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Abstract
Background—Linear regression with a left-censored independent variable X due to limit of
detection (LOD) was recently considered by 2 groups of researchers: Richardson and Ciampi, and
Schisterman and colleagues.

Methods—Both groups obtained consistent estimators for the regression slopes by replacing left-
censored X with a constant, that is, the expectation of X given X below LOD E(X|X<LOD) in the
former group and the sample mean of X given X above LOD in the latter.

Results—Schisterman and colleagues argued that their approach would be a better choice because
the sample mean of X given X above LOD is available, whereas E(X|X<LOD) is unknown. Other
substitution methods, such as replacing the left-censored values with LOD, or LOD/2, have been
extensively utilized in the literature. Simulations were conducted to compare the performance under
2 scenarios in which the independent variable is normally and not normally distributed.

Conclusion—Recommendations are given based on theoretical and simulation results. These
recommendations are illustrated with 1 case study.

Introduction
Statistical tools have been developed to deal with a variety of problems due to limit of detection
(LOD). However, there remain few methodologic options for cases in which the independent
variable is subject to an LOD. In most relevant published work the response variable, rather
than the independent variables, was subject to an LOD, such as, Hughes et al.,1 Lyles et al.,2
Berk and Lachenbrunch,3 Helsel,4 Lubin et al.,5 Chu et al.,6 and the Tobit model.7

When an independent variable is subject to an LOD, substitution methods are frequently used
to bypass the problem for a variety of reasons. For example, in a recent study by Moulton et
al.,8 a regression relation between plasma viral load and CD4+ T-lymphocyte’s percentage
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was sought, in which the independent variable, plasma viral load, is subject to an LOD. Because
the plasma viral load was not the major focus of the study, samples below 400, the LOD, were
substituted by . In a separate study by Liang and colleagues,9 a value of half of the
LOD was imputed for the unobserved viral load measurements. Some nonstandard substitution
methods were examined recently. In 2003, Richardson and Ciampi10 proposed replacing an
unobserved predictive variable x with E(X | X ≤ LOD), assuming x was an independent variable.
If E(X | X ≤ LOD) can be correctly specified, this method leads to consistent estimates. A
drawback of this method is that the estimation of E(X | X ≤ LOD) relies strongly on a parametric
model (see the section entitled “The Exposure Variable X is Known to be Normally
Distributed” for details). To avoid this shortcoming, Schisterman et al.11 proposed replacing
an unobserved predictive variable x with the sample mean of X given X above LOD, an approach
that does not require a parametric model for the distribution of X.

The purpose of this work is to compare the performance of substitution methods to that of a
maximum likelihood method. This paper is organized as follows. In Statistical Methods, we
introduce all methods under consideration. In Simulation Studies, we compare the small-
sample performance of these competing methods with a simulation study. In A Case Study,
we perform an analysis of the BioCycle study, a longitudinal study linking hormones levels
and oxidative stress. Some mathematical derivations are provided in Appendix A, and an SAS
program implementing the maximum likelihood estimator (MLE) is given in Appendix B.

This paper is related to that published by Little,12 in which complete case, available case
analysis, conditional mean imputation (OLS), MLE, and Bayesian approaches were reviewed
and compared. Many of our results concur with the underlying theory discussed in the works
of Little and Rubin,13 and Schafer14 among others.

Statistical Methods: Linear Regression When an Independent Variable is Left
Censored

Assume the relationship between the continuous outcome variable Y and the continuous
independent exposure variable X takes the following linear regression form:

(1)

where ε is random noise assumed to be independent of X and follows a normal distribution
with mean 0 and variance σ2; α and β are the intercept and slope, respectively.

We assume X may be subject to multiple LODs. Because the LOD may vary from subject to
subject, we denote LODi the LOD for the ith exposure Xi. When Xi is below LODi, the value
is not observed. Let xi be the exposure outcome from the ith individual (i =1,2,…, n). We
assume x1, …, xm are observed, whereas xm+1, …, xn are below LODm+1, …, LODn
respectively. The following methods have been used in the literature.

1. Unbiased estimates of α and β can be obtained by simply discarding observations with
Xi ≤ LODi, which will be referred to as the deletion method. It provides valid inference
because the missingness only depends on X variable, see Little12 and Little and
Rubin.13

2. Observations with Xi ≤ LODi are replaced by LODi, or LODi/2, or  when
Xi ≤ LODi. These are the commonly used substitution methods.
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3. Assume the LOD is a constant, LODi = LOD for all i. Observations with Xi ≤ LOD

are replaced by , where M1, ···, Mn is the missing indicator,
that is, Mi = 0, if xi is observed; Mi = 1, if xi is below the LOD. This is the Schisterman,
Vexler, Whitcomb, and Liu (SVWL) method.11

4. Assume the LOD is a constant, LODi =LOD for all i. Observations with Xi ≤ LOD are
replaced by E(X|X<LOD). This is the Richardson and Ciampi (RC) method.10

However, E(X|X<LOD) needs to be estimated before this method can be used in
practice.

5. Parameter inference is estimated by the maximum likelihood method based on
parametric distributional assumptions.

When , that is, the exposure variable X is normally distributed, the log-likelihood
function is the summation of the contributions from each individual and can be written as

(2)

Where

(3)

(4)

where εi = yi − α − βxi, ε = yi − α − βμx, Φ(x) is the cumulative Gaussian distribution function

and .

Appendix A shows the derivation of the likelihood function (4). Appendix B provides an SAS
code implementing the MLE.

Simulation Studies
The Exposure Variable X is Known to be Normally Distributed

A set of Monte Carlo simulations was conducted to evaluate the performance of the following
methods: deletion; substitution methods by replacing the censored xi by LOD,  , or
LOD/2; SWVL; RC; and MLE. We also include inferences from the data before deletion,
termed full inference in the tables. The proportion of the left censoring, P, for the exposure
variable, X, and the sample size, N, in each simulation trial were chosen as P = (0.4, 0.2) and
N = (100, 200). In each case, y = α + βx + ε and ε ~ N (0, 1), where α =1, β =1. For each
simulation condition, 1000 independent trials were generated. For each simulation trial, x was
generated randomly from a normal distribution N(2, 1). The LOD was set to be 2 + Φ−1 (P),
such that on average P percentage of observations are below LOD= 2 + Φ −1 (P). When the
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random sample is less than 2 + Φ −1 (P), x is defined as left censored. For the deletion method,
the linear regression model was fit based on the data with the exposure level greater than 2 +
Φ −1 (P) to estimate the intercept α and the slope β. For all substitution methods and SWVL,
censored values were imputed according to the definitions in the previous section. For the RC
method, we first compute the marginal MLEs μ̂x and σ ̂x based on a left-censored normal model
with the log-likelihood function:

Then were placed the left-censored values by , the
expected value of X, E(X|X ≤ LOD), given X ≤ LOD. Linear regression models were fit for the
imputed data to estimate both the intercept α and the slope β. For the MLE approach, no
imputation is needed. The MLE of intercept α and the slope β was obtained through maximizing
the log-likelihood function in equation (2). Standard errors were computed through the inverse
of the observed Fisher information matrix. Their numerical values were obtained from output
of the SAS procedure NLMIXED, see Appendix 2.

Table 1 summarizes the means of estimators and standard errors, and a 95% coverage
probability from the 1000 simulations. A normal reference distribution is used as the asymptotic
distribution of the estimators. The results suggest that the substitution methods replacing the
censored xi with LOD,  , or LOD/2 provide biased estimates; however, the
performance of substitution by  or LOD/2 appears better than LOD. The deletion
method provides unbiased estimation, but is inefficient because it discards information
contained in the left-censored observations. As expected, the SWVL is the same as the deletion
method for the slope estimation, but with a slightly overestimated standard error such that the
empiric coverage probabilities are higher than the 95% confidence level. Furthermore, SWVL
provides a biased estimation for the intercept. As expected, the MLE and RC provide consistent
and relatively efficient estimations. We recommend that if the exposure variable X is known
to be normally distributed, one use the MLE or RC methods. Note that although the RC
estimator is consistent, its standard errors are typically underestimated.

The Exposure Variable X is not Normally Distributed
The simulation setups are the same as described in the previous section, except X is now
generated from a Gamma distribution, Gamma(4,3), and a t-distribution with 10 degrees of
freedom.

Table 2 summarizes the means of estimators and standard errors, and a 95% coverage
probability from the 1000 simulations. The results suggest that moderate misspecification does
not greatly distort inferences from the MLE and RC approaches. Meanwhile, the substitution
methods do not work well under model misspecification. The deletion and SVWL methods are
not appreciably biased. It is also worth noting that if the distribution is severely misspecified,
neither the MLE nor RC method is recommended. One may presume that severe
misspecification could be eliminated by careful inspection of a P-P or Q-Q plot, as long as the
number of observations below the LOD is relatively small. However, in cases in which the
distribution cannot be evaluated, methods that rely on distributional assumptions may yield
highly biased estimates.

Based on these simulation results, we make the following recommendations. If the distribution
of the exposure variable X is unknown, we distinguish between 2 situations. First, if X
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approximately follows a normal distribution with unknown parameters, we recommend the
MLE or RC method. This recommendation extends to cases when X follows a known
parametric distributional assumption other than a normal distribution with the likelihood
changed to reflect this alternative distributional assumption. Second, if the distribution of X
cannot be appropriately approximated by a normal distribution, we suggest using the deletion
method, which appears to be conservative. If we are really ignorant about the data below the
LOD, then we should avoid strong distributional assumptions.

A Case Study: Association between Sex Hormone–Binding Globulin and
Oxidative Stress

The BioCycle study was created in response to limited knowledge surrounding the effects of
oxidative stress on female fecundity and fertility. The study takes the necessary first step to
addressing this question by investigating the effects of oxidative stress on the female menstrual
cycle. To do this, the longitudinal study was created with the primary goal of assessing the
relationship between endogenous hormones and biomarkers of oxidative stress as well as
antioxidant status during the menstrual cycle. The prospective cohort study followed 259
regularly menstruating, premenopausal women for 2 menstrual cycles. The detailed study
design is described elsewhere.15

Although the study examined a number of hormones and biomarkers of oxidative stress, this
example will focus on sex hormone–binding globulin (SHBG), a glycoprotein regulated by
levels of free androgens, estrogens, and insulin as well as thiobarbituric acid–reactive
substances, a measure of oxidative stress. There are a total of 249 women with nonmissing
SHBG values and oxidative stress on their second visit on the 7th day of study. We wish to
investigate the association between SHBG levels and oxidative stress by using the mode
log10(oxidative stress) = α + β log10(SHBG) + ε. The MLE of intercept α and slope β are
obtained through maximizing the log-likelihood function in (2). Among the 249 women, only
2 have SHBG below the LOD. Figure 1 shows the Q-Q plot for the log10-transformed SHBG

data. In the Q-Q plot, the expected quantiles are computed by  with
μ̂x = 1.63 and σ ̂x = 0.2 estimated by the maximum likelihood method for the marginal
distribution of SHBG. The plot suggests the normal assumption for log(SHBG) is appropriate.

Because of the small percentage of data below the LOD (ie, 2 of 249), all estimates behave
similarly. To compare these estimators further, we experimentally increased the LOD of SHBG
such that up to 40% of observations were left censored. For each of p% left-censored data, we
repeated the regression analysis by using the previously described 7 methods. Figure 2 presents
β, the slope estimate. Similar to the first example, it suggests that the MLE, RC, and substitution
method with left-censored values replaced by  provide estimates that are robust
to the proportion left censored. In this example, because only 2 of 240 women had values below
the LOD, the RC method can be implemented based on the actual mean below the LOD. Note,
this implementation of the RC method is different from the implementation described in the
section entitled “The Exposure Variable X is Known to be Normally Distributed.” Therefore,
in theory, the RC method provides a consistent estimate. We observed that the MLE performed
almost as well as the RC method, providing additional evidence in support of the MLE
approach.

Discussion
This paper compares a number of methods for regression with an independent variable subject
to LOD. Through simulations and 2 case studies, we demonstrated that the commonly used

Nie et al. Page 5

Epidemiology. Author manuscript; available in PMC 2012 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



substitution methods of replacing left-censored values with LOD,  or LOD/2 provide
biased estimates for the intercept and the slope. Furthermore, the 95% confidence intervals do
not provide the nominal coverage for the intercept and the slope. The simple deletion method
provides an unbiased estimate, but is inefficient because it does not utilize the information
contained in the observations below the LOD. The SWVL method gives the same estimates of
the slope as the deletion method, but with overestimated standard errors, and it is biased for
the intercept.

Model (1) can be easily extended to a multiple linear regression model Y = α + βX + γ′Z + ε
where a vector of covariates Z is included in the model. When Z is not subject to an LOD and
the left-censored covariate X follows a normal distribution, the likelihood function remains the
same if we redefine εi = yi − α − βxi − γ′Z and εiμ = yi − α − βμx − γ′Z. We have attached an
SAS program to obtain the MLE of these parameters. In general, assume, xi, i = 1…, n are
independent identically distributed random variables with a distribution function Fx and a
density fx.

Other than the MLE and the RC methods, the multiple imputation method is a promising
alternative. Readers are referred to Little and Rubin13 and Schafer14 for this powerful tool.
IVEware, the freeware program based on sequential multiple imputation, can handle covariates
and can create imputations subject to the constraint that the missing value is below an LOD.
Please visit http://www.isr.umich.edu/src/smp/ive/ for details.

When the parametric distribution assumption for the left-censored variable X is correct, the
MLE and the RC methods provide consistent estimates. However, the RC method gives slightly
underestimated standard errors; thus, the empiric coverage probabilities are slightly less than
the 95% confidence level. The drawback of the MLE and RC approaches is that they rely on
distributional assumptions, which may limit their use in practice. Fortunately, the MLE and
the RC approaches do not appear very sensitive to violations of the distributional assumptions.
To check the robustness of the results to the distributional assumption for the censored data,
one would need to perform sensitivity analyses. Because the distribution of the censored data
is unknown and cannot be inferred from the observed data, further exploration along these lines
would provide more insight.

As 1 reviewer pointed out, it would be interesting to compare the performance of these methods
when LOD is treated as a random variable and when there is an upper LOD. Further research
is needed in this aspect.
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APPENDIX A

Let , εi = yi − α − βxi, and εiμ = yi − α − βμx, Φ(x) be the cumulative Gaussian
distribution function, we shall derive the likelihood function in equation (4).

APPENDIX B

/*****************************************************************
**Data structure: Y = response variable, X = exposure, D = censoring 
indicator*
** LOD = limit of detection, Z = other covariates. *
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*** mux: the mean of the covariate variable *
*** sigmax: the standard deviation of the covariate variable *
*** alpha: the intercept in the regression model *
*** beta: the slope in the regression model *
*** betaz: the slope of z variable *
*** In the statement parms mu= sigmax= sigma= alpha= beta=, *
*** specify the starting value of parameters *
******************************************************************/
Proc NLMIXED data=yourdata;
  parms mux= sigmax= sigma= alpha= beta= betaZ=;
     Q=sqrt(1/sigmax**2+beta**2/sigma**2);
     e=y-alpha-beta*x-z*betaz; emu=y-alpha-beta*mux-z*betaz;
     LL1=(−e**2/sigma**2/2-log(sigma**2*sigmax**2)/2
         −(x-mux)**2/sigmax**2/2;
     LL2=(1-beta**2/sigma**2/Q**2)*(−emu**2/sigma**2/2)
         −log(sigma**2+beta**2*sigmax**2)/2
         +log(probnorm(Q*(LOD-mux-beta*emu--z*betaz/sigma**2/Q**2)));
     logL=(1-D)*LL1+D*LL2;
     model Y~general(logL);
run;
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Figure 1.
The Q-Q plot of SHBG.
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Figure 2.
The slope estimations for all 7 methods for the model log10(oxidative stress) = α + β
log10(SHBG) + ε. Note that SVWL and deletion method result to the same estimators.
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