncertainty regarding outcome misclassification was 
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responsible for the upward shift of the cure rate (indicating greater efficacy) and sampling 

error increased the width of the simulation interval (Table 1).

Discussion

Our simulations demonstrated the effect of allelic diversity, transmission intensity and MOI 

on the probability of a chance match between a day 0 and day R variant. False positives were 

more common in areas with less diverse parasite populations and high transmission levels 

which would lead to underestimation of cure rates in those areas. The most dramatic 

increase in the probability of a false positive was associated with increased MOI (Figure 

3B).

The results of the proposed uncertainty analysis indicated false positives (reinfections 

misclassified as recrudescences) were responsible for the majority of misclassification in 

both examples. Selecting variants at random from the observed distributions in Tororo 

resulted in false positives in more than one-third of the recrudescent infections, while in 

Bobo-Dioulasso the probability that a recrudescence was a false positive was less than 20%. 

The discrepancy is primarily the result of the lower median day 0 and day R MOI in Bobo-

Dioulasso, as both areas had similar levels of allelic diversity. In Tororo, false positives 

resulted in an uncertainty interval of the cure rate that indicated greater efficacy than the 

original point estimate calculated after genotyping msp2.

False negatives (recrudescences misclassified as reinfections) resulted in only a small 

amount of misclassification for two reasons. First, multiple variants in the day R sample 

(observed in both study sites) decreased the probability of this type of misclassification 

exponentially (Figure 2). Our sensitivity analysis indicated that even with a 30% chance that 

a day 0 variant was not detected, the impact of the observed number of variants in the day R 

samples resulted in a negligible effect of false negatives (data not shown). As the chance a 

day 0 variant was not detected increased past 40%, the impact began to increase more 

rapidly, however values greater or equal to 30% are highly unlikely. Second, using PCR-

correction there were very few recurrences identified as reinfections; regardless of the 

probability that a reinfection was truly a recrudescence, the contribution of this type of 

misclassification to overall uncertainty would be low. However, in areas of low transmission, 

such as Southeast Asia, where few variants are present a day 0, false negatives may be an 

important source of misclassification.[8]

The uncertainty analysis was based on PCR-correction of a single marker. Though the use of 

multiple markers to perform PCR-correction (a common practice) may reduce the 

probability of false positives, it increases the probability of false negatives because the 

MMV/WHO guidelines state that a single marker classified as a reinfection results in the 

recurrence being classified as such, regardless of the classification of other markers 

genotyped. As additional information is generated regarding the probability of false 

negatives and how it changes with the use of multiple markers, it will be possible to refine 

this uncertainty analysis to accommodate multiple markers.
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The impact of misclassification with regard to WHO efficacy thresholds varied between the 

two sites. Although ultimately the range of likely cure rates in Tororo did not cross a WHO 

cut-point, it did demonstrate that misclassification plays an important role. In Bobo-

Dioulasso, the area of low transmission, a WHO cut-point was included in the interval of 

likely cure rates (i.e. 93.5 to 96.5%). The relatively few patients who had recurrent 

parasitemia in Bobo-Dioulasso resulted in a narrow interval of cure rates with values similar 

to the PCR-corrected point estimate, however a drug whose cure rate calculated the 

traditional way would have been just below the level of efficacy required for new drugs and 

may in turn have been rejected, when it should be eligible for consideration. 

Misclassification should always be considered when policy decisions are made based on 

estimates of efficacy.

Our approach to generating the distribution of false positives is probably not practical for 

use in all antimalarial efficacy studies. However, we are optimistic that it is possible to 

generate three reasonable “stock” distributions of false positives, one for high, medium, and 

low transmission areas. The uncertainty analysis itself is quite straightforward and can easily 

be carried out in Crystal Ball, a relatively inexpensive addition to Microsoft Excel, and 

perhaps eventually in a free web-based tool. It is our hope that future molecular research will 

allow us to provide researchers with distributions of false positives and false negatives, 

making this uncertainty analysis available for wide use.

Misclassification of recurrent parasitemias resulting from PCR-correction has been 

previously described. Adjustments of PCR-corrected trial results have been made using the 

distribution of allelic variants to calculate the probability of false positives leading to 

incorrect classification of the recurrence as a recrudescence when it is a reinfection.[5, 6, 16, 

17] HTAs, which use radiolabeled probes to bind to host amplicons, are more sensitive to 

minority variants and genetic variation than nPCR [6, 11, 18, 19] and have been used to 

demonstrate that nPCR insensitivity can result in recrudescent infections being misclassified 

as reinfections.[8] To our knowledge, simultaneous adjustment for both types of 

misclassification has not been undertaken previously.

Traditional confidence intervals summarize only the effect of random error and do not 

capture or reveal any uncertainty resulting from bias, including misclassification or 

measurement error, in the study. Adjusting results for misclassification was illustrated in 

previous work [12] and is grounded in methods proposed to estimate intervals that are an 

extension of traditional confidence intervals through use of simulations.[20] Some 

researchers are uncomfortable with the explicit assumptions about misclassification that are 

required for uncertainty analyses. However, this approach is far preferable to assuming 

misclassification is entirely absent, an implicit assumption in the traditional estimation of a 

PCR-corrected cure rate.

A point estimate of the cure rate, the traditional outcome measure in antimalarial efficacy 

studies, is insufficient given the limitations of PCR-correction. This insufficiency is even 

more important given the policy implications of efficacy estimates. A 95% simulation 

interval for the cure rate, instead of an estimate likely to be biased by outcome 

misclassification, may encourage more careful assessment of a treatment’s utility before 
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policy decisions are made. This work provides a template for adjusting for outcome 

misclassification in antimalarial efficacy studies that addresses both types of 

misclassification and can be applied to any study data that include information on the 

variants present in the patient population.
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Figure 1. The ten normal distributions of base pairs used for simulations
These distributions all have the same mean (350 bp); the variance increases from top to 

bottom. Each plot represents 100000 randomly assigned number of base pairs selected from 

the distribution. x-axis: number of base pairs; y-axis: frequency
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Figure 2. Multiplicity of infection and its effect on the probability of a false negative
A false negative, or a recrudescent infection misclassified as a reinfection, occurs as a result 

of nPCR insensitivity to minority variants (those comprising less than 20% of a patient’s 

infection).
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Figure 3. A) The effect of transmission intensity on the probability of a false positive, B) The 
effect of multiplicity of infection on the probability of a false positive
x-axis: measure of allelic variation in parasite population (1 = least variance); y-axis: 

probability of a false positive (a false positive occurs when a day 0 and day R variant match 

by chance); var = variant
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Table 1

Results from the uncertainty analysis: estimates of cure rates from studies in Bobo-Dioulasso, Burkina Faso, 

and Tororo, Uganda.

Tororo
N = 401

Bobo-Dioulasso
N = 827

Number of recurrent infections 232 75

Number of recrudescent infections identified by
PCR-correction based on genotyping of msp2

145 50

Cure rate (95% CIa) calculated by PCR-correction
based on genotyping of msp2 (%)

63.8
(59.0 – 68.4)

94.0
(92.1 – 95.4)

95% SIb of likely cure rates adjusted for only for

uncertainty (%)c
77.4 – 80.5 94.9 – 95.1

95% SI of likely cure rates generated by Monte
Carlo uncertainty analysis (%)

74.6 – 83.3 93.5 – 96.5

a
. CI = confidence interval;

b
. SI = simulation interval;

c
. This interval does not take sampling error into account.
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