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Abstract

Background—The way a construct is measured can differ across cohort study visits, 

complicating longitudinal comparisons. We demonstrated the use of factor analysis to link 

differing cognitive test batteries over visits to common metrics representing general cognitive 

performance, memory, executive functioning, and language.

Methods—We used data from three visits (over 26 years) of the Atherosclerosis Risk in 

Communities Neurocognitive Study (ARIC-NCS) (N=14,252). We allowed individual tests to 

contribute information differentially by race, an important factor to consider in cognitive aging. 

Using generalized estimating equations, we compared associations of diabetes with cognitive 

change using general and domain-specific factor scores vs. averages of equally weighted 

standardized test scores.

Results—Factor scores provided stronger associations with diabetes at the expense of greater 

variability around estimates (e.g., for general cognitive performance, −0.064 SD units/year, 

SE=0.015, vs −0.041 SD units/year, SE=0.014), which is consistent with the notion that factor 

scores more explicitly address error in measuring assessed traits than averages of standardized 

tests.

Conclusions—Factor analysis facilitates use of all available data when measures change over 

time, and further, it allows objective evaluation and correction for differential item functioning.
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Introduction

The study of change in a variable such as cognition requires that it be measured repeatedly 

and in the same way each time. However, measures often change over time due to 

refinements in theory and administrative or technical limitations.(1) Solutions are needed 

that facilitate use of available data to study change and its predictors. One analytic approach 

to using all available data is to use only tests in common across study visits. This approach 

potentially discards information from tests used in some but not all visits. Alternatively, 

scores from all tests might be standardized and averaged together into a composite.(e.g., 2) 

Although this succeeds in placing cognitive performance across study visits on a common 

scale (e.g., z-score with mean 0, variance 1), inclusion of equally-weighted cognitive tests 

that differ across different visits might reflect different constructs over time. As an extreme 

example, an average of nine memory tests and one speeded test would be entirely different 

than an average of one memory test and nine speeded tests at another point in time. A third 

approach, that can use all tests at all visits, is to use latent variable methods, described in the 

Methods, to derive scores representing latent traits that more adequately represent the same 

constructs across study visits and that take maximum advantage of existing data.

Latent variable methods have several advantages. First, they allow estimation of cognitive 

performance on a common metric despite differences in the tests used across assessments.

(4–6) Second, they account for varying difficulty and strengths of relationships among tests 

and take into account only common covariation among tests, thus addressing measurement 

error.(7) Third, they allow objective evaluation of and adjustment for test-level bias, or 

differences in test scores by characteristics extraneous to cognitive performance, that may 

alter the relationship between performance on a given cognitive test and the underlying 

cognitive trait it represents. In particular, although disparities in cognitive performance by 

racial/ethnic minority status are substantial,(8–9) and attributable largely to social factors 

such as educational attainment or accumulation of adverse life experiences,(10–11) 

differences in measurement properties of specific tests likely also contribute.(12–13) Finally, 

latent variable methods address incomplete information, as models can be explored that 

assume item scores not present are missing at random conditional on one’s latent status.

This study aimed to demonstrate the application of latent variable methods to cognitive data 

where tests differ over time. Using data from the Atherosclerosis Risk in Communities 

Neurocognitive study (ARIC NCS), we derived common factors representing general 

cognitive performance, executive functioning, memory, and language using all available 

cognitive data in each study visit. We explored and adjusted for differential item functioning 

between white and black participants because prior research has documented test bias by 

race in older adults.(6,11,12) We then contrasted the association of diabetes with cognitive 

change using the derived cognitive factors vs. corresponding associations based on averages 
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of standardized tests. We selected diabetes as an exemplar to parallel recent analyses using 

the same data based on standardized averages of scores.(14) We hypothesized that using 

psychometrically appropriate methods addresses error in measuring the cognitive traits 

assessed by the test battery more effectively than taking averages of tests, and thus shows 

less bias at the expense of more variability around estimates.

Methods

Participants

ARIC recruited N=15,792 adults aged 45 to 64 in 1987–89, representative of four US 

communities (Washington County, Maryland; suburban Minneapolis, Minnesota; Jackson, 

Mississippi; and Forsyth County, North Carolina). A primary objective of the ARIC NCS is 

to evaluate the contribution of vascular risk factors, measured during midlife, to long-term 

cognitive decline. Three cognitive tests (Digit Symbol Substitution, Delayed Word Recall, 

and Semantic Fluency) were administered in a 1990–92 visit to all available participants 

(N=14,252) and again in a 1996–98 visit (N=11,383). Ten tests (Digit Symbol Substitution, 

Delayed Word Recall, Phonemic Fluency, Logical Memory, Digit Span, incidental learning, 

Trail Making parts A and B, phonemic fluency, and the Boston naming test) were 

administered in 2011–13, when participants (N=6,351) were on average 77 years old (range 

66, 91). We excluded participants with missing data on diabetes at the 1990–92 visit (N=59). 

Our analysis includes 14,252 participants tested at least once. The study was approved by 

institutional review boards at each recruitment site.

Variables

Cognitive performance—Cognitive tests are described in Supplemental materials. The 

tests administered at each visit are depicted in Figure 1. We took delayed word recall, logical 

memory, and incidental learning to represent memory; the Trail Making Test, parts A and B 

and digit symbol substitution to represent executive functioning and speed of information 

processing; and semantic and phonemic fluency and the Boston Naming tests to represent 

language. These domains from these and related tests have been empirically derived in the 

ARIC NCS (15) and elsewhere.(16–18)

Diabetes—Diabetes at the 1990–92 visit was based on self-reported diagnosis by 

physician, use of medication for diabetes, or fasting blood glucose ≥126 mg/dL.

Control variables—Potential confounders, measured at the 1990–92 visit, included age, 

sex, indicators for race and ARIC field center (white participants from Minnesota, white 

participants from Washington County, white participants from Forsyth County, black 

participants from Forsyth County, black participants from Mississippi), level of education 

(less than high school, high school or equivalent, more than high school), prevalent coronary 

heart disease, prevalent stroke, hypertension, total cholesterol, body mass index, cigarette 

history (never, former, current), apolipoprotein E status (any ε4 allele or none), and drinking 

history (never, former, current).
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Analyses

First, we derived factor scores for general cognitive performance, executive functioning, 

memory, and language using factor analysis. Factor analysis is a structured approach for 

describing common covariation among a set of observed indicators, here cognitive tests. We 

tested and adjusted for differential item functioning, or item-level bias, by race. We then 

used generalized estimating equations (GEE) to determine the association between diabetes 

and cognitive change using the derived cognitive factors, adjusting for the covariates and 

interactions between each covariate and time. We compared estimates using the factors with 

estimates using equally weighted averages of standardized tests, as described below. Each 

score was scaled to have a mean of 50 and variance of 10 at the 1990–92 visit. Thus, a score 

of 50 reflects average cognitive performance at the 1990–92 visit. Scores of +10 and −10 

reflect one SD above and below the average relative to the 1990–92 visit.

Derivation of factors for cognitive performance—We estimated a confirmatory 

factor analysis of the test battery from the 2011–2013 visit. The factor analysis model, also 

with factor analyses at earlier time points, is presented graphically in Figure 1. The factor 

analysis corresponds to a 2-parameter logistic item response theory model.(19) These 

models estimate two sets of parameters for each test. Factor loadings, or weights, describe 

how well a cognitive test separates persons of low and high ability on the latent trait, or 

equivalently, how strongly the cognitive test is correlated with other tests in the trait. 

Thresholds, or boundaries, describe the location on the latent trait where the probability of 

responding in a given category or better of a test is 50%. In Figure 2, the factor analysis 

approach is summarized (right panel) and contrasted with the equally weighted average of 

standardized tests approach (left panel). We examined normalized residuals, calculated using 

sample and model-estimated polychoric correlations, to evaluate the fit of the model to the 

data.(20) Normalized residuals are detailed fit statistics for each pairwise correlation among 

cognitive tests, thus pinpointing specific areas of misfit in the factor analytic model. We 

transformed raw continuous test scores into as many as 9 categories using an approximately 

equal-percentile approach while ensuring adequate numbers (greater than N=100) in each 

category (Supplemental Table 1). This approach allowed us to locate along the latent 

variable trait specific scores on individual tests where they are found to belong. This is 

illustrated later in Figure 3. This approach also has advantages of placing tests on a common 

scale (0 to 9) and accommodates skewed test indicators.(5) Common in cognitive aging 

research,(21–25) these transformations were based on empirical distributions in the data. In 

a sensitivity analysis, we derived factors using raw continuously distributed scores and 

compared results with those for the categorized scores.

Next, we tested for differential item functioning attributable to race. The goal of this analysis 

is to determine which items appear to be the same by race, and which should be allowed to 

vary by race. Differential item functioning across groups is present when scores on tests 

comprising a cognitive factor depend on group membership, controlling for the underlying 

level of cognitive performance.(26) For example, one item in the Boston Naming Test, a test 

of language, is a picture of a volcano. Individuals who may have never seen a picture of a 

volcano may fail to identify it regardless of their language ability. If the Boston Naming Test 

showed differential functioning in favor of whites, then white participants of the same 
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underlying level of cognitive ability level as black participants (as indicated by performance 

across tests) would be expected to score higher on that test than black participants on 

average. We used multiple-group factor analysis to test for differential item functioning by 

race.(27) The model is comprised of a series of probit regression relationships linking each 

cognitive test to the underlying cognitive latent variable. A difference in factor loadings 

between groups suggests the strength of the common correlation with a test differs by group. 

A difference in thresholds, controlling for performance on other tests, suggests a test is 

systematically more difficult in one group than another at a given level of cognitive 

performance. Conceptually, differential item functioning in factor loadings and thresholds 

corresponds to tests of effect modification and confounding, respectively. We empirically 

identified cognitive tests with no differential item functioning, or anchors, using a model for 

each test.(28) Specifically, we identified anchor items using iterative likelihood ratio tests to 

test the equivalence of factor loadings and thresholds for non-anchor tests across groups by 

freeing one loading or threshold between groups at a time as dictated by model modification 

indices.(29)

After identifying and adjusting for differential item functioning, we derived factor scores for 

general cognitive performance, memory, executive functioning, and language, with a factor 

at each of the three study visits. To ensure cognitive performance was measured on the same 

metric in the early study visits, when only 3 tests were administered, as they were in 2011–

13 when they were part of the 10-test battery, loadings and thresholds for tests measured at 

multiple visits were fixed to be equal across visit. By constraining test thresholds to be the 

same across visit, change in cognitive performance over time is reflected in the levels of the 

latent variables at each study visit, which are then estimated as factor scores. We 

acknowledge here the assumption that tests change at a similar rate; such longitudinal 

invariance has been demonstrated in several other studies using similar cognitive test 

batteries.(16,17) This assumption was necessary given the structural missingness across 

study visits. We repeated this procedure for the domains: executive functioning/processing 

speed (using Digit Symbol, Trail Making Test parts A and B at the 2011–13 visit), memory 

(using delayed word recall, logical memory, incidental learning at the 2011–13 visit), and 

language (using phonemic and semantic fluency, Boston Naming at the 2011–13 visit). 

Domain-specific factors at the first two visits are informed entirely by the single cognitive 

test items measured at that visit. The loading and threshold of the items, defined from the 

factor analysis at the 2011–13 visit due to model constraints, determines the scale of the 

factor and causes the scale to be the same across study visits.

Factor scores were estimated using the regression-based method and scaled to have a mean 

of 50 and standard deviation of 10 at the 1990–92 visit.(30) We used Mplus software to 

estimate models, using a maximum likelihood estimator with robust standard error 

estimation under the Expectation-maximization algorithm.(31) Mplus syntax for factor 

analyses unadjusted and adjusted for differential item functioning are provided in 

Supplemental Information 2 and 3.

We used a “test information” plot to quantify reliability with which general and domain-

specific factors were measured over the range of cognitive performance.(32) Reliability is 

based on the relationship between observed test scores and the estimated latent factor.(32) 
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Reliability, calculated as the complement of the square of the standard error of measurement 

of each observation, can vary over the range of cognitive performance. The necessary 

standard of reliability depends on the intended purpose of an instrument; Nunnally (33) 

recommends minimum reliabilities of 0.80 and 0.90 as rules of thumb for between-persons 

analysis and within-persons analysis, respectively.

Equally weighted averages of standardized tests—To provide sample-average 

composite scores comparable to the factor scores, we standardized each averaged composite 

to have a mean of 50 and SD of 10 at the 1990–92 visit. We standardized each of the 10 

cognitive tests at the 2011–13 visit, and scaled scores at other visits to that visit. We then 

took an average of the three test scores at the 1990–92 visit and the 1996–98 visit and the 10 

tests at the 2011–2013 visit to construct an equally weighted composite average of cognitive 

tests. We did the same for cognitive domains. For executive functioning, we used Digit 

Symbol Substitution at the 1990–92 and 1996–98 visits and Digit Symbol Substitution and 

Trails A and B at the 2011–13 visit. The average score for memory used delayed word recall 

at the 1990–92 and 1996–98 visits and delayed word recall, Logical Memory, and incidental 

learning at the 2011–13 visit. The average score for language used phonemic fluency at the 

1990–92 and 1996–98 visits and semantic and phonemic fluency and Boston Naming at the 

2011–13 visit.

Comparison of the association of diabetes with cognitive change across 
cognitive measures—We used GEE methods to estimate associations between diabetes 

and change in each cognitive outcome, parameterized using either factor scores or the 

average of individual cognitive test scores.(34) We evaluated the approaches by comparing 

the magnitude of associations and standard errors for the effect of diabetes on change. The 

timescale was time since the 1990–92 study visit. Primary independent variables were study 

visit, diabetes status at the 1990–92 visit, and interactions between diabetes and time since 

the 1990–92 visit. We adjusted for covariates, listed earlier, and their interactions with time. 

GEE models used an unstructured correlation matrix with a Huber-White robust variance 

estimator (35) and were estimated using Stata 13.1.(36)

Sensitivity analyses—In addition to GEE methods using factor scores, we estimated the 

association of diabetes with cognitive decline simultaneously with the factor analysis in a 

structural equations model specifying a latent growth curve across the factors (Supplemental 

Figure 1)(37). In another sensitivity analysis, we compared associations between diabetes 

and general cognitive performance based on all available tests to associations based on a 

model using only the three tests administered at all study visits.

Missing data handling—Cognitive test scores were missing less than 5% of the time 

except for Trails B at the 2011–13 study visit (13% missing) (Supplemental Table 2). Taking 

equally weighted averages of standardized tests uses only complete cases, which assumes a 

missing completely at random mechanism in the data. Missingness in factor analysis models 

was handled using a maximum likelihood estimator with robust standard error estimation. 

This approach makes a less restrictive missing data assumption than the standardize and 

average approach by assuming missingness in specific cognitive tests are missing at random 
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conditional on other cognitive tests in the model. This is a reasonable assumption because 

structural missingness in individual tests at earlier ARIC visits is attributable to study 

design, not to participants’ cognitive ability.

Results

Characteristics of the study sample are in Table 1. At baseline in 1990–92, the sample was 

mostly female (55%), white (75%), and had at least a high school education (78%). The 

mean age was 57 years in 1990–92 (range 46, 70 years) and 76 years in 2011–2013 (range 

67, 91).

Factor analysis

Factor analysis with categorical indicators allowed us to empirically place thresholds where 

they belong along the latent trait, as shown in Figure 3 for general cognitive performance at 

the 2011–13 visit before adjustment for differential item functioning by race. Based on 

normalized residuals (e.g., flagging normalized residuals with absolute values > 2.0), in the 

model of general cognitive performance we allowed residual correlations between delayed 

word recall (DWR), logical memory (LM), incidental learning (INCLRN), and Trail Making 

(TMT), part A. Tests fit well in the resulting model (Supplemental Table 3). The broad 

spread of boundary response thresholds for tests over the range of cognitive performance, 

shown by vertical bars in Figure 3, suggests a wide dynamic range of measurement 

consistent with a factor optimized for longitudinal analysis across a range of ability. From 

Figure 3, the model rates generation of at least 25 words on semantic fluency as comparable 

in difficulty to recalling 8 words on delayed word recall. Further, generating ≤14 words on 

semantic fluency (AN) is rated as more impairment than recalling ≤2 digit-symbol pairs on 

the incidental learning test.

We tested for differential item functioning by race (Table 2). Using all other tests as tentative 

indicators, initial modeling identified delayed word recall and logical memory as being free 

of differential item functioning.(38) The remaining tests were evaluated for differential item 

functioning. Models identified differential item functioning in factor loadings for Trails A, 

Digit Symbol, Boston Naming, phonemic fluency, and digit span backwards; these measures 

were all more highly inter-correlated among black participants than white participants. 

Models also detected differential item functioning in thresholds for Trails A and B, digit 

span backwards, and Boston Naming such that these tests were more difficult for black 

participants, controlling for general cognitive performance. Models detected no differential 

item functioning in incidental learning or semantic fluency after adjustment for differential 

item functioning in other tests. Memory and language factor models showed no differential 

item functioning. The executive functioning factor demonstrated differential item 

functioning in factor loadings for Trail Making, part A.

Differential item functioning-adjusted item factor loadings for the general and domain-

specific factor models are shown in Table 2. For the general factor, all loadings were ≥0.47, 

suggesting the factor represents general performance and not a particular domain. All 

loadings were also high for domain-specific factor models.
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Precision of the latent factor measurement

Figure 4 shows the reliability of the measurement of general and domain-specific factors for 

each study visit. As expected given the expanded battery, general cognitive performance for 

the 2011–13 visit was precise (>0.80) across a 4 SD range in the middle of the distribution 

which encompassed approximately 67% of the sample. Reliability at the earlier visits fell 

between 0.65 and 0.75 across the range of cognitive performance. Reliability for memory, 

language, and executive functioning domains were lower, as expected since they include 

fewer cognitive tests.

Comparison across cognitive measures of the association of diabetes with cognitive 
change

GEE models (Table 3) all fit the data well, as indicated by inspecting residuals. Coefficients 

in table 3 represent the difference in cognitive slope per decade in SD units by diabetes 

status; results are shown for factors with and without adjustment for differential item 

functioning. The group with diabetes demonstrated a steeper average decline in the general 

cognitive performance factor of −0.058 SD units per decade (SE=0.016) over the entire 

study period (differential item functioning-adjusted, −0.064 SD units per decade, SE=0.015), 

compared to −0.041 SD units per decade (SE=0.014) using the average of three standardized 

tests at the 1990–92 and 1996–98 visits and 10 tests at the 2011–13 visit. Standard errors of 

the estimate were larger than those using averages of standardized scores.

For decline in memory and language, magnitudes of overall associations with diabetes were 

similarly stronger using factors than using averages of standardized scores, and standard 

errors were larger (Table 3). For decline in executive functioning, diabetes was more 

strongly associated with the average score than the differential item functioning-adjusted 

factor, but not with the non-differential item functioning-adjusted factor. Consistent with 

previous findings,(14) the association with diabetes was stronger for executive functioning 

than for memory.

Sensitivity analyses

Associations between diabetes and general cognitive performance were comparable when 

examined directly from latent growth models that simultaneously estimated measurement 

models (B=−0.032 SD, SE=0.006), using a general factor score based only on the three 

common tests across visits (B=−0.046, SE=0.013), and using continuously distributed tests 

in the factor analysis (B=−0.077, SE=0.017). Factor analysis using continuous indicators fit 

poorly to the data (Root Mean Square Error of Approximation=0.24; Comparative Fit 

Index=0.00), but its use did not change inferences with diabetes. Corresponding overall fit 

indices for the categorical case using weighted least squares estimation was much better 

(Root Mean Square Error of Approximation=0.08; Comparative Fit Index=0.977).

Discussion

We calibrated general and domain-specific cognitive performance across study visits in 

which different but overlapping cognitive tests were administered at each visit. Associations 

of diabetes with cognitive change were generally stronger using factor scores than with 
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corresponding equally weighted averages of standardized tests, at the expense of greater 

variability around estimates. This is consistent with the hypothesis that latent variables 

account for error in measuring cognitive traits better than averages of test scores, and thus 

more accurately depict the relationship with diabetes. This manifests in three primary ways. 

First, scores predicting the latent variables give greater weight to tests more correlated with 

other tests in the cognitive domain than investigator-assigned weighting (e.g., equal 

weighting). These weights are the loading factors in Figure 3. Second, the latent variable 

model provides an appropriate location for scores on individual tests (thresholds in Figure 

3). By contrast, the average of standardized scores approach forces a z-score of −1.5 SD 

units on one test to represent an equivalent level of cognitive impairment to a z-score of −1.5 

SD units on another test, which may not be appropriate. Third, the differential item 

functioning adjustment may provide a better measure of the trait affected by diabetes in each 

racial group by tying measured performance on cognitive measures to the better-measured 

underlying cognitive ability, thus endeavoring to filter extraneous characteristics related to 

race.

Despite the added analytic complexity, factor analysis is appropriate when test batteries 

change over time because it facilitates use of all available data appropriately. In ARIC NCS, 

factor analysis combines the full test battery at the 2011–2013 visit with the limited test 

battery in the earlier visits in two primary ways. First, it appropriately weights items as 

explained above for the general factor, which is represented by only three tests at the earlier 

visits. Second, for both the general factor and the individual domains, in which only one test 

is available at earlier visits, factor analysis determines an appropriate placement of 

thresholds for specific test scores, as explained above. The factor analysis approach we used 

is extendable to other studies in which measures of a construct differ across time; in fact, 

time is not the only dimension for which the approach could be used. Factor analysis has 

been successfully applied to harmonize cognitive performance,(5,39–40) physical 

functioning,(41) and depressive symptoms (42) across datasets.

Strengths of the study are the well-characterized ARIC NCS sample and carefully collected 

longitudinal data over up to 26 years. We used contemporary latent variable methods to 

measure cognitive performance permitting use of all available cognitive data and accounting 

for differential item functioning by race. In contrast, simple averages of different numbers 

and types of standardized tests across visits could reflect different constructs at each visit, 

complicating analyses of within-person change.

Several caveats are appropriate. First, in testing differential item functioning, we used 

empirical criteria for identifying cognitive tests free of differential functioning. Cognitive 

tests without differential item functioning by race, or anchor tests, are necessary against 

which to test differential functioning in other tests, but results may not be the same in 

different settings. Differential item functioning in the same direction and of similar 

magnitudes for all tests cannot be detected mathematically; such differences would translate 

into overall group differences. Fortunately, our findings were similar when we used scores 

not adjusted for differential item functioning. A second limitation is that factor scores we 

used in the primary analysis can potentially, but not always, provide biased estimates of an 

underlying trait (43); we used them because they are more convenient for investigators less 
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familiar with factor analysis and can be distributed widely through data distributions. We 

note that we obtained similar inferences regarding the association of diabetes with cognitive 

change using a direct approach in which we entered diabetes into a latent growth model of 

the latent variables. Another study limitation is that the factor structure based on empirical 

correlations among tests may vary somewhat depending on characteristics of a sample, such 

as by dementia status or language ability.(44) When this possibility has been tested in data, it 

is rarely supported.(16–18,45–48) Thus, we believe factor analysis in ARIC NCS is 

appropriate across the range of cognitive performance we studied. We also used categorical 

transformations of cognitive tests in factor analyses. Although categorization may coarsen 

the data, it diminishes the influence of truncation and outliers.(5) A final limitation is that 

temporal harmonization provided by factor analysis relies on common tests across time; the 

approach is not applicable in settings without anchor tests or items unless further 

assumptions are made.

Optimization of cognitive measures is important. We harmonized available cognitive data 

into factors representing general cognitive performance, executive functioning, memory, and 

language in ARIC NCS. We corrected the factors for differential functioning by race. 

Factors provided stronger estimates of associations with diabetes compared to averages of 

standardized tests. Latent variable approaches may be useful other studies with differing 

cognitive measures across visits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ARIC NCS Atherosclerosis Risk in Communities Neurocognitive study

SD Standard deviation

GEE Generalized estimating equations
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Figure 1. Graphical representation of cognitive tests available at each ARIC study visit
This figure is a structural equations model representing the final longitudinal model 

described in the Methods. Separate models were estimated for general cognitive 

performance, memory, executive functioning, and language; see Methods for details. WF: 

Word (phonemic) fluency (count of words recalled); BNT: Boston Naming Test (number of 

correct responses); AN: Animal (semantic) fluency (count of words recalled); DSB: Digit 

span backwards (sum of two trials of the maximum span); DSS: Digit symbol substitution 

(number of correct digit symbol pairs); TMT: Trail Making Test (seconds to complete); 

INCLRN: Incidental learning (number of correct digit symbol pairs recalled); LM: Logical 

memory (sum of recall for 2 stories); DWR: delayed word recall (sum of words recalled 

from one trial). Curved arrows between TMT-A, INCLRN, LMT, and DWR represent 

correlations between these items added due to analysis of normalized residuals (see Results).

Gross et al. Page 14

Epidemiology. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Comparison of Two Approaches for Deriving Summary Scores from a 
Neuropsychological Test Battery
Measurement models for two approaches, averaging standardized versions of tests and 

single-factor analysis with categorical variables, are contrasted. Cognitive test scores are 

provided as examples; refer to Methods for the full neuropsychological test battery.

DWR: delayed word recall; LMT: Logical Memory Test; TMT-A: Trail Making Test, Part A.
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Figure 3. Item loadings and thresholds from the factor analyses for general cognitive 
performance
Graphical representation of results from the general cognitive performance factor analysis at 

the 2011–13 ARIC NCS visit. Factor loadings at right represent correlations between a test 

and the latent variable. Thresholds for responses to each test on the latent variable are shown 

by vertical boundaries in Appendix Figure 1, and denote the location along the latent 

variable of general cognitive performance (x axis) where tests provide optimal measurement 

precision. A histogram of the estimated general cognitive performance factor score in the 

2011–13 participant sample, derived from the model that estimated these thresholds, is 

shown at the bottom. Some parameters (for TMT-A, DSS, BNT, WF, DSB) were estimated 

separately by race group to account for differential item functioning (see Table 2 and 

Methods).

WF: Word (phonemic) fluency (count of words recalled); BNT: Boston Naming Test 

(number of correct responses); AN: Animal (semantic) fluency (count of words recalled); 

DSB: Digit span backwards (sum of two trials of the maximum span); DSS: Digit symbol 

substitution (number of correct digit symbol pairs); TMT: Trail Making Test (seconds to 

complete); INCLRN: Incidental learning (number of correct digit symbol pairs recalled); 

LM: Logical memory (sum of recall for 2 stories); DWR: delayed word recall (sum of words 

recalled from one trial).
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Figure 4. Precision of General and Domain-Specific Cognitive Factors as a Function of 
Performance Level: Results from ARIC NCS (N=14,252)
Reliability for the general (top left), executive functioning (top right), language (bottom 

left), and memory (bottom right) factors are plotted over the range of their respective values. 

Plots for the first two visits overlap almost completely because the same tests were used. 

Horizontal dashed lines at reliabilities of 0.90 and 0.80 indicate acceptable reliability for 

within-persons analysis and between-persons analysis, respectively (33). Reliability = 1 – 1 / 

Information.
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Table 1

Baseline characteristics of the ARIC NCS (N=14,252)

Characteristic
Full sample
(N=14252) Diabetes (N=2152)

No diabetes
(N=12100)

Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%)

Age, mean (SD) 57.0 (6) 58.2 (6) 56.8 (6)

Sex (female), n (%) 7891 (55) 1149 (53) 6742 (56)

Race (White), n (%) 10742 (75) 1264 (59) 9478 (78)

Education, n (%)

    Less than high school 3110 (22) 726 (34) 2384 (20)

    High school 5898 (41) 837 (39) 5061 (42)

    More than high school 5224 (37) 586 (27) 4638 (38)

Field center, n (%)

  Forsyth County, NC 3669 (26) 448 (21) 3221 (27)

  Jackson, MS 3083 (22) 794 (37) 2289 (19)

  Mineapolis, MN 3817 (27) 377 (18) 3440 (28)

  Washington County, MD 3683 (26) 533 (25) 3150 (26)

Stroke, n (%) 269 (2) 96 (5) 173 (1)

Hypertension, n (%) 5117 (36) 1264 (59) 3853 (32)

Total cholesterol (mmol/L), mean (SD) 5.4 (1) 5.5 (1) 5.4 (1)

Body mass index (kg/m^2, mean (SD) 28.0 (5) 31.2 (6)   27.4 (5)

Smoking status (n (%))

    Never 5665 (40) 896 (42) 4769 (39)

    Former 5394 (38) 840 (39) 4554 (38)

    Current 3190 (22) 414 (19) 2776 (23)

Drinking status (n (%))

    Current 8028 (56) 888 (41) 7140 (59)

    Former 3009 (21) 667 (31) 2342 (19)

    Never 3211 (23) 596 (28) 2615 (22)

SD: standard deviation
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