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Abstract
Background—Highly active antiretroviral therapy (HAART) rapidly suppresses human
immunodeficiency virus (HIV) viral replication and reduces circulating viral load, but the long-
term effects of HAART on viral load remain unclear.

Methods—We evaluated HIV viral load trajectories over 8 years following HAART initiation in
the Multicenter AIDS Cohort Study and the Women’s Interagency HIV Study. The study included
157 HIV-infected men and 199 HIV-infected women who were antiretroviral naïve and
contributed 1311 and 1837 semiannual person-visits post-HAART, respectively. To account for
within-subject correlation and the high proportion of left-censored viral loads, we used a
segmental Bernoulli/lognormal random effects model.

Results—Approximately 3 months (0.30 years for men and 0.22 years for women) after HAART
initiation, HIV viral loads were optimally suppressed (ie, with very low HIV RNA) for 44% (95%
confidence interval = 39%–49%) of men and 43% (38%–47%) of women, whereas the other 56%
of men and 57% of women had on average 2.1 (1.5–2.6) and 3.0 (2.7–3.2) log10 copies/mL,
respectively.

Conclusion—After 8 years on HAART, 75% of men and 80% of women had optimal
suppression, whereas the rest of the men and women had suboptimal suppression with a median
HIV RNA of 3.1 and 3.7 log10 copies/mL, respectively.

INTRODUCTION
Observational studies and clinical trials1–4 have shown that highly active antiretroviral
therapy (HAART) has dramatically extended the time to development of acquired
immunodeficiency syndrome (AIDS) and to death in human immunodeficiency virus
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(HIV)–infected individuals. The primary mechanism of action is suppressing plasma HIV
RNA to “undetectable” levels by using sensitive assays (eg, to suppress viremia below 50
copies/mL by using the Roche ultrasensitive assay) that in turn allows an increase in CD4-
postive T-lymphocyte (CD4 cell) count and function.5,6 Although suppressing HIV RNA
levels may be necessary to prevent drug resistance, 1 of the major causes of treatment
failure,7 undetectable levels of HIV RNA in plasma do not imply that viral replication has
been stopped.8–10 Moreover, after achieving suppression, many patients experience
intermittent episodes of detectable viremia (“viral blips”), which may raise concerns about
drug resistance and alterations in therapies.11–14

In the Multicenter AIDS Cohort Study (MACS) of men, Tarwater et al.15 reported that
regardless of CD4 cell counts at HAART initiation, there was a significant increase in CD4
cell count during the first 2 years, followed by CD4 cell count stabilization between 2 and
3.5 years. Chu et al.,16 using a Bayesian random change points model, reported that after
large initial increases in CD4 count, 35% of men in MACS compared with 25% of women
in the Women’s Interagency HIV Study (WIHS) had a statistically significant flattening in
CD4 cell count trajectory within 7 years after HAART initiation, which suggests that HIV
RNA response to HAART may also have a nonlinear trajectory. From a clinical standpoint,
the determination of change points (ie, when the post-HAART initiation changes of
longitudinal HIV RNA or CD4 cell count trajectory become apparent) may identify the
optimal time to change antiretroviral therapy, and from a pathogenic perspective, this may
reflect the time at which the HIV has developed resistance to the current therapy.17

Li and coworkers18 have shown that for each year following HAART initiation HIV RNA
levels in both therapy-experienced and therapy-naïve men and women can be modeled with
bimodal distributions, with each mode corresponding to optimal and suboptimal responders,
that is, very low and relatively high HIV RNA levels. In their study, even though most
patients achieved optimal virologic response with model-based median of HIV RNA less
than 20 copies/mL, substantial proportions (32% of men and 44% of women) had
suboptimal suppression with median HIV RNA higher than 5000 copies/mL among
suboptimal responders even in the fifth year after HAART initiation. However, this
evaluation of longitudinal patterns of viral RNA measurements was potentially confounded
from selection bias and correlation among repeated measurements19. Moreover, because
their analysis was conducted separately for each yearly interval (from within 1 year before
HAART initiation up to 5 years after HAART initiation), a time of change in HIV viral load
trajectory cannot be estimated.

We thus undertook this investigation to study the longitudinal patterns of HIV viral load
after HAART initiation and to test for the presence of change points of HIV RNA
trajectories (ie, points at which the change of HIV viral load trajectories become apparent)
by using data from 2 prospective cohort studies — the MACS and the WIHS. Various
approaches have been considered for modeling the trajectories of HIV RNA, including
random regression models with informative drop-out,20 a joint model for longitudinal CD4
cell count and HIV RNA,21 and a marginal structure left-censored mean model.22 We
extended a Bernoulli/lognormal random effects model with left censoring for HIV RNA
levels below detection limits23–25 to 1) test whether the longitudinal HIV RNA can be well
characterized by Bernoulli/lognormal mixture models, possibly corresponding to optimal
and suboptimal suppression, and 2) identify potential change points in the longitudinal
trajectory that may shed some light on the optimal time to change therapies and the time to
successful resistance of the virus. This random effects model provides a unified approach to
model repeatedly measured biomarker data with undetectable levels. Unlike a simple 2-step
approach (ie, that models the binary probability of having detectable compared with
undetectable values in the first step and then models the conditional viral load values among
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detectables in the second step) that assumes all undetectable values correspond to optimal
suppression, this extended approach allows a proportion of undetectable HIV RNA to be
left-censored values of a continuous distribution to characterize the distribution of HIV
RNA for those with suboptimal suppression (ie, reflected by having frequent episodes of
detectable viremia, see statistical methods section).23

METHODS
POPULATION AND STUDY DESIGN

The MACS is a multicenter prospective cohort study initiated in 1983 to investigate the
natural history of HIV-1 infection among homosexual and bisexual men in the United
States. The study design has been previously described.26 A total of 3512 infected
participants were either HIV-positive at enrollment (83.8%) or became infected with HIV
during follow-up (16.2%). The WIHS is a multicenter prospective cohort study initiated in
1993 to examine the natural history of HIV-1 infection among women in the United States.
The baseline WIHS cohort characteristics have been described previously.27 A total of 2809
infected women were either HIV-positive at enrollment (99.4%) or became infected with
HIV during follow-up (0.6%). The MACS and WIHS protocols were approved by
institutional review boards of each of the participating centers, and informed consent was
obtained from all participants.

In both the MACS and WIHS, participants return every 6 months for clinical visits at which
detailed questionnaires and physical examinations are administered, and biologic specimens
are collected for testing and storage. Antiretroviral medications in the preceding 6 months
are self-reported at each semiannual visit and summarized to define HAART usage in the
preceding 6 months. Highly active antiretroviral therapy is defined according to the U.S.
Department of Health and Human Services/Kaiser Panel guidelines.28,29 The date of
HAART initiation is considered to be the midpoint between the last visit reporting no
HAART use (last no HAART) and the first visit at which HAART use is reported (first
HAART). In the MACS, HIV RNA is determined using the Roche Amplicor RNA kit
(Hoffman-LaRoche, Nutley, NJ) with a limit of detection (LOD) of 400 copies/mL. If this
kit does not detect HIV RNA, the Roche Ultrasensitive RNA PCR assay with an LOD of 50
copies/mL (Hoffman-LaRoche) is performed. In the WIHS, HIV RNA is measured using the
NASBA assay (Organon Teknika Corp., Cambridge, UK) with an LOD of 4000 copies/
mL15 up to September 1998, and by the NucliSens assay (Organon Teknika Corp.) with an
LOD of 400 copies/mL through March 1999 and 80 copies/mL beginning in April 1999.16

Acquired immunodeficiency syndrome was defined as clinical conditions consistent with the
1993 Centers for Disease Control and Prevention case definition30 but did not include the
criteria of only having a CD4 cell count below 200 cells/mL.

We used MACS and WIHS data collected up to 30 September 2005 (end of semiannual visit
43 of MACS and visit 22 of WIHS). We restricted the analysis to participants who 1)
initiated HAART on or after 1 July 1995 with 1 year or less between their last no HAART
and first HAART use visits; 2) had an HIV RNA measurement available at their last pre-
HAART visit and at least 1 post-HAART measurement; 3) did not use any antiretroviral
therapy before HAART initiation; and 4) reported HAART usage for at least 80% of all
post-HAART visits. Of the HIV-positive participants who were alive as of 1 July 1995 and
were seen at a visit afterward, 709 of 1733 men and 1336 of 2576 women reported use of
HAART after enrollment with 1 year or less between last no HAART and first HAART
visit. Of these, 203 men and 315 women did not use any antiretroviral therapy before
HAART initiation. Finally, 157 MACS men (contributing 1311 person-visits) and 199
WIHS women (contributing 1837 person-visits) met all eligibility criteria. The HIV RNA
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measurements from the visit prior to HAART initiation and all subsequent visits were used
in the analysis.

STATISTICAL METHODS: A SEGMENTAL BERNOULLI/LOGNORMAL RANDOM EFFECTS
MODEL WITH LEFT CENSORING

The classic longitudinal model for the analysis of progression of biomarkers in HIV-infected
individuals is the linear mixed-effects model.31 However, longitudinal studies of viral load
are complicated by left censoring of the measures due to values below detection limits32 and
the possible existence of mixture distributions, especially in the era of HAART.18,33 To
model adequately longitudinal HIV viral load measures, which have a high proportion of
values below the LOD, a Bernoulli/lognormal random effects mixture model with left
censoring was used.23 This Bernoulli/lognormal mixture model assumes that there exists a
lower component with extremely low plasma viral load levels (ie, < 1 copy/mL or
approximately equal to 0 copy/mL), representing those with fully suppressed or optimal
virologic response. For those with suboptimal virologic response, the HIV viral load values
are assumed to be lognormally distributed because the log transformation has often been
used to stabilize variances when modeling the longitudinal HIV viral load data.18,33,34

Figure 1 illustrates the probability density function for a cross-sectional Bernoulli/lognormal
mixture model with 20% being optimal suppression for HIV viral load in log10 scale.35 For
those with suboptimal suppression, it is log10-normally distributed as lognormal (3.7, 1)
corresponding to a median of HIV RNA = 5000 copies/mL. When the LOD is 50 copies/mL
(or 1.7 copies/mL in log10 scale), 2.3% of those with suboptimal suppression (ie, 80% ×
2.3% = 1.8% of all observations) cannot be detected and thus are indistinguishable from the
20% observations with true optimal suppression.

Let Pij be the Bernoulli probability of having an optimal suppression for the ith subject at the
jth time point after HAART initiation for the ith individual measured at time tij, i =1, …, N,
and j = 1, …, ni, where tij is the time lag between time of HAART initiation and HIV viral
load measurement, N represents the number of individuals, and ni represents the total
number of HIV viral load measurements collected for the ith individual. Let the random
variable Yij denote the log10-transformed HIV viral load conditional on the individual
having a suboptimal suppression. We extended the Bernoulli/lognormal random effects
mixture model23 allowing for up to 2 change points to separate the possible acute,
intermediate, and long-term effects of HAART on HIV viral load. Specifically, the
probability of having optimal suppression (ie, Pij, the Bernoulli part) is modeled by a
random effects logistic regression model with 3 pieces as

where CP1a and CP2a denote the unknown change points between acute and intermediate,
and intermediate and long-term effects for the probability of having optimal suppression,
respectively; (tij–CP1a)− equals tij–CP1a if tij<CP1a and equals zero if tij≥CP1a; (tij–CPia)+

equals zero if tij≤CPia and equals tij–CPia if tij>CPia (i=1, 2). The parameter α0 can be
interpreted as the expected log odds of the probability of optimal suppression at the change
point CP1a; α1, α2 and α2+α3 represent the log odds ratio of annual acute, intermediate, and
long-term changes of the probability of optimal suppression, respectively. A similar 3-piece
linear regression model for the values of suboptimal suppression (ie, the lognormal part
because Yij is the log10-transformed viral load) takes the form of
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where εij represents the random error in the model prediction for the ith individual at the jth

time point. The structure of the random error εij is assumed to be independently and
identically distributed as Gaussian N(0, σ2). The parameter β0 can be interpreted as the
estimated log10 HIV viral load at change point CP1b; 10β1, 10β2, and 10β2+β3 represent the
annual acute, intermediate, and long-term relative (proportional) rate of changes in HIV
viral load with suboptimal suppression, respectively. The random effects are assumed to be

joint bivariate normally distributed as . In general, the
change points for the logistic and the linear models are allowed to be different (ie, CP1a≠
CP1b and CP2a≠ CP2b). However, for ease of interpretation, it might be more logical to
assume CP1a=CP1b=CP1 and CP2a=CP2b=CP2 in practice.

Given the random effects, the likelihood function for the segmental Bernoulli/lognormal
random effects model with left censoring is as follows,

where Dij denotes the assay detection limits for the ith individual measured at time tij on
log10 scale, δij denotes whether the assay measurement is below detection limits Dij, φ(·)
and Φ(·) are the standard Gaussian probability density function and cumulative distribution
function, respectively. In the absence of fully suppressed or optimal suppression to HAART
(ie, the observations with values below LOD can be subsumed by the left tail of a
continuous distribution, or equivalently Pij=0), the likelihood of left censored model
becomes

In the previous models, we, as others,23 assumed conditional independence given random
effects ai and bi. In the presence of residual correlation (ie, εij s are not independent), the
conditional independence can often be relaxed by allowing an appropriate, more general
residual covariance structure Σi for the vector εi of subject-specific error components for the
linear regression model.31 We considered the simple but often-reasonable residual
covariance structure of Σi=σ2Ini where Ini denotes the identity matrix of dimension ni.

The SAS version 9 was used for all analyses (SAS Institute Inc, Cary, NC). Specifically, we
used the NLMIXED procedure to obtain maximum likelihood estimates. The NLMIXED
procedure is able to compute general functions of estimated parameters with standard errors
computed using the delta method. The finite sample corrected Akaike Information Criterion
(AIC),36 provided from SAS NLMIXED output as a measure of goodness-of-fit (ie, the
smaller the AIC, the better the fit.), was used to compare the mixture model with the left-
censored model and to select the number of change points. The AIC is computed as

, where l(·) is the marginal log likelihood,  denotes the vector
of maximum likelihood parameter estimates, n is the number of observations, and p is the
number of parameters. The SAS code is available on request from the first author. To obtain
the population average estimates for the probabilities of optimal suppression at each time
point after HAART initiation, numerical integration over the estimated distributions of
random effects was implemented.37
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RESULTS
eTable 1 (available with the electronic version of this manuscript) presents descriptive
statistics at HAART initiation according to cohort. The 157 men had a median number of 6
longitudinal HIV RNA measurements with a median of 2.8 post-HAART follow-up years.
Among men, 127 (81%) were Caucasian, 21 (13%) African American, and 8 (5%) Latino.
Among the 199 women, the median number of longitudinal HIV RNA measurements was 8
with a median of 3.2 post-HAART follow-up years. Among women, 8 (4%) were
Caucasian, 120 (60%) African American, and 70 (35%) Latina. The mean calendar years at
which HAART was initiated were 2002.4 and 2000.5 for the MACS and WIHS,
respectively, reflecting that a considerable amount of MACS men were recruited during
2001–2003 when the study expanded. Compared with women in the WIHS, men in the
MACS were about 2 years older, had 20–30 more CD4 cells/mm3, and had higher HIV RNA
levels at the visit within 6 months before HAART initiation. Fewer men had a history of an
opportunistic infection or malignancy diagnostic of AIDS30 prior to HAART. All-cause
mortality during the follow-up was about 5% and 10% for the MACS and WIHS
participants, respectively.

Figure 2 presents longitudinal measurements of HIV RNA in log10 scale for the 157 men in
the MACS (upper panels) and the 199 women in the WIHS (lower panels), including the
pre-HAART baseline viral load values. For the purpose of demonstrating the high
proportions of left censoring, those measurements with values below LOD have been
randomly assigned a value from a uniform distribution between 1 copy/mL and LOD; in the
model fitting, however, they were treated as left-censored values. Specifically, 827 of 1311
(63%) MACS measurements were below LOD (50 copies/mL); 1034 of the 1837 (56%)
WIHS measurements were below LOD, including 1015 with LOD = 80 copies/mL, 17 with
LOD = 400 copies/mL, and 2 with LOD = 4000 copies/mL. The vertical bars in gray-shaded
area represent the observed annual proportions of HIV RNA measures below LOD with its
point-wise 95% confidence interval (CI). The solid line represents the nonparametric
LOWESS smoothed curves for those with detectable values. It suggests that after a
significant, rapid decrease within a half-year post-HAART initiation, HIV RNA appears
subsequently to stabilize or only gradually increase on the population level.

eTables 2 and 3 summarize the maximum likelihood estimates and the goodness-of-fit for
the MACS and WIHS under the assumption CP1a=CP1b and CP2a=CP2b=CP2, respectively.
We fitted 6 models to the data, that is, the random effects left-censored model (I) and the
random effects mixture model (II) with a) no change point, b) 1, and c) 2 change points,
respectively. Twice the negative value of log-likelihood and the finite sample corrected AIC
were used to measure the goodness-of-fit. The mixture models provided a significantly
better fit than the left-censored models, suggesting the existence of optimal and suboptimal
suppression to HAART. A mixture model with 2 change points provided the best fit for the
MACS, whereas a mixture model with 1 change point provided the best fit for the WIHS.
However, the differences in the goodness-of-fit for a mixture model with 1 change point
compared with a mixture model with 2 change points was relatively small for both the
MACS and the WIHS, suggesting similar response to HAART for the MACS men and the
WIHS women.

Based on the model with best fit in eTables 2 and 3, at the first change point, that is, about 3
months (0.30 years for MACS and 0.22 years for WIHS) following HAART initiation, HIV
viral loads were fully suppressed for 44% (95% CI = 39%–49%) of men and 43% (38%–
47%) of women, whereas the other 56% of men and 57% of women had on average 2.1
(1.5–2.6) and 3.0 (2.7–3.2) log10 copies/mL respectively. The proportion of men with fully
suppressed viral loads increased with an annual odds ratio (OR) of 2.16 (CI = 0.84–5.53)
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between 3 months and 3 years following HAART initiation, and slightly increased after 3
years with annual OR of 1.11 (0.88–1.41), whereas for women, the proportion with fully
suppressed HIV RNA increased with an annual OR of 1.49 (1.33–1.68) from 3 months after
HAART initiation. However, the mean log10 viral loads among those not fully suppressed
remained stable for men (annual increase of 0.08 log10 copies/mL with 95% CI = −0.23 to
0.38 between 3 months and 3 years, and 0.17 log10 copies/mL with CI = −0.10 to 0.44 after
3 years from HAART initiation) and slightly increased for women starting at 3 months
following HAART initiation (annual increase of 0.09 log10 copies/mL with CI = 0.05–
0.13).

For sensitivity analyses, we also fit mixture models allowing different change points for the
logistic and linear models (ie, CP1a≠CP1b and CP2a≠CP2b). Although those models slightly
improved the goodness-of-fit compared with their counterparts (results not shown), the
statistical inferences were similar to the mixture models assuming equal change points for
the logistic and linear models (ie, CP1a=CP1b=CP1 and CP2a=CP2b=CP2) for both men and
women. Furthermore, to test whether our models are sensitive to LOD and to test whether
the observed differences between men and women in eTables 2 and 3 were due to the
differences in the LOD, we artificially increased the detection limit to 80 copies/mL for the
MACS, and left censored those 52 MACS measurements (4.0%) with viral load values of
more than 50 copies/mL but less than or equal to 80 copies/mL and refitted those models.
The point estimates and their standard errors were very similar to those reported in eTable 2
(results not shown) with similar conclusions.

Figures 3 and 4 present the predicted trajectories for men and women, respectively, based on
the parameter estimates in the different models of eTables 2 and 3 up to 8 years after
HAART initiation. The dramatic differences in the predicted trajectories yielding differing
information for public health emphasize the need of carefully selecting a good model to
reflect the HIV RNA longitudinal patterns. For example, based on the model that fit the
MACS data best (ie, a mixture model with 2 change points, Model IIc), after 8 years on
HAART, although the majority (ie, 75%) of men had optimal suppression, 25% were
suboptimal responders with a median HIV RNA of 3.1 log10 copies/mL. Yet based on the
left-censored model with no change points, one would conclude that after 8 years the median
of HIV RNA is less than 1 copy/mL (ie, 0.01 copy/mL) which, although not inconsistent
with Model IIc, does not capture the finding that a substantial portion (25%) of men still had
very high levels of HIV RNA. Surprisingly, even though a different model had the best fit
for women (ie, a mixture Model IIb with 1 change point), after 8 years on HAART, 80% of
women had optimal suppression, and 20% had suboptimal suppression with a median HIV
RNA of 3.7 log10 copies/mL.

DISCUSSION
The longitudinal data for antiretroviral therapy–naïve men and women who subsequently
initiated and continuously used HAART (reported use in at least 80% of biannual visits
following initiation), allowed us to model the average HIV RNA changes up to 8 years after
initiation of HAART. Specifically, our study focused on how to model longitudinal HIV
RNA data that have high proportions of left-censored observations, and how the inferences
would differ based on different models. In summary, the data suggest that when modeling
longitudinal HIV RNA data following HAART initiation, it may be better to use a segmental
Bernoulli/lognormal random effects model to reflect trajectory changes (ie, acute,
intermediate, and long-term effects) and the existence of optimal and suboptimal
suppression. Based on the models with best fit, after 8 years on HAART, although the 75%
of men and 80% of women (who survived and continued to use HAART regularly) had
optimal suppression, but there were 25% of men and 20% of women who had suboptimal
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suppression with a median HIV RNA of 3.1 and 3.7 log10 copies/mL, respectively. Despite
the differences between the MACS and WIHS cohorts and slightly different models used to
fit the data, it is interesting that these long-term estimates of proportions with optimal
suppression and level of HIV RNA among suboptimal responders are very similar.

In this article, we did not consider subject-specific change points, which may be more
attractive, for 2 reasons: 1) it is technically difficult to implement subject-specific change
points in this setting, that is, it is not directly implementable using SAS NLMIXED; and 2)
it requires a relatively large number of data points per subject. For example, Chu et al.16

used a Bayesian approach requiring 2 data points before and after the subject-specific
change points to model the longitudinal CD4 trajectories in the absence of detection limits
and mixture distribution and were only able to consider 1 change point per subject. Here we
are interested in the population level change points and considered 2 change points
corresponding to acute and intermediate effects.

Although the Bernoulli/lognormal mixture model can be easily extended to handle baseline
covariates without significant difficulty, given the relatively small study sample sizes (ie,
157 men and 199 women), and the very high percentages of HIV RNA below detection
limits as shown in Figure 2, we did not consider potential baseline factors associated with
the heterogeneity of patterns, which may include pre-HAART CD4 cell counts, age at
HAART initiation, and host genotype. Furthermore, due to the same reasons and the
potential difficulty of including time-dependent covariates in the model, we did not consider
the effect of different types of HAART, and the effect of switching or interrupting HAART.
Further research along the lines, such as by adjusting baseline and time-dependent
confounding factors and compliance, may shed additional light on the effects of HAART on
HIV RNA trajectory.

Caution is necessary when comparing the WIHS and MACS cohorts because they differ in
several characteristics in addition to sex. In the MACS, 81% were Caucasian compared with
only 8% Caucasian in the WIHS and the 2 cohorts have other substantially different
sociodemographic characteristics. Furthermore, only 5.7% of the participants in MACS
compared with 32.7% of the those in WIHS had clinical AIDS before HAART initiation.
Generalizations to the current era in which individuals are encouraged to go directly from no
treatment to HAART may also be limited because the MACS men and WIHS women in this
study may not be representative of the HIV-infected men and women in the current
population due to recent changes in sociodemographic characteristics and other factors
within the HIV-infected populations. As a technical note, in the presence of left censoring
due to the LODs, the models are locally identified, that is, the choice of a Bernoulli/
lognormal random effects model results in identification. However, different results may be
found with a different parametric distribution.
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Figure 1.
An illustration of Bernoulli/lognormal model.
An illustration of a mixture distribution
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Figure 2.
Longitudinal measurements of HIV RNA (in log10 scale) for the MACS (upper panels) and
the WIHS (lower panels). For the purpose of demonstrating the high proportions of left
censoring, those measurements with values below LOD have been randomly assigned a
value from a uniform distribution between 1 copy/mL and LOD, and plotted with symbols
“+”. Those measurements with detected values were plotted using symbols “•”. The vertical
bars in the gray-shaded area represent the observed annual proportions of HIV RNA
measures below LOD with its point-wise 95% CI. The solid line represents the
nonparametric smoothed LOWESS curves for those with detectable values. The dashed line
represents lower detections limits (ie, LOD = 50 copies/mL for the MACS; and LOD =
4000, 400, and 80 copies/mL for the WIHS depending on the calendar time of
measurements).
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Figure 3.
Predicted trajectory for the MACS based on the parameter estimates in eTable 2. Models Ia,
Ib, Ic, IIa, IIb, and IIc correspond to the left-censored model (I) and the mixture model (II)
respectively, with a) no change point, b) 1, and c) 2 change points, respectively. Dashed
lines represent the estimated proportions of fully suppressed viral load, and solid lines
represent the population averaged trajectory for those incompletely suppressed.
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Figure 4.
Predicted trajectory for the WIHS based on the parameter estimates in eTable 3. Models Ia,
Ib, Ic, IIa, IIb, and IIc correspond to the left-censored model (I) and the mixture model (II)
respectively, with a) no change point, b) 1, and c) 2 change points, respectively. Dashed
lines represent the estimated proportions of optimal or fully suppressed viral load, and solid
lines represent the population averaged trajectory for those incompletely suppressed.
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