
Nonparametric Bayes Shrinkage for Assessing Exposures to
Mixtures Subject to Limits of Detection

Amy H. Herring
Department of Biostatistics and Carolina Population Center, The University of North Carolina at
Chapel Hill

Abstract
Assessing potential associations between exposures to complex mixtures and health outcomes may
be complicated by a lack of knowledge of causal components of the mixture, highly correlated
mixture components, potential synergistic effects of mixture components, and difficulties in
measurement. We extend recently proposed nonparametric Bayes shrinkage priors for model
selection to investigations of complex mixtures by developing a formal hierarchical modeling
framework to allow different degrees of shrinkage for main effects and interactions and to handle
truncation of exposures at a limit of detection. The methods are used to shed light on data from a
study of endometriosis and exposure to environmental polychlorinated biphenyl congeners.

Introduction
Assessing the relationship between exposures x1, …, xp and a health outcome y may be
complicated by multiple factors, including the following: a lack of understanding of the
biologic pathways through which particular mixture elements, or interactions among them,
may affect human health; near collinearity among a potentially large number p of mixture
components; and difficulties in measuring mixture elements. In the absence of existing
knowledge about the active components of a mixture, investigators often turn to model
fitting and selection techniques to determine whether mixture components are associated
with outcomes. Standard techniques, however, are not designed to identify the causal
component in a mixture. For example, suppose one is interested in a binary health outcome
y. One standard approach involves fitting the fully adjusted multiple logistic regression
model

(1)

where β0 is the baseline log-odds of yi = 1, and βj is the increase in the log-odds attributable
to a unit increase in the jth exposure.

When moderate-to-high correlations exist among the xj, as in the case for many mixtures,
the estimates of β and the accompanying estimated standard errors may become inflated
because of instabilities caused by near collinearity. Standard model selection techniques,
such as backward or forward selection, may lead to different models and different
conclusions about active components in the mixture. After model selection, results from a
final model are reported with accompanying confidence intervals or P-values. Such an
approach ignores the uncertainty that arises from the selection and results in confidence
intervals that are too narrow. To acknowledge model uncertainty, Bayesian model
averaging1,2 can be used. Wang and colleagues3 have shown improved performance for
Bayesian model averaging over stepwise selection methods in logistic regression. Neither
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Bayesian nor frequentist4 model averaging has been widely applied in observational
epidemiology, due in part, to a lack of implementation of these methods in mainstream
software packages.

Another common approach is to consider a model containing an exposure summary, such as

(2)

in which the weights wj may be set to  in which a simple average over all components is
used, set to 1 so that an exposure sum is used, or estimated in advance by using a method
such as principal components. However, these summary approaches generally do not
identify particular active elements in a mixture, and the results may be difficult to interpret.

When randomized trials or animal bioassay studies are appropriate, study design principles
may be used to shed light on active elements of a mixture. In particular, fixed-ratio ray
designs have been used to assess the impact of subsets of mixture components on disease
risk.5,6 These designs have many applications in animal bioassay studies, but their
applicability to human studies, in which exposures to chemical mixtures may not be
ethnical, is limited.

Numerous authors have suggested using hierarchical models as a means of overcoming
model instability when a fully adjusted model is used.7–12 Consider a study that examines
the association between endometriosis and exposure to polychlorinated biphenyls (PCBs).
Although numerous PCB congeners have been identified, we have relatively little
information from humans to suggest whether all congeners, a single congener, or certain
combinations of congeners confer excess risk of endometriosis. For example, consider the
model

(3)

where γjk, j = 1, …, p, k = 1, …, j − 1 are parameters for 2-way interactions between the p
congeners.

When using maximum likelihood (ML) estimation, we encounter two problems in this
setting. For highly correlated predictors, the maximum likelihood estimates (MLEs) are
often unstable with large variance. The second problem is dimensionality: as p grows, the
total number of parameters to be estimated rapidly becomes large. Investigators have
proposed a variety of approaches that rely on penalized ML.13,14 Penalized ML relies on
maximizing the log-likelihood plus a penalty that favors coefficients close to zero.
Commonly used approaches rely on L1 or L2 penalties. The L1 approach penalizes the sum
of the absolute values of the regression coefficients (and interaction coefficients, if
appropriate), and the L2 approach penalizes the squared coefficients. The lasso procedure,13

which has been widely used for accommodating high-dimensional and correlated predictors,
relies on an L1 penalty. Methods that rely on an L2 penalty are typically referred to as ridge
regression approaches. Genkin et al.14 developed a lasso procedure for high-dimensional
logistic regression and compared it with ridge logistic regression.

Lasso and ridge logistic regression shrink the coefficient estimates toward zero, which leads
to stabilized estimation and to lower mean squared error than unpenalized ML. As the
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amount of information in the data increases, the likelihood will become dominant, and the
penalty will play a decreasing role. These methods are mainly designed for cases in which
the data do not contain sufficient information to estimate the parameters precisely. When the
number of parameters to estimate, including coefficients for main effects and interactions, is
moderate to large, shrinkage can lead to substantial improvement in performance even when
the sample size is not small. For example, ML estimates of 100 parameters that are based on
a few thousand subjects are often poorly behaved relative to shrinkage estimates. An
appealing property of lasso relative to ridge regression is simultaneous shrinkage and
variable selection because many of the estimated coefficients can be exactly zero in the lasso
approach. If the estimated coefficient is zero for an exposure, this exposure is effectively
excluded from the model.

Penalized ML approaches have a Bayesian interpretation, with the penalty arising through a
prior distribution. Under a double-exponential prior distribution for the coefficients, the
mode of the posterior distribution is exactly equal to the lasso estimate. The ridge regression
estimator arises through independent normal priors on the coefficients. For Bayesian
robustness, it is common practice to use a prior with heavy tails, such as a t-distribution with
low degrees of freedom or a Cauchy distribution. The nice feature of heavy-tailed priors is
robustness to misspecification of the prior mean. We may choose the prior mean to be zero
because it is likely that most of the exposure coefficients in a high-dimensional case are
close to zero, but there may be a few outliers corresponding to important exposures having
coefficients that are not close to zero. The Cauchy distribution does a good job of
characterizing such a case because it shrinks coefficients for exposures with biologically
insignificant odds ratios (ORs) strongly towards zero while limiting shrinkage of important
exposures. Such priors are advocated by Gelman et al.15 Cauchy priors seem preferable to
double-exponential priors, which have light tails and may lead to overshrinkage of
coefficients for important exposures. However, Cauchy priors do not automatically lead to
variable selection. In the machine learning literature, it is common to rely on t priors with
zero degrees of freedom,16 with such priors having heavy tails and a variable selection
property.

Variable selection resulting from the double-exponential or t prior with zero degrees of
freedom occurs because the estimates can be exactly zero. However, no measure of
uncertainty exists in this variable selection. Considering model (3), an alternative Bayesian
approach chooses a variable selection mixture prior for the coefficients.17,18 The prior
distribution for βj consists of a mixture of 2 components, with 1 component (the spike)
concentrated at zero and the other (the slab) with a relatively high variance. The spike
represents the coefficients for predictors having ORs close to 1, whereas the slab provides a
prior distribution on the coefficients for the important exposures. This approach
accomplishes simultaneous variable selection and shrinkage, as in the lasso. Unlike in the
lasso, however, we also fully account for uncertainty in selection. From Markov chain
Monte Carlo (MCMC) samples, we can estimate the proportion of times that a given
coefficient (say βj) falls in the slab. This statistic provides an estimate of the posterior
probability that the jth exposure has a main effect in the model and accounts for uncertainty
in the other exposures and interactions included in the model. From the samples of βj, we
can also estimate a 95% credible interval (CI), which is a Bayesian version of the confidence
interval. Similar analyses can be conducted for the interaction coefficients.

A potential concern is sensitivity to the choice of distribution for the slab. A standard choice
is a normal distribution with moderate-to-large variance. However, this may be unrealistic in
studies in which exposure ORs that are far from 1 are seldom encountered, so that a prior
distribution that places small probabilities on ORs larger than 10 or smaller than 0.1 is
usually preferred. In addition, performance in variable selection and model averaging can be
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adversely impacted if the variance of the normal is chosen to be very large. In this case, a
tendency exists to select small models that have potentially important exposures removed.
The centering of the slab on zero (corresponding to an OR=1) may be undesirable; if effects
are not null, estimates should not be close to zero. A multimodal prior that concentrates
mass at locations away from zero is more realistic. Mixture distributions that contain
components representing strong adverse effects, mild positive effects, and other reasonable
associations are a natural solution. However, the number and location of the mixture
components are not known in advance. Nonparametric Bayes shrinkage priors10 have
recently been shown to have desirable properties in identifying important elements of a large
group of predictors, with estimates closer to the truth on average compared with those from
other hierarchical models.11

Measuring PCB exposures is a challenging issue because many may be below the limit of
detection (LOD). Statistical issues associated with analysis of data subject to an LOD are
well known.19,20 Censored observations are a type of informative missing data because
investigators typically know that with high probability the true observed values lie below the
LOD. In practice point imputation of values such as zero or the LOD divided by the square
root of 2 is often used, but these single imputation approaches lead to underreporting of
variability in point estimates because the uncertainty in the exact values of exposure
measurements that fell below the LOD is not taken into account. Using MCMC
algorithms,21 repeated imputation of missing values, based on sampling from conditional
distributions incorporating information about the LOD, may be used to account for
uncertainty in exposure values below the LOD.

Methods
Study Characteristics

The study population is described in detail elsewhere.22 Briefly, 84 women aged 18–40
years who were undergoing laparoscopic investigation were enrolled in the study and asked
to provide a blood sample. Upon laparoscopic examination, 32 women had confirmed
endometriosis and 52 did not. Gas chromatography with electron capture was used to
quantify levels of 62 PCB congeners in serum samples from 79 women.23 The affiliated
university and participating hospitals gave institutional review board consent for this study,
and consent was obtained from all the women. We analyze 7 PCBs (94, 114, 142, 149, 153,
167, and 206) for which more than 50% of participants had detectable levels of the
congeners. The majority of the PCBs are below the LOD for all but a small percentage of
the participants, so there is essentially no information in the data about the relationships
between such PCBs and disease risk. We focused on a subset in which substantial numbers
of participants had data above the LOD. The 7 PCBs have low-to-moderately high
correlation. The highest correlation is in the pairs (114, 167), (114, 153), (167, 153), and
(206, 153); all the pairs have correlation coefficients between 0.6 and 0.7.

Statistical Methods
We square-root transformed and then normalized PCBs before analyzing the data.
Transforming exposures subject to LOD is not problematic as long as the transformation is
monotone and the detection threshold is also transformed. By normalizing the exposures, we
simplified the selection of a default shrinkage prior that did not need to take into account the
measurement scale of the data. Such normalization is standard practice in applying
shrinkage procedures. The logistic regression model (3) was used for the probability of
endometriosis (yi) conditional on main effects and 2-way interactions between PCBs, with a
total of 7 main effects and 21 interaction terms of interest.
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The goals of the Bayesian approach were 3-fold: 1) accommodate model uncertainty by
using model averaging, 2) use shrinkage priors to reduce mean square estimation error, and
3) accommodate truncation of exposure data at the LOD. A shrinkage prior10 for the
regression coefficients β and γ was used to address goals 1) and 2). We used a Dirichlet
process prior distribution with a model selection component. This specification allowed us
to place substantial prior probability on the value zero, which represents no association of a
PCB with endometriosis. This prior distribution has nice properties in reducing the MSE.
We defined separate prior distributions for main effects and interactions that placed a greater
prior probability on zero values for interaction terms than for zero values on main effects.
These prior distributions were specified as follows:

(4)

where δ0 represents a point mass at zero. To adjust for multiple testing in Bayesian
procedures, one can choose a hierarchical prior on the probability of exclusion for each
predictor.24 In our model, we have a component for main effects and another for
interactions. We let π1 ~ beta(1, 1) be the prior for the main effect exclusion probabilities.
This prior has expectation E(π1) = 0.5, which corresponds to an equal chance of inclusion or
exclusion of an exposure in the main effect component. However, as we add unimportant
predictors, this prior will be updated to be centered closer and closer to 1, which induces a
multiplicity adjustment. If only a single exposure is important, it will be less likely to be
judged as significant if many unimportant exposures are present.

For the interaction inclusion probability, we chose π2 ~ beta(9, 1), which has expectation
E(π2) = 0.9. By centering the prior closer to 1, we favor a sparser structure in the interaction
component of the model, with a larger adjustment for multiplicity. This specification reflects
prior knowledge that relatively few interactions may exist compared with main effects. The
amount of information in a beta prior can be measured in terms of the prior sample size,
which corresponds to the sum of the 2 beta parameters. Hence, our beta(9, 1) prior
corresponds to direct data from 10 interaction coefficients, with 9 of these being zero and
the remaining nonzero. This beta prior will be updated with the allocation to the zero or
nonzero components for the 21 interaction coefficients in the model. As 21 is substantially
larger than 10, it may naively seem that the data play more of a role than the prior and that
an insufficient penalty may exist through the prior to favor a sparse structure. However, it is
important to keep in mind that the allocation to the zero and non-ero components is
unknown, so that the effective sample size of the data in terms of Bayesian learning about
π2 is much less than 21. Finally, to complete the prior specification, the intercept β0 was
given a N (0, 4) prior distribution. This seems to provide a reasonable choice of shrinkage
prior given that the exposure data have been normalized before analysis.

To address LOD, we modeled square-root transformed PCB values by using normal
distributions, with the PCB values falling belong the LOD modeled as truncated normal
(TN). The TN distribution is simply a normal distribution restricted to a subset of the real
line. The TN distribution provides an adequate fit to the data falling above the LOD. Let c
be a p × 1 vector of (possibly transformed) LOD for the variables of interest. Then a general
specification of the joint distribution, as a product of marginal and conditional distributions,
is given as follows:

Herring Page 5

Epidemiology. Author manuscript; available in PMC 2012 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

in which . After normalizing the x values, the prior distributions for the
regression coefficients are given standard multivariate normal distributions αk ~ N (0, I),
and the precisions are given gamma priors τk ~ Gamma(1, 1), k = 1, …, p. For the PCB data,
only 2 PCB’s had values below the LOD, so that we model only these two components of x.

We obtained estimates by using Gibbs sampling25,26 in the software package Matlab
(Mathworks, version 2007b, Natick, MA) using a data augmentation Gibbs sampler. The
Matlab code is available from the authors upon request. The Gibbs sampler produces draws
from the posterior distribution of the coefficients for the main effects and interactions. The
code is efficient; it required less than 1 minute to collect 5000 samples for the PCB example.
To assess the performance, we ran a simulation study chosen to mimic the PCB data. We
assumed that all main effects and interactions were zero, with the exception of β3 = 1, β6 = 1
and γ46 = 1. We simulated 100 data sets that had the same data structure as the PCB data
and analyzed each using i) the proposed Bayes nonparametric shrinkage approach, ii) ML
logistic regression, and iii) ridge logistic regression. For approach i), we collected 5000
Gibbs iterations, with the first 1000 discarded as a burn-in to allow for convergence. This
number was sufficient for convergence based on examination of trace plots. For approaches
ii) and iii), we plugged in the LOD divided by the square root of 2 for the exposures under
the LOD. We used MSE averaged across the different parameters and 100 simulated data
sets to assess performance and obtained the following MSEs: i) 0.116; ii) 1.210; and iii)
0.208. Hence, ML logistic regression had extremely poor performance, with ridge logistic
regression providing a dramatic improvement. The proposed approach further improved
upon ridge logistic regression by a substantial amount.

Results
In this study, 48% of values of PCB 94 were below the LOD and 44% of values of PCB 153
were below the LOD. All other PCBs considered had 100% of values above the LOD. After
a burn-in of 3000 samples, we based inference on 10,000 samples from the data
augmentation Gibbs sampler. Visual examination of trace plots provided no evidence of lack
of convergence. The posterior inclusion probabilities, which provided a posterior estimate of
the probability that a main effect or interaction effect is associated with endometriosis, were
for the most part quite small (Table 1). However, we found substantial evidence (posterior
inclusion probability 0.99) that higher levels of PCB 114 exposure were associated with
increased endometriosis (estimated OR = 3.7; 95% CI = (1.6–8.2) for a 1-standard deviation
increase in exposure). The results were robust to moderate changes to our prior specification
based on sensitivity analyses in which we changed the hyperparameter values to several
different reasonable alternative values and reran the analysis.

Although a frequentist multiple logistic regression model was fit to the data for comparison
purposes, we found that near collinearity caused instabilities in estimates, and the model did
not converge. Hence, as a reasonable alternative, we fit logistic regression models
containing only a main effect for a single exposure at a time and added pairwise interactions
for those exposures with significant main effects; we used a threshold of 0.05 on the P-
values. In this analysis, we observed that only PCB 114 was significant (P-value = 0.0003).
The same conclusion was also obtained using a logistic ridge regression approach. Although
these simpler approaches produced the same overall conclusion as the proposed
nonparametric Bayes approach, this does not provide evidence that the proposed approach
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does not have substantial practical advantages. The PCB application provides a single
example, and the advantages have been compellingly illustrated in the simulation study.

Discussion
It is commonplace to collect data with a moderate-to-large number of predictors. Identifying
the important predictors from the many candidates is a challenging problem. The number of
possible subsets of p predictors is 2p, which grows extremely rapidly with p. Hence, even in
relatively small problems having p = 20 or 30, there are enormous numbers of possible
subsets of important predictors. Traditional methods of variable selection, such as stepwise
selection, fail in this setting by not adequately exploring the huge space of possible models
or accounting for uncertainty in the model selection process. Bayesian variable selection
solves this problem by allowing one to search the model space, while simultaneously
estimating marginal inclusion probabilities for each predictor. These probabilities provide a
weight of evidence that a predictor should be included and adjust for uncertainty in other
predictors in the model. The Bayesian approach is computationally intensive, but this
computational burden is necessary to explore the different models and accurately
accommodate uncertainty. Although the literature on Bayesian variable selection is
abundant, almost all the approaches rely on hierarchical models in which the distribution on
the coefficients to be included is a unimodal distribution centered on zero.

In this article, we advocate the use of fiexible mixture distributions, which can more
realistically characterize variability in the exposure ORs in epidemiologic studies that
involve mixtures of correlated exposures. Implementation can proceed with an MCMC
algorithm, which involves iteratively sampling from standard distributions. This approach
can easily be implemented in R or Matlab.

Correlated predictors present a major challenge in statistical analysis. In addition to the
issues with multicolinearity, almost all variable selection methods have a tendency to
include only 1 of a set of correlated predictors in the model. The reason for this tendency is
that if one has multiple correlated exposures and wants to select a model that does a good
job in parsimoniously predicting the response, the best approach may be simply to take 1 of
the exposures. Standard stepwise selection and modern variable selection procedures based
on lasso and relevance vector machine methods are all subject to this problem. The issue is
that the statistical procedure is designed for prediction instead of inferences. Some recent
literature has focused on cleverly defining penalization regions to select simultaneously
groups of correlated predictors that are important.27 When predictors are very highly
correlated, Bayesian stochastic search variable selection algorithms, such as the approach
proposed in this article, can also face challenges. For example, if 2 important exposures are
very highly correlated, the marginal inclusion probabilities may be close to 0.5 instead of
close to 1. Hence, it tends to be the case that very highly correlated predictors are more
difficult to detect, although one can examine probabilities of including a pair of predictors in
an attempt to bypass this problem.
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Table 1

Estimated log ORs, 95% CIs, and Posterior Inclusion Probabilities for Associations Between PCB Exposures
and Endometriosis

PCB Estimated log OR (95% CI) Posterior inclusion probability

94 0.0 (−0.2, 0.4) 0.19

114 1.3 (0.5, 2.1) 0.99

142 0.1 (0.0, 0.9) 0.28

149 0.1 (−0.1, 0.6) 0.23

153 0.0 (−0.7, 0.4) 0.22

167 0.0 (−0.4, 0.4) 0.21

206 0.0 (−0.3, 0.5) 0.20

94 × 114 0.0 (0.0, 0.3) 0.05

94 × 142 0.0 (−0.2, 0.0) 0.05

94 × 149 0.0 (−0.3, 0.0) 0.05

94 × 153 0.0 (−0.7, 0.0) 0.07

94 × 167 0.0 (0.0, 0.4) 0.06

94 × 206 0.0 (−0.3, 0.0) 0.06

114 × 142 0.0 (0.0, 0.0) 0.05

114 × 149 0.0 (0.0, 0.0) 0.03

114 × 153 0.0 (0.0, 0.0) 0.03

114 × 167 0.0 (0.0, 0.1) 0.04

114 × 206 0.0 (0.0, 0.0) 0.05

142 × 149 0.0 (0.0, 0.5) 0.06

142 × 153 0.0 (−0.7, 0.0) 0.07

142 × 167 0.0 (−0.1, 0.0) 0.04

142 × 206 −1.3 (−2.5, 0.0) 0.91

149 × 153 0.0 (0.0, 0.2) 0.05

149 × 167 0.0 (−0.1, 0.0) 0.04

149 × 206 0.0 (0.0, 0.0) 0.04

153 × 167 0.0 (−0.2, 0.0) 0.04

153 × 206 0.0 (−0.3, 0.0) 0.05

167 × 206 −0.1 (−0.9, 0.0) 0.10

ORs, odds ratios; CI, credible interval
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