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Abstract

Background—Marginal structural models are an important tool for observational studies. These 

models typically assume that variables are measured without error. We describe a method to 

account for differential and non-differential measurement error in a marginal structural model.
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Methods—We illustrate the method estimating the joint effects of antiretroviral therapy initiation 

and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV 

followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with 

error, but a subset of 3686 patients who reported smoking status on separate questionnaires 

composed an internal validation subgroup. We compared a standard joint marginal structural 

model fit using inverse probability weights to a model that also accounted for misclassification of 

smoking status using multiple imputation.

Results—In the standard analysis, current smoking was not associated with increased risk of 

mortality. After accounting for misclassification, current smoking without therapy was associated 

with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking 

and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% 

CI: 0.2, 0.6).

Conclusions—Multiple imputation can be used to account for measurement error in concert 

with methods for causal inference to strengthen results from observational studies.
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Marginal structural models have become widely used tools to estimate the effects of 

exposures in the presence of time-varying confounding and selection bias1. These models 

have been essential in HIV, where time-varying confounding by biomarkers limits the use of 

standard methods when estimating the effects of antiretroviral therapy and other exposures 

in observational studies2–6. Similarly, joint marginal structural models have been proposed7 

and applied8,9 to estimate the joint effects of two or more exposures when one or more 

exposures are subject to time-varying confounding affected by prior exposure.

With few exceptions10–12, most implementations of both standard and joint marginal 

structural models assume that exposures are measured without error, but exposure 

measurement is often imperfect. Here, we estimate the joint effects of therapy initiation and 

current smoking (a known risk factor for death among patients in treatment for HIV13,14) on 

all-cause mortality in the Centers for AIDS Research Network of Integrated Clinical 

Systems (CNICS), a large clinical cohort of patients infected with HIV in the United States. 

In this cohort, smoking status reported by health care providers in the medical record was 

prone to measurement error, but information on smoking status was also available from a 

subgroup of patients who completed a clinical assessment of smoking status using detailed 

self-report instruments. We estimate the joint effects of therapy initiation and current 

smoking by combining multiple imputation to account for misclassification of smoking 

status with inverse probability weighted estimation of a joint marginal structural model. We 

also illustrate the finite sample properties of the proposed method using a limited Monte 

Carlo simulation.
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METHODS

We are interested in the joint effects of initiation of antiretroviral therapy and current 

smoking on mortality, as parameterized by a set of three hazard ratios. This set of 

parameters can be identified using a 2-by-2 factorial randomized trial in which therapy-

naïve patients were randomized to 1 of 4 arms: 1) initiate therapy and smoke; 2) initiate 

therapy and do not smoke; 3) do not initiate therapy and smoke; and 4) do not initiate 

therapy and do not smoke. The three hazard ratios of interest compare arms 1–3 above with 

arm 4. Because the prevalence of smoking among patients with HIV is high, many patients 

recruited for such a trial would likely have smoked prior to study entry, but the trial would 

estimate the effect of smoking only during the study period. Of course, if trial participants 

had exposure to smoking prior to randomization, then there would be interest in exploring 

how smoking history possibly modifies the effect of current smoking.

To consistently estimate these parameters using observational data, we must additionally 

assume that we can adequately account for confounding of both exposures, including 

confounding by smoking history at study entry.

Study population

CNICS was developed to support population-based HIV research in the United States15. The 

CNICS cohort includes over 29,000 HIV-positive adults engaged in clinical care from 

January 1, 1995 to the present (2014) at 8 Centers for AIDS Research sites (Case Western 

Reserve University; Fenway Community Health Center of Harvard University; Johns 

Hopkins University; University of Alabama at Birmingham; University of California, San 

Diego; University of California, San Francisco; University of North Carolina; and 

University of Washington). All patients attending two primary HIV medical care visits at 

one of the eight study sites are eligible for CNICS and followed for clinical events, lab 

measurements, and medications while they remain in care at study sites. Institutional review 

boards at each site approved study protocols. Participants provided written informed consent 

to be included in the CNICS cohort or contributed administrative and/or clinical data with a 

waiver of written informed consent where approved by local Institutional Review Boards.

CNICS includes 13,241 patients who entered care at a CNICS site prior to initiation of 

antiretroviral therapy and had a viral load of at least 500 copies/mL at cohort entry between 

January 1, 1998 and December 31, 2011. We excluded patients who did not have both CD4 

cell count and viral load recorded within one year of study entry (n=152), and who were 

missing information on race (n=438) or transmission risk factor (n=361). The remaining 

12,290 patients were included in this analysis.

Therapy initiation and smoking status

Therapy initiation was defined as the date on which patients were first prescribed three or 

more antiretroviral agents. After therapy initiation, patients were assumed to be on therapy 

throughout follow-up under an observational analog to the intention-to-treat assumption4. 

As in prior observational analyses3,16, we estimate the effect of initiating therapy rather than 

being on therapy.
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Patients classified as current smokers at any time during the study period were considered 

current smokers for the entire study period. Information on smoking status was available for 

all patients through provider documentation on patient medical records. However, smoking 

status as documented in the medical records was likely measured with error, and the absence 

of a positive report was assumed to imply nonsmoking. Moreover the validity of health care 

provider-reported smoking status was possibly influenced by predictors of mortality.

A subset of 3686 patients from five sites self-reported smoking status on the CNICS clinical 

assessment using a web-based survey software application implemented during clinical care. 

These patients composed an internal validation subgroup. Patient-reported current smoking 

status was considered less error-prone and used as a “gold standard” measure of smoking 

classification17.

Mortality ascertainment

The outcome of interest was all-cause mortality. Deaths were obtained through clinic 

sources, death certificates, and the United States vital status databases. Each CNICS site 

maintains a registry of deaths among patients at that site and regularly queries the Social 

Security Death Index and/or National Death Index to confirm mortality data.

Statistical methods

The 12,290 patients were followed from study entry until death, loss to follow-up, 

December 31, 2011, or 5 years after study entry. Patients were considered to be lost to 

follow-up after 12 consecutive months without a documented clinic visit including a CD4 

cell count or viral load measurement.

We aim to estimate the joint effects of current smoking and therapy initiation using the joint 

marginal structural Cox model

(1)

where the effects of interest are the hazard ratios exp(β1), exp(β2), and exp(β1 + β2 + β3) for 

the joint effects of no therapy and smoking, therapy and no smoking, and therapy and 

smoking on mortality, respectively, relative to the hazard among nonsmoking patients not on 

therapy. S represents the gold standard (patient-reported) smoking status and A(t) is an 

indicator of therapy initiation by time t.

Because gold-standard smoking status S is not available for all patients, we must classify 

patients according to provider-reported smoking status if we do not wish to limit our 

analysis to the subset of patients who filled out detailed smoking status information on the 

electronic questionnaires. The standard analysis estimates the parameters β = {β1, β2, β3}of 

equation 1 as θ = {θ1, θ2, θ3} in equation 2 by fitting the marginal structural Cox model

(2)

where smoking is measured by provider-reported smoking status (S*) rather than the gold-

standard, patient reported smoking status (S). We fit the marginal structural model using 

Edwards et al. Page 4

Epidemiology. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inverse-probability weights to create a pseudo-population in which neither exposure is 

associated with the confounders measured prior to the exposure2,3,18,19. Details on the 

implementation of the standard marginal structural model shown above are provided in 

section A of the eAppendix.

Analysis accounting for measurement error

To estimate hazard ratios for the joint effects of current smoking and therapy initiation that 

were not biased by misclassification of provider-reported smoking status, we used multiple 

imputation to impute S, the patient-reported measure of current smoking status, prior to 

fitting the marginal structural model. Multiple imputation is a technique to account for 

missing data21–24. Viewing misclassification of current smoking status as a missing data 

problem in which S is missing for patients outside the validation subgroup facilitates the use 

of missing data methods, like multiple imputation, to account for measurement error25,26.

We used information on the relationship between variables that were measured for all 

patients and patient-reported current smoking status in the validation subgroup to impute S 

for all other patients in each of M imputations. Details are provided in the Appendix.

In each of the M imputations, we fit the marginal structural Cox model

(6)

by maximizing the weighted partial likelihood in each imputation

(7)

where Yi represents the time to the first of mortality or censoring and δi is an event indicator 

for patient i. Note that distinct values of the parameters γ are estimated in each imputation 

m.

Weights were estimated for each month in each imputation as Wm(t) = WSmWA(Sm)(t). 

Smoking weights were estimated as WSm = f(Sm)/f(Sm|L) and treatment weights were 

estimated as

(8)

where ⌊t⌋ is the count of completed months from study entry to time t and L is a vector of 

time-fixed covariates including age, sex, race, ethnicity, and year, HIV transmission risk 

factor (indicators of being a man who has sex with men and injection drug use), CD4 cell 

count, and viral load at study entry.

Assuming that inclusion in the subset of patients with detailed smoking information depends 

only on the observed covariates, the parameters of interest, exp(β1), exp(β2), and exp(β1 + β2 
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+ β3) can be consistently estimated by exp(γ̄
1), exp(γ̄

2), and exp(γ̄
1 + γ̄

2 + γ̄
3), respectively, 

where γ̄
p is the average γp across all imputations,

(9)

A large-sample estimate of the variance for γ̄
p is given by

(10)

where the within imputation variance, , is the robust variance for 3,27. In this 

example, we set M = 20.

We also graphically present the cumulative incidence of mortality for patients in each of the 

four groups in the standard analysis and analysis accounting for measurement error19,28. 

Statistical analyses were performed using SAS version 9.3 (SAS Institute, Inc., Cary, NC), 

and SAS code is provided in Section B of the eAppendix.

We further explored the finite-sample properties of multiple imputation to account for 

measurement error in marginal structural models using simulations. The bias, 95% 

confidence interval coverage, power, and mean squared error were evaluated for the 

standard marginal structural model and the marginal structural model using multiple 

imputation to account for measurement error that is non-differential (scenario 1) and 

differential (scenario 2) with respect to the outcome. Details about the simulations are 

provided in Section C of the eAppendix.

RESULTS

Table 1 describes the characteristics of the study population at study entry and over 36,418 

person-years of follow-up. Of the 12,290 patients included in the study, 82% were male, 

39% were black, and 60% were men who have sex with men. At study entry 19% had been 

diagnosed with AIDS. Provider diagnoses identified 39% of the cohort as current smokers, 

and 69% of the patients initiated antiretroviral therapy before the end of follow-up. Over the 

5 years of follow-up, 935 patients died, and 5137 were lost to follow-up.

A subset of 3686 patients completed detailed self-reported smoking status as part of the 

CNICS clinical assessment of patient reported outcomes during the study period and were 

included in the validation subgroup. Patients in the validation subgroup were similar to all 

patients at the sites where they were enrolled but more likely to be male and/or men who 

have sex with men, and less likely to be black, injection drug users, or have AIDS at 

baseline than patients in the main cohort. In the validation subgroup, 43% of patients had a 

provider diagnosis as a current smoker, while 46% reported themselves that they were 

current smokers. Using self-reported current smoking status as the gold standard, the 

sensitivity of provider-diagnosed smoking was 74% (95% CI: 72%, 76%) and the specificity 
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was 83% (95% CI: 81%, 85%) in the validation subgroup. Of the 3686 patients in the 

validation subgroup, 52 died and 855 were lost to follow-up over 5 years.

Table 2 presents hazard ratios comparing mortality between exposure groups in the standard 

analysis and in the analysis accounting for measurement error of smoking status. In the 

standard joint marginal structural model, the hazard ratio (HR) comparing smoking and not 

initiating therapy to not smoking and not initiating therapy was a counterintuitive 0.6 (95% 

CI: 0.6, 0.8). The HR for not smoking and initiating therapy was 0.3 (95% CI: 0.3, 0.4), and 

the HR for smoking and initiating therapy was 0.3 (95% CI: 0.2, 0.3). These results suggest 

that smoking (with and without therapy) was protective of 5-year total mortality. Figure 1 

presents the risk of mortality over time for each exposure group in the standard analysis.

After accounting for the measurement error in current smoking status, the prevalence of 

smoking in the entire cohort was 50%. Compared to not smoking and not initiating therapy, 

the mortality hazard ratio for smoking and not initiating therapy was 1.2 (95% CI: 0.6, 2.3). 

Compared to not smoking and not initiating therapy, the HR for not smoking and initiating 

therapy was 0.4 (95% CI: 0.2, 0.6), and the HR for smoking and initiating therapy was 

similar at 0.4 (95% CI: 0.2, 0.7). Figure 2 presents the risk of mortality over time for each 

exposure group after accounting for measurement error. The HR for smoking and initiating 

therapy was similar to the expected HR under multiplicativity of the effects of smoking and 

therapy (0.4) and farther from the null than the expected HR under additivity (0.6).

Table 3 presents the results from Monte Carlo simulations. In 2000 simulated cohorts each 

of 2000 patients, the multiple imputation approach produced an HR with little bias and 

appropriate coverage under conditions mimicking the data used in this analysis. When 

exposure misclassification was differential with respect to the outcome, the multiple 

imputation approach that assumed non-differential misclassification yielded results with 

more bias than the multiple imputation approach accounting for the differential 

misclassification, but much less bias than the standard marginal structural model.

DISCUSSION

Results from a joint marginal structural model that accounted for misclassification of current 

smoking status suggested that patients who smoked had slightly higher risk of mortality 

under no therapy initiation (23% vs. 22%) and under therapy initiation (10% vs. 9%) over 5 

years. These findings are consistent with existing literature on risks of smoking among 

individuals in care for HIV13,14,29,30. In the standard joint marginal structural model, which 

did not account for measurement error of smoking status, current smoking (counter to 

expectations) appeared to decrease the risk of mortality.

As in existing studies highlighting the discrepancies between electronic health records and 

patient report outcomes17, provider classification of current smoking status on electronic 

health records was a poor proxy for self-reported smoking. After accounting for 

measurement error of smoking status, the prevalence of current smoking in the CNICS was 

similar to the prevalence of self-reported smoking reported in other cohorts of patients with 

HIV13,29,31. Existing studies conducted among therapy initiators report that smoking 
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sometimes is associated with poorer adherence to therapy29,32,33, inferior immunological 

markers29,34, and increased risk of mortality29, leading investigators to suggest that smoking 

may make therapy less effective29,34,35. Studies in the era prior to effective therapy found no 

effect of smoking on mortality36–38. In this analysis, conducted in the current HIV treatment 

era, we report somewhat increased mortality for smokers under no therapy initiation, which 

has not been examined in previous studies.

Here, we have described a method to estimate the joint effects of therapy and current 

smoking from observational data when smoking status may be misclassified. These joint 

effects can be conceptualized as the effects of joint interventions on therapy and current 

smoking. Estimating these joint effects in observational data requires accounting for 

confounding of both therapy initiation and current smoking. Because CNICS is based on 

data collected at routine clinic visits, we were unable to include information not routinely 

collected at an HIV patient visit, meaning that we may have residual confounding by 

unmeasured covariates. In addition, CNICS does not include information for most patients 

on smoking prior to study entry, which is likely to affect both smoking during the study and 

mortality. However, in analyses conducted among only patients who completed detailed 

questionnaires, the effect of smoking on mortality was similar when estimated using weights 

that included prior smoking (HR: 1.6; 95% CI: 0.8, 3.3) and when estimated using weights 

that did not include prior smoking (HR: 1.6; 95% CI: 0.9, 2.8), lending support to our results 

despite possible residual confounding by prior smoking status.

Alternatively, we could consider current smoking as a modifier of the effect of therapy on 

mortality. Because a modifier is not required to be unconfounded, we could examine 

modification by current smoking status by fitting the structural model proposed above with 

only the treatment weights. Numerical results are similar when smoking is considered to be 

an effect modifier, though we interpret the results as stratum specific effects of therapy, 

rather than joint effects. The HR for the effect of treatment on mortality was not modified by 

smoking status; the HR was 0.4 (95% CI: 0.2, 0.6) for nonsmokers and 0.4 (95% CI: 0.2, 

0.6) for smokers.

We also assume non-informative censoring. Over the 5-year study period, 5137 of the 

12,290 patients in the cohort were lost to follow-up. Note that, when one includes potential 

confounders in an outcome regression survival model, one simultaneously accounts for 

confounding and informative censoring based on those variables. Here, because we 

accounted for confounding using inverse probability weights instead of including 

confounders in the structural model, we would need inverse probability of censoring weights 

to produce consistent estimates of the hazard ratios in the presence of covariates that predict 

both loss to follow-up and death. However, while the proportion of patients lost to follow-up 

was high, no measured covariates were strongly associated with loss to follow-up. In 

addition, previous work has shown that loss to follow-up in the CNICS cohort does not 

predict mortality39, indicating that selection bias resulting from the high proportion of 

patients lost to follow-up is likely to be modest. As expected, when we applied inverse 

probability of censoring weights in unpublished analyses, results were unchanged.
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We used multiple imputation to account for misclassification of current smoking status 

using self-reported smoking as the gold standard. However, if patients did not accurately 

report their smoking status, we could have residual measurement error. Similarly, if patients 

changed their smoking behaviors over follow-up, we would have misclassified their 

smoking status for at least some of the study period. Unfortunately, smoking behaviors have 

changed very slowly among patients with HIV, which is one reason smoking rates among 

patients with HIV are still over twice as high as among the general population40–44. Finally, 

we assume all other variables, including date of therapy initiation, are measured without 

error, though the multiple imputation approach could be extended to account for 

measurement error of multiple variables.

Multiple imputation is a method to handle missing data that is familiar to epidemiologists 

and has been previously applied to account for measurement error of exposures25 and 

outcomes26. For multiple imputation to produce consistent estimates in the presence of 

exposure measurement error, we must assume transportability of the misclassification 

probabilities; that is, we assume that inclusion in the validation subgroup is independent of 

the gold-standard exposure, given the observed exposure and covariates included in the 

imputation model45. Just as we must assume that a variable is missing at random given the 

observed data to use multiple imputation for missing data, we must assume that information 

on the gold standard exposure is missing at random (conditional on observed data) to use 

multiple imputation to account for measurement error.

The gold standard exposure is guaranteed to be missing at random when the validation 

subgroup is randomly selected from the study population (or randomly selected within strata 

of covariates) and participation is perfect. In our example, the validation subgroup was not 

randomly selected, but gold standard exposure information may still be missing at random if 

we measured all predictors of being included in the validation subgroup that also affect the 

misclassification probabilities and included these variables in the imputation model. 

However, we were not able to include study site as a predictor of patient-reported smoking 

in the imputation model because the patient-reported outcomes were collected at only 5 of 

the 8 study sites during the study period. If study site predicted smoking status, we may have 

residual bias due to measurement error. Finally, the validity of the estimates from the 

multiple imputation procedure depends not only on including all relevant covariates in the 

imputation model but also on correctly specifying their functional forms and including all 

relevant interactions between covariates.

One may wish to estimate the effect of exposure on outcome using patients in the validation 

subgroup alone. However, if a covariate influences both selection into the validation sample 

and the outcome, effects estimated from the validation sample alone may not be 

generalizable to the entire study sample, even if they are internally valid (e.g., not subject to 

measurement bias or selection bias) for the participants in the validation sample. In this case, 

multiple imputation can estimate the effect of exposure on outcome that is generalizable to 

the entire study sample because it allows the investigator to use information from all study 

participants. On the other hand, if the validation sample is randomly selected from the main 

study data, we would expect the estimate of effect from the validation sample to be 

generalizable to the entire study sample. In this case, multiple imputation still offers an 
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advantage over using validation sample alone in terms of precision, though this advantage 

diminishes as the size of the validation sample relative to the main study increases.

Several alternative methods to account for measurement error are available. Regression 

calibration has been proposed to account for nondifferential measurement error in marginal 

structural models11 and can be applied in studies with internal or external validation data, 

but regression calibration does not appear to work well with differential measurement 

error46. Differential measurement error is possible if the provider’s classification of smoking 

status depends on predictors of mortality, a situation that is possible if health care providers 

are more likely to ask a sick patient about tobacco use, and therefore correctly classify that 

patient as a smoker or nonsmoker, than a healthy patient. Multiple imputation allows for 

differential exposure measurement error by including a term for the product between the 

misclassified exposure and the outcome in the imputation model. Alternatively, Bayesian 

methods can be used to account for measurement error in studies both with and without 

internal validation data45,47–49.

We used multiple imputation to account for measurement error in a marginal structural 

model to estimate the joint effects of current smoking and therapy. These analyses were 

feasible in a large observational database due to improved measurement of smoking status 

for a subset of patients leveraging patient reported outcomes collected in addition to 

information from the electronic health record. Using Monte Carlo simulations, we showed 

that multiple imputation can be combined with a marginal structural model to produce 

consistent estimates of the hazard ratio in the presence of confounding and measurement 

error similar in magnitude to the measurement error of smoking seen in the CNICS cohort.

When estimating causal effects from observational data, with few notable exceptions11,50,51 

epidemiologists and biostatisticians have predominantly focused on accounting for bias due 

to confounding and selection, limiting consideration of measurement error to speculation in 

the Discussion sections of manuscripts. We have illustrated a technique to account for 

measurement error quantitatively that can be combined with modern methods to control 

confounding in observational settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Imputation details

We used the monotone logistic method for multiple imputation to impute the smoking status 

S for each patient23. In the validation sample, we fit the logistic regression

where S* is the provider-reported smoking status, δ is an indicator of death during the study 

period, Y is the time to death or censoring, L is a vector of time-fixed covariates, A is an 

indicator of initiating therapy during the study period, and H is the time from study entry to 

the first of therapy initiation, death, or censoring. We included interactions δS* and AS* to 

allow for differential measurement error of smoking with respect to mortality and therapy, 

respectively.

Next, for each of M imputations, we draw a set of regression coefficients αm from a 

multivariate normal distribution with mean vector (α̂0, α̂
1, α̂2, α̂3, α̂

4, α̂5, α̂6, α̂
7, α8̂, α̂

9) and 

covariance matrix Σ̂
S*,δ,log(Y),L,A,log (H) estimated from the logistic regression above. In each 

imputation m, we draw the imputed smoking status Sm for patients not in the validation 

subgroup from a Bernoulli distribution with probability pm, where 

and expit(·) = exp(·)/{1 + exp(·)}. For patients in the validation subgroup, Sm = S for all m.
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Figure 1. 
Weighted cumulative incidence of mortality by provider-reported smoking status and 

therapy initiation among 12,290 patients in the CNICS cohort at 8 sites in the United States, 

1998 – 2012.
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Figure 2. 
Weighted cumulative incidence of mortality by patient-reported smoking status and therapy 

initiation among 12,290 patients in the CNICS cohort at 8 sites in the United States, 1998 – 

2012.
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