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Abstract
The joint effects of multiple exposures on an outcome are frequently of interest in epidemiologic
research. In 2001, Hernán, Brumback, and Robins (JASA 2001; 96: 440–448) presented methods
for estimating the joint effects of multiple time-varying exposures subject to time-varying
confounding affected by prior exposure using joint marginal structural models. Nonetheless, the
use of these joint models is rare in the applied literature. Minimal uptake of these joint models, in
contrast to the now widely used standard marginal structural model, is due in part to a lack of
examples demonstrating the method. In this paper, we review the assumptions necessary for
unbiased estimation of joint effects as well as the distinction between interaction and effect
measure modification. We demonstrate the use of marginal structural models for estimating the
joint effects of alcohol consumption and injection drug use on HIV acquisition, using data from
1,525 injection drug users in the AIDS Link to Intravenous Experience cohort study. In the joint
model, the hazard ratio (HR) for heavy drinking in the absence of any drug injections was 1.58
(95% confidence interval= 0.67–3.73). The HR for any drug injections in the absence of heavy
drinking was 1.78 (1.10–2.89). The HR for heavy drinking and any drug injections was 2.45
(1.45–4.12). The P values for multiplicative and additive interaction were 0.7620 and 0.9200,
respectively, indicating a lack of departure from effects that multiply or add. However, we could
not rule out interaction on either scale due to imprecision.

The joint effects of multiple exposures on an outcome are frequently of interest in
epidemiologic research.1 Joint effects concern the combined effect of two or more exposures
on an outcome, and whether this combined effect is more or less than expected on a given
scale (i.e., additive or multiplicative). Departures from expected combined effects are
referred to as interaction. Effect measure modification, in contrast, focuses on whether the
effect of a single exposure on an outcome varies with the level of second variable.2 For
example, in the area of cardiovascular disease epidemiology, if the study objective was to
estimate the combined effect of oral contraceptive use and smoking on the risk of
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myocardial infarction, then the research would attempt to estimate the joint effects of (and
interaction between) oral contraceptive use and smoking on the risk of myocardial
infarction. However, if the objective was whether the effect of oral contraceptive use on
myocardial infarction varied by smoking status, then the aim would be to estimate effect
measure modification.

In 2001, Hernán, Brumback, and Robins3 presented methods for estimating the joint effects
of multiple time-varying exposures subject to time-varying confounding using joint
marginal structural models. We refer to these marginal structural models as “joint” models,
given that they examine the potential outcome across the joint distribution of the two or
more exposures (not to be confused with models for the joint distribution of survival and a
repeated measure).4 Standard marginal structural models5,6 avoid removal of indirect
effects, and they also avoid the selection bias that can occur with standard adjustment
techniques when estimating the effect of a time-varying exposure subject to time-varying
confounding affected by prior exposure. Joint marginal structural models have the same
methodological advantage when estimating the effect of multiple time-varying exposures,
each affected by time-varying confounders affected by prior exposure. Both standard and
joint marginal structural models can also be used to account for selection bias due to
censoring.

Although estimating joint effects of time-varying exposures is of interest in both chronic and
infectious disease epidemiology,7–10 a decade after the paper by Hernán, Brumback, and
Robins 3 was published we found only three publications11–13 that used a joint marginal
structural model in the applied biomedical and epidemiologic literature among articles citing
that paper. This low uptake of joint marginal structural models, in contrast to the widely
used standard marginal structural model,6,14–19 may be due to a lack of examples showing
the implementation of the model.

The objective of this paper is to describe and demonstrate joint marginal structural Cox
proportional hazards models based on an example from the HIV literature. (Although joint
marginal structural models can be fit for other types of regression models,2,3 these other
models are not the focus of this paper.) Previous work7,8,19 has indicated alcohol
consumption as well as injection drug use as risk factors for HIV acquisition. To identify
groups at particularly high risk for HIV infection, the interaction between risk factors for
HIV acquisition has been of interest.7,8 As depicted in Figure 1, both time-varying alcohol
consumption and injection drug use are likely subject to time-varying confounding affected
by prior exposure. In particular sexual risk behaviors and other patterns of drug use are
likely common causes of alcohol consumption, injection drug use, and HIV acquisition and
may be affected by prior alcohol consumption or injection drug use. Therefore, unbiased
estimation of the joint effects of these two risk factors on HIV acquisition, likely requires
use of joint marginal structural models.

We used data from the AIDS Link to Intravenous Experience (ALIVE) cohort study20 to
demonstrate estimation of the joint effects of alcohol consumption and injection drug use on
HIV acquisition. The SAS (SAS Institute, Inc., Cary, North Carolina) code used to estimate
these joint effects is provided in the eAppendix (http://links.lww.com). Assumptions
necessary for unbiased estimation of joint effects will be described generally, as well in the
context of the ALIVE example. Lastly, we will make additional clarifications regarding the
distinction between interaction and effect measure modification.
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METHODS
Study Population

Details regarding recruitment, inclusion criteria, and data collection for this example are
provided elsewhere.19,20 Briefly, the ALIVE cohort enrolled 3,627 HIV seronegative adults
with a history of injection drug use in Baltimore, Maryland, between 1988 and 2008.
Through extensive community outreach, participants were recruited from venues where
injection drug users in Baltimore were known to frequent, as well as from other local
settings, such as sexually transmitted disease clinics, drug abuse treatment programs,
homeless shelters, and emergency rooms.

Of 3,627 enrollees, 1,525 were African American with complete demographic information
who were seronegative at entry, and who had at least one seronegative follow-up visit
subsequent to baseline, thereby making them eligible for the analysis. Blood samples, as
well as information on demographic characteristics, drug and alcohol use history and
practices, and sexual behaviors, were collected at study entry and every six months
thereafter. Blood specimens were tested for HIV antibodies by enzyme-linked
immunoassay, and reactive specimens were confirmed by western blot. The 1,525
participants were followed for up to 20 years, yielding 8,181 person-years of follow-up,
during which time 155 acquired HIV.

Notation
Let uppercase letters denote random variables and lowercase letters represent possible
realizations of random variables. In the ALIVE cohort of i=1,2, …, N = 1525 participants
with ki(1)< ki(2) <… ki(M) ordered measurement times since study entry, Ti is the time in
years from study entry to HIV infection and Ci is the time in years from study entry to
censoring due to dropout, death, or reaching the end of the study. Therefore, Y= min(Ti, Ci)
and δi is an indicator of whether HIV infection was observed, where δi =1 if yi = ti and δi =
0 if yi = ci. Below, the subscript i will be suppressed where possible. Let X1i(k(m)) and
X2i(k(m)) be the level of alcohol consumption and injection drug use status at time k(m),
respectively.

Let L1i(k(m)) be a vector denoting the levels of potential confounders of the relationship
between X1 and T at time k(m), while Z1i is a vector subset of L1i (k(m)) corresponding to
time-fixed confounders measured at study entry. Let L2i(k(m)) be a vector denoting the
levels of potential confounders of the relationship between X2 and T at time k(m), while Z2i
is a vector subset of L2i(k(m)) corresponding to time-fixed confounders measured at study
entry. Let L3i(k(m)) be a vector denoting the levels of common predictors of the relationship
between T and C at time k(m), whereas Z3i is a vector subset of L3i(k(m)) corresponding to
time-fixed common predictors measured at study entry. Covariates L1, L2, and L3 were
assumed to be the same and included those that were time-fixed (i.e., age at entry, sex, and
years of education) as well as time-updated pertaining to the prior six months (i.e., cocaine
use; shooting gallery attendance; number of sexual partners; male sex with men; sexually
transmitted infections including genital herpes simplex virus, genital warts, gonorrhea, and
syphilis). Selected covariates were variables shown to independently increase the risk of
HIV infection among study participants.7,8

Allow overbars to represent the history of a given random variable from study entry to k(m)

(e.g., X̄1i (k(m)) = {X1i (k(1)), X1i (k(2)), …, X1i (k(m)}). Therefore, let 
represent the potential time to HIV infection for participant i had he or she been assigned
alcohol consumption and injection drug use history x̄1i (k(m)) and x̄2i(k(m)) rather than the
observed alcohol consumption and injection drug use history of X̄1i (k(m)) and X̄2i (k(m)).
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Similarly,  represents the observed time to HIV infection for participant i for
observed alcohol consumption and injection drug use history X̄1i (k(m)) and X̄2i (k(m)).
Finally, let D1i (k(m)) be an indicator that participant i is censored due to dropout at time
k(m), D2i (k(m)) be an indicator that participant i is censored due to death at time k(m), Xi =
[X1i, X2i], Li =[L1i, L2i, L3i], Zi = [Z1i, Z2i, Z3i], and Di = [D1i, D2i].

Joint Marginal Structural Cox Proportional Hazards Model
Equation (1) shows the marginal structural Cox proportional hazards model for the joint
effects of X1(k(m)) and X2(k(m)) on Tx̄,

(1)

where Tx̄ = Tx̄1x̄2. Also, λ0 (k(m)) is the baseline hazard function at time k(m) and λTx̄ (k(m)|
Z) is the hazard function for Tx̄ at time k(m) conditional on Z. The parameter α1 is the log
hazard ratio for the effect of X1 (k(m)) on Tx̄ when X2 (k(m)) = 0, α2 is the log hazard ratio
for the effect of X2(k(m)) on Tx̄ when X1(k(m)) = 0, and α3 is the log of the ratio of hazard
ratios for the effect of X1(k(m)) and X2(k(m)) on Tx̄. In addition, α4, α5, and α6 are the
vectors of log hazard ratios for the time-fixed covariates comprising Z1, Z2, and Z3,
respectively while α = [α1, α2, α3, α4, α5, α6].

The joint marginal structural model in equation (1) is fit in a two-part process using inverse
probability weights (i.e., Wi) described below. Conditional on the estimated weights, the
weighted maximum partial likelihood estimates for α̂ in equation (1) are obtained by
maximizing,

where I[yr ≥ yi] is an indicator of participant r being in the risk set at follow-up time yi.
Given necessary assumptions outlined below, α̂1, α̂2, and α̂3 are consistent asymptotically
normal estimates of the joint effects of X1 and X2 on Tx1x2 while correcting for potential
time-varying confounding by L1 and L2 as well as selection bias due to censoring informed
by L3. Therefore, α̂3, can be used to consistently assess the presence or absence of
multiplicative interaction.

Inverse Probability Weights
The following stabilized weights can be used to fit the joint marginal structural model in
equation (1):

(2)

where
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(3)

(4)

(5)

(6)

The exposure weight WX1(t) corrects for potential time-varying confounding by L1. The
exposure weight WX2(t) corrects for potential time-varying confounding by L2. The
censoring weight WD1(t) corrects for potential selection bias due to censoring at dropout
informed by L3. The censoring weight WD2(t) corrects for potential selection bias due to
censoring at death informed by L3.

For j = 1,2 and logit p = ln(p/(1 − p)), the numerator for the weights in equations (3) and (4)
can be estimated from the following pooled logistic regression model:

(7)

Note that βj0(k(m)) are the time-specific intercepts with time-fixed confounders included in
the pooled model. In addition, Q1(k(m)) ={X ̄1(k(m−1)), X̄2(k(m−1)), Z1}, Q2(k(m)) ={X̄1(k(m)),
X̄2(k(m−1)), Z2}, and βj1 is a vector of log hazard ratios for the effect of X̄ and Zj on Xj
(k(m)). The denominator for the weights in equations (3) and (4) can be estimated from the
following pooled logistic regression model:

(8)

Note that γj0 (k(m)) are the time-specific intercepts with time-fixed and time-varying
confounders included in the pooled model. In addition, U1(k(m)) = {X̄1(k(m−1)), X̄2(k(m−1)),
L̄1(k(m−1))}, U2(k(m)) = {X̄1(k(m−1)), X̄2(k(m−1)), L ̄2(k(m−1))}, and γj1 is a vector of log
hazard ratios for the effect of X̄ and L̄j (k(m−1)) on Xj(k(m)).

Similarly, the numerator and denominator for the weights in equations (5) and (6) can be
estimated from the following two pooled logistic regression models:

(9)

(10)
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where θj0(k(m)) and υj0 (k(m)) are time-specific intercepts with solely time-fixed predictors
and all common predictors, respectively, included in the pooled model. In addition, θ j1
andυj1 are vectors of log hazard ratios for the effect of X̄(k(m)) on Dj(k(m)) adjusting for
solely time-fixed and all common predictors of T and C, respectively. Lastly, θj2 and υj2 are
vectors of log hazard ratios for the effect of Z3 and L̄3 (k(m)) on Dj(k(m)), respectively,
adjusting for X̄(k(m)).

Data Analysis
In the pooled logistic regression models as well as the joint marginal structural Cox model,
X1 was alcohol consumption as drinks per week in the prior six months and X2 was drug
injections per week in the prior six months. Drinks per week were categorized as 0–20 and
21–140, with the latter category termed “heavy” alcohol consumption. Drug injections per
week were categorized as 0 and 1–39, with the latter category termed “any” drug injections.
These categories were selected based on prior research19 and to ensure an ample number of
HIV cases across the levels of the joint distribution of X1and X2 while minimizing extreme
weights and preserving meaningful comparisons.

In all models, predictors were included as either indicator variables for categories or a
restricted quadratic spline with knots at the 5th, 35th, 65th, and 95th percentiles.21 In the
pooled logistic regression models, the time-varying cofounders included in L1 and L2 were
from the prior measurement time, while the time-varying common predictors included in L3
were from the most recent measurement time. Weights estimated from the pooled logistic
models had a mean of 1.03 (standard deviation= 0.56), with a range of 0.11 to 17.99. These
weights are shown over follow-up in Figure 2. To examine additive interaction, results from
the joint marginal structural model with a product term between alcohol consumption and
injection drug use were used to estimate the relative excess risk due to interaction (RERI) as
well as the corresponding confidence limits and P value based on the multivariate delta
method. The RERI (= exp (α̂1 + α̂2 + α̂3) − exp (α̂1) − exp(α̂2)+1) represents the increased
hazard due to additive interaction where an RERI=0 corresponds to the null hypothesis of no
additive interaction.22

Unadjusted and standard adjusted Cox models were provided for comparison. The standard
adjusted model accounted for the same confounders as the weighted model, as well as
concurrent values of time-varying confounders, to reflect practices in the literature.7,8,23 The
product term between alcohol consumption and injection drug use would represent
interaction in these models only in the absence of bias due to confounding, measurement, or
selection with respect to both exposures. Conversely, the product term would represent
effect measure modification if bias due to confounding, measurement, or selection was
present for only one of the two exposures.2 Given that the product term between alcohol
consumption and injection drug use in the joint marginal structural model was not
statistically significant on the multiplicative scale, a joint marginal structural model as well
as unadjusted and standard adjusted Cox models without the corresponding product terms
were examined.

We assessed proportional hazards in the weighted Cox model by a joint robust Wald test on
the product terms between the indicator for heavy drinks per week and time, and between
the indicator for any drug injections per week and time in the model without a product term
between alcohol consumption and injection drug use. A similar joint Wald test was
performed for log time. For the joint Wald test for the product terms with time, P= 0.0817;
for the joint Wald test for the product terms with log time, P=0.0315. The coefficients
corresponding to the P value for the joint Wald test in the time model were also closer to the
null than the coefficients in the log time model. This suggests nonproportionality in the
weighted Cox model with respect to log time and, to a lesser degree, time.
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To explore this nonproportionality, the effects of alcohol consumption and injection drug
use were examined for follow-up times within the first three years of study enrollment and
after three years, while including a product term between alcohol consumption and injection
drug use in the joint weighted model. Three years was selected because it was approximately
the median time to infection among the HIV cases. To circumvent any occurrences of
nonproportionality potentially due to selection bias innate to the hazard ratio,24 the
cumulative incidence curves (i.e., complement of survival functions) were compared by
strata of alcohol consumption and injection drug use. All analyses were performed in SAS
version 9.2.

RESULTS
Table 1 describes the characteristics in the prior six months of participants at study entry and
over follow-up. Among the 1,525 participants, 28% were female. At study entry, the median
age was 37 (quartiles= 32; 42) years and the median number of years of formal education
was 10 (quartiles= 10; 12). Over follow-up, 63% of the person-years occurred while
participants were consuming any alcohol and 58% occurred while injecting drugs in the
prior six months. Figure 3 shows alcohol consumption and injection drug use in the prior six
months by years of follow-up. Alcohol consumption and any drug injecting in the prior six
months appeared to decrease over follow-up.

Table 2 shows crude, adjusted, and weighted hazard ratios with 95% confidence intervals
(CIs) for the joint effects of alcohol consumption and injection drug use in the prior six
months on HIV acquisition averaged over the 8,181 person-years of follow-up. These
models each included a product term between alcohol consumption and injection drug use.
In the weighted model, the effect of heavy drinking per week in the absence of any drug
injections was a hazard ratio of 1.58 (95% CI= 0.67–3.73). The effect of any drug injections
per week in the absence of heavy drinking was a hazard ratio of 1.78 (1.10–2.89). The effect
of heavy drinking and any drug injections was a hazard ratio of 2.45 (1.45–4.12). The robust
P value for the Wald test for the product term was 0.7620. The corresponding RERI was
0.08 (95% confidence intervals= −1.43 to 1.59) which corresponded to a P value of 0.9200.
Analogous unadjusted hazard ratio estimates were 1.67 (0.72–3.84), 2.07 (1.31–3.28), and
3.36 (2.07–5.44), respectively, with a P value of 0.9474 for the Wald test for the product
term. The corresponding standard adjusted hazard ratio estimates were 1.34 (0.57–3.13),
1.56 (0.87–2.77), and 2.13 (1.15–3.95), respectively, with a P value of 0.9597 for the Wald
test for the product term.

Figure 4 shows the proportion HIV positive by alcohol consumption and injection drug use
for the prior six months based on the weighted Cox model. Proportions were estimated at the
median age and years of education at study entry for the entire cohort and among men.
Participants who reported both injecting and heavy drinking had the highest proportion of
HIV infections over follow-up. Those who reported either injecting or heavy drinking, but
not both, had the second highest proportion of HIV infections. Those who did not report
injecting or heavy drinking had the lowest proportion of HIV infections.

In the weighted Cox model without a product term between alcohol consumption and
injection drug use, the effect of heavy drinking per week was a hazard ratio of 1.41 (0.98–
2.01). The effect of any drug injections per week was a hazard ratio of 1.72 (1.12–2.64).
Analogous unadjusted hazard ratio estimates were 1.63 (1.17–2.27) and 2.06 (1.38–3.07),
respectively. The corresponding standard adjusted hazard ratio estimates were 1.36 (0.97–
1.92) and 1.57 (0.94–2.62), respectively.
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Table 3 shows the weighted hazard ratio with 95% CI for the joint effects of heavy drinking
and any drug injections in the prior six months within the first three years of follow-up and
after. This model included a product term between alcohol consumption and injection drug
use. The joint effects were larger in the first three years of follow-up compared with
between three and twenty years. However, the CI for follow-up times within the first three
years was particularly imprecise.

DISCUSSION
Among 1,525 African American injection drug users in the ALIVE cohort followed for
8,181 person-years, the effects of heavy drinking and any drug injections on HIV acquisition
appeared not to depart from multiplicative or additive effects. However, we could not rule
out interaction on either scale due to imprecision. If the results of the weighted analysis are
corroborated by independent data sources, these results would suggest that alcohol-specific
HIV risk reduction interventions should be targeted to both injectors and non-injectors and,
similarly, injection-specific interventions should be targeted to both heavy and non-heavy
drinkers.

Based on the weighted model, however, the hazard ratio for the effect of heavy drinking and
any drug injections appeared to be larger within the first three years of follow-up. This
larger hazard ratio may be due to a waning effect of heavy drinking and injecting on HIV
acquisition over time. Evidence against a waning effect was provided in Figure 4, which
shows that participants who reported both injecting and heavy drinking consistently had the
highest proportion of HIV infections. Alternatively, chance or selection bias due to a greater
initial depletion of those susceptible to HIV infection among heavy drinkers and injectors
may be the source of the observed attenuation with time.24 Selection bias due to a greater
initial depletion of susceptible heavy drinkers and injectors would not be accounted for in
the censoring weights, given that a measure of innate susceptibility to HIV infection was not
available as a covariate when estimating the censoring weights.

The standard adjusted analysis provided hazard ratio estimates that were somewhat
attenuated compared with the results from the weighted analysis, both analyses included
product terms between alcohol consumption and injection drug use. Specifically, the excess
hazard for the effect of heavy drinking and any drug injections from the weighted analysis
was 22% (1–1.13/1.45) stronger than results from the standard adjusted analysis. These
attenuated hazard ratio estimates may be due to the fact that standard adjustment can remove
indirect effects mediated through time-varying confounders and induce selection bias.3,25–27

For unbiased estimation of effects in the context of standard regression and marginal
structural models, the assumptions of exchangeability, consistency, positivity, and correct
model specification must be met.28 As noted by Hernán, Brumback, and Robins,3 as well as
by VanderWeele,2 the above assumptions must also hold for unbiased estimation of joint
effects. In the context of the joint marginal structural model, the exchangeability assumption
states that there are no unmeasured confounders of the relationship between X1 and T as
well as the relationship between X2 and T. In addition, informative censoring by
unmeasured factors must be absent. Formally,
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For the ALIVE example, unmeasured factors may exist, given that the indicators used for
high-risk behaviors may not fully capture the association between such behaviors and HIV
acquisition or censoring among participants.19 Measurement error regarding covariates of
interest poses an additional threat to exchangeability as does the observed limited number of
HIV infections across strata of the joint distribution of alcohol consumption and injection
drug use.

Consistency states that TX̄ = Tx̄, p if X̄ = x̄ for all p, where p is the mechanism by which the
level of X is determined. As such, the observed failure time is the same as the failure time
that would have occurred if X were assigned. It also implies that the mechanism by which
the level of X is determined does not influence the effect of X ̄ on TX̄. In other words, among
ALIVE participants, the time to HIV acquisition for the observed level of alcohol
consumption and number of drug injections is the time to HIV acquisition that would have
occurred if the level of alcohol consumption and drug injections were assigned. In addition,
the effect of heavy drinking or injection drug use does not depend on drinking or injection
pattern (e.g., binge drinking or frequent injecting).

Positivity requires that

Therefore, every level of alcohol consumption as well as injection drug use must be possible
in each subset of the ALIVE cohort defined by the observed histories of alcohol
consumption, injection drug use, and measured confounders. Similarly, there must be
participants who are not censored at each observed follow-up time within each subset of the
cohort defined by the observed histories of alcohol consumption, injection drug use, and
measured common predictors of censoring and HIV acquisition time. In the present setting,
we did not expect deterministic departures from positivity, and we observed no evidence of
random departures from positivity. The latter is based on a lack of extreme weights.28,29

Correct model specification implies that appropriate functional forms are used in the pooled
logistic and final weighted models such that

where go(X̄(k(m−1))), g1 (L̄(k(m−1))), g2 (X̄(k(m))), and g3(L ̄(k(m))) are coarsening functions
of X̄(k(m−1)), L̄(k(m−1)), X̄(k(m)), and L ̄(k(m)), respectively. The lack of extreme weights in
the ALIVE cohort also provides some evidence against model misspecification.28,29 In
addition, positivity and correct model specification were facilitated by careful consideration
of all categorizations, particularly for alcohol consumption and injection drug use.
Furthermore, indicators for categories and splines in the case of continuous predictors were
used in the modeling process.

The above definitions and assumptions imply that unbiased assessment of interaction
requires no unmeasured confounders of the relationship between both exposures and the
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outcome. In contrast, assessment of effect measure modification requires only no
unmeasured confounders of the relationship between the primary exposure and outcome.

The methods presented in this paper pertain to the assessment of interaction using marginal
structural models. Such methods are necessary when both exposures are potentially subject
to time-varying confounding affected by prior exposure, which can occur in both chronic
and infectious disease epidemiology.7–10 If effect measure modification of a time-varying
exposure by a time-fixed secondary covariate is of interest and that exposure is subject to
time-varying confounding affected by prior exposure, then a marginal structural model is
needed. This model can be a standard marginal structural model with a single set of
exposure weights, and a product term between the exposure and the potential time-fixed
effect measure modifier can be employed. However, if effect measure modification of a
time-varying exposure by a time-varying covariate is of interest and that exposure is subject
to time-varying confounding affected by prior exposure, then methods such as g-estimation
of structural nested models,30 history-adjusted marginal structural models,31 or dynamic
marginal structural models32 are needed.

Important to note is that a standard marginal structural model can also be considered a joint
marginal structural model, with censoring playing the role of the second exposure. However,
typically we are interested only in the effect of the exposure while precluding the censoring.
Therefore, rather than estimate the entire joint distribution for the exposure and censoring,
we estimate the effect of the exposure with censoring set to never.

In conclusion, estimation of joint effects is frequently of interest in epidemiologic research.
This paper describes and demonstrates joint marginal structural Cox proportional hazards
models in the context of time-varying exposures potentially subject to time-varying
confounding affected by prior exposure, with the aim to encourage the use of these valuable
techniques.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Causal diagram for the effect of alcohol consumption and injection drug use on HIV
acquisition.
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Figure 2.
Box plots of stabilized weights estimated from pooled logistic models using data on 1,525
African American injection drug users with 8,181 person-years of follow-up, ALIVE cohort,
1988–2008.
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Figure 3.
Alcohol consumption and injection drug use in the prior six months by years of follow-up
among 1,525 African American injection drug users with 8,181 person-years of follow-up,
ALIVE cohort, 1988–2008.
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Figure 4.
Proportion HIV positive by alcohol consumption and injection drug use in the prior six
months among 1,525 African American injection drug users with 8,181 person-years of
follow-up, ALIVE cohort, 1988–2008. Proportions were estimated at the median age and
years of education for the entire cohort at study entry and among men.
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Table 1

Characteristics in the prior six months of 1525 African American injection drug users at study entry and over
8181 person-years of follow-up, ALIVE cohort, 1988–2008.

Characteristic Entry (n = 1525 participants) Follow-up (n = 8181 person-years)

Age, years a 37 (32; 42) 42 (36; 48)

Older than age 37 years; % (no.) 48 (736) 72 (5890)

Female sex; % (no.) 28 (428) 28 (2291)

Education, years a 10 (10; 12) 10 (10; 12)

More than 10 years of education; % (no.) 43 (662) 44 (3600)

Cocaine use; b % (no.) 78 (1184) 58 (4745)

Number of sexual partners; % (no.)

 >1 40 (604) 29 (2373)

 1 43 (661) 47 (3845)

 0 17 (260) 24 (1963)

Male having sex with a man; % (no.) 1 (16) 0.6 (49)

Any sexually transmitted infections; c % (no.) 3 (52) 2 (164)

Number of drug injections/week a 6 (1; 14) 1 (0; 7)

Number of drug injections/week; % (no.)

 1–39 80 (1222) 58 (4745)

 0 20 (303) 42 (3436)

Inject heroin only; % (no.) 61 (929) 42 (3436)

Inject cocaine only; % (no.) 57 (867) 36 (2945)

Inject both heroin and cocaine; % (no.) 57 (865) 39 (3191)

Attended shooting gallery; % (no.) 13 (199) 6 (491)

Number of drinks/week a 8 (1; 28) 4 (0; 18)

Number of drinks/week; % (no.)

 21–140 32 (491) 23 (1882)

 1–20 44 (668) 40 (3272)

 0 24 (366) 37 (3027)

a
Median (quartiles).

b
Crack, snort cocaine, inject cocaine only, and inject both heroin and cocaine.

c
Genital herpes simplex virus, genital warts, gonorrhea, or syphilis.

Epidemiology. Author manuscript; available in PMC 2013 July 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Howe et al. Page 18

Ta
bl

e 
2

C
ru

de
, a

dj
us

te
d,

 a
nd

 w
ei

gh
te

d 
es

tim
at

es
 f

or
 jo

in
t e

ff
ec

ts
 o

f 
al

co
ho

l c
on

su
m

pt
io

n 
an

d 
in

je
ct

io
n 

dr
ug

 u
se

 in
 th

e 
pr

io
r 

si
x 

m
on

th
s 

on
 H

IV
 a

cq
ui

si
tio

n 
am

on
g

15
25

 A
fr

ic
an

 A
m

er
ic

an
 in

je
ct

io
n 

dr
ug

 u
se

rs
 f

ol
lo

w
ed

 f
or

 8
18

1 
pe

rs
on

-y
ea

rs
, A

L
IV

E
 c

oh
or

t, 
19

88
–2

00
8.

N
o.

 I
nj

ec
ti

on
s/

w
ee

k
N

o.
 D

ri
nk

s/
w

ee
k

N
o.

 H
IV

 in
fe

ct
io

ns
/p

er
so

n-
ye

ar
s

H
az

ar
d 

R
at

io
 (

95
%

 C
I)

C
ru

de
A

dj
us

te
d 

a
W

ei
gh

te
d 

a

1–
39

21
–1

40
53

/1
47

5
3.

36
 (

2.
07

–5
.4

4)
2.

13
 (

1.
15

–3
.9

5)
2.

45
 (

1.
45

–4
.1

2)

0–
20

68
/3

28
3

2.
07

 (
1.

31
–3

.2
8)

1.
56

 (
0.

87
–2

.7
7)

1.
78

 (
1.

10
–2

.8
9)

O
ve

ra
ll

12
1/

47
58

0
21

–1
40

7/
43

6
1.

67
 (

0.
72

–3
.8

4)
1.

34
 (

0.
57

–3
.1

3)
1.

58
 (

0.
67

–3
.7

3)

0–
20

 b
27

/2
98

7
1.

00
1.

00
1.

00

O
ve

ra
ll

34
/3

42
3

P 
va

lu
e 

fo
r 

pr
od

uc
t t

er
m

 c
P=

0.
94

74
P=

0.
95

97
P=

0.
76

20

O
ve

ra
ll

15
5/

81
81

a A
cc

ou
nt

ed
 f

or
 a

ge
 a

t e
nt

ry
, s

ex
, y

ea
rs

 o
f 

ed
uc

at
io

n,
 c

oc
ai

ne
 u

se
, s

ho
ot

in
g 

ga
lle

ry
 a

tte
nd

an
ce

, n
um

be
r 

of
 s

ex
ua

l p
ar

tn
er

s,
 m

al
e 

se
x 

w
ith

 m
en

, a
s 

w
el

l a
s 

se
xu

al
ly

 tr
an

sm
itt

ed
 in

fe
ct

io
ns

 in
cl

ud
in

g 
ge

ni
ta

l
he

rp
es

 s
im

pl
ex

 v
ir

us
, g

en
ita

l w
ar

ts
, g

on
or

rh
ea

, a
nd

 s
yp

hi
lis

.

b R
ef

er
en

ce
 c

at
eg

or
y

c T
he

 p
ro

du
ct

 te
rm

 w
ou

ld
 r

ep
re

se
nt

 in
te

ra
ct

io
n 

on
ly

 in
 th

e 
ab

se
nc

e 
of

 b
ia

s 
du

e 
to

 c
on

fo
un

di
ng

, m
ea

su
re

m
en

t, 
or

 s
el

ec
tio

n 
w

ith
 r

es
pe

ct
 to

 b
ot

h 
ex

po
su

re
s.

 C
on

ve
rs

el
y,

 th
e 

pr
od

uc
t t

er
m

 w
ou

ld
 r

ep
re

se
nt

 e
ff

ec
t

m
ea

su
re

 m
od

if
ic

at
io

n 
if

 b
ia

s 
du

e 
to

 c
on

fo
un

di
ng

, m
ea

su
re

m
en

t, 
or

 s
el

ec
tio

n 
w

as
 p

re
se

nt
 f

or
 o

nl
y 

on
e 

of
 th

e 
tw

o 
ex

po
su

re
s.

 U
nb

ia
se

d 
es

tim
at

io
n 

of
 jo

in
t e

ff
ec

ts
 a

nd
 in

 tu
rn

 in
te

ra
ct

io
n 

al
so

 r
eq

ui
re

s
co

ns
is

te
nc

y,
 p

os
iti

vi
ty

, a
nd

 c
or

re
ct

 m
od

el
 s

pe
ci

fi
ca

tio
n.

Epidemiology. Author manuscript; available in PMC 2013 July 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Howe et al. Page 19

Ta
bl

e 
3

W
ei

gh
te

d 
es

tim
at

es
 f

or
 jo

in
t e

ff
ec

ts
 o

f 
al

co
ho

l c
on

su
m

pt
io

n 
an

d 
in

je
ct

io
n 

dr
ug

 u
se

 in
 th

e 
pr

io
r 

si
x 

m
on

th
s 

on
 H

IV
 a

cq
ui

si
tio

n 
be

fo
re

 a
nd

 a
ft

er
 3

 y
ea

rs
 o

f
fo

llo
w

-u
p 

am
on

g 
15

25
 A

fr
ic

an
 A

m
er

ic
an

 in
je

ct
io

n 
dr

ug
 u

se
rs

 f
ol

lo
w

ed
 f

or
 8

18
1 

pe
rs

on
-y

ea
rs

, A
L

IV
E

 c
oh

or
t, 

19
88

–2
00

8.

In
je

ct
io

ns
/w

ee
k

N
o.

 D
ri

nk
s/

w
ee

k
N

o.
 H

IV
 in

fe
ct

io
ns

 p
er

so
n-

ye
ar

s
W

ei
gh

te
d 

a  
H

az
ar

d 
R

at
io

 (
95

%
 C

I)

W
it

hi
n 

th
e 

fi
rs

t 
3 

ye
ar

s 
of

 f
ol

lo
w

-u
p

A
ft

er
 t

he
 f

ir
st

 3
 y

ea
rs

 o
f 

fo
llo

w
-u

p

1–
39

21
–1

40
53

/1
47

5
3.

40
 (

1.
13

–1
0.

23
)

2.
35

 (
1.

33
–4

.1
6)

0–
20

68
/3

28
3

2.
91

 (
0.

97
–8

.7
5)

1.
49

 (
0.

88
–2

.5
5)

O
ve

ra
ll

12
1/

47
58

0
21

–1
40

7/
43

6
3.

17
 (

0.
78

–1
2.

83
)

1.
11

 (
0.

33
–3

.7
4)

0–
20

 b
27

/2
98

7
1.

00
1.

00

O
ve

ra
ll

34
/3

42
3

O
ve

ra
ll

15
5/

81
81

a A
cc

ou
nt

ed
 f

or
 a

ge
 a

t e
nt

ry
, s

ex
, y

ea
rs

 o
f 

ed
uc

at
io

n,
 c

oc
ai

ne
 u

se
, s

ho
ot

in
g 

ga
lle

ry
 a

tte
nd

an
ce

, n
um

be
r 

of
 s

ex
ua

l p
ar

tn
er

s,
 m

al
e 

se
x 

w
ith

 m
en

, a
s 

w
el

l a
s 

se
xu

al
ly

 tr
an

sm
itt

ed
 in

fe
ct

io
ns

 in
cl

ud
in

g 
ge

ni
ta

l
he

rp
es

 s
im

pl
ex

 v
ir

us
, g

en
ita

l w
ar

ts
, g

on
or

rh
ea

, a
nd

 s
yp

hi
lis

.

b R
ef

er
en

ce
 c

at
eg

or
y.

Epidemiology. Author manuscript; available in PMC 2013 July 01.


