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Abstract
We introduce a Bayesian spatial-temporal hierarchical multivariate probit regression model that
identifies weeks during the first trimester of pregnancy which are impactful in terms of cardiac
congenital anomaly development. The model is able to consider multiple pollutants and a
multivariate cardiac anomaly grouping outcome jointly while allowing the critical windows to
vary in a continuous manner across time and space. We utilize a dataset of numerical chemical
model output which contains information regarding multiple species of PM2.5. Our introduction of
an innovative spatial-temporal semiparametric prior distribution for the pollution risk effects
allows for greater flexibility to identify critical weeks during pregnancy which are missed when
more standard models are applied. The multivariate kernel stick-breaking prior is extended to
include space and time simultaneously in both the locations and the masses in order to
accommodate complex data settings. Simulation study results suggest that our prior distribution
has the flexibility to outperform competitor models in a number of data settings. When applied to
the geo-coded Texas birth data, weeks 3, 7 and 8 of the pregnancy are identified as being
impactful in terms of cardiac defect development for multiple pollutants across the spatial domain.
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1 Introduction
Congenital anomalies are abnormalities, physiological or structural, which present at the
time of birth. Around 3% of all births result in a defect of some kind and these babies are at
a higher risk of disability and for certain diseases in their lifetime (Rynn et al., 2008).
Congenital anomalies are the leading cause of infant mortality, accounting for more than
20% of all infant deaths (Martin et al., 2008). The leading cause of death among birth defect
related deaths is due to cardiac congenital anomalies which affect around 1% of all births.
The cause of about 70% of all birth defects are currently unknown with the known causes
including a combination of genetic and environmental factors which make up about 20%
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and 10% respectively of all birth defect cases (MDH, 2011). Current research is focused on
investigating this link with environmental factors found in multiple settings (e.g. industry).

A recent review of the literature and accompanying meta-analysis of existing studies
(Vrijheid et al., 2010) suggested that there is a link between a woman’s air pollution
exposure during the pregnancy and the probability that the birth results in a congenital
anomaly. A majority of the recent studies focus on cardiac congenital anomalies as the
primary birth outcome of interest. Multiple cardiac and pollutant groupings have been
investigated with varying reported results. Increased probability of ventricular septal defect
(VSD) with increased exposure to carbon monoxide was estimated by multiple studies (Ritz
et al., 2002; Dadvand et al., 2010) while higher levels of ozone were shown to be associated
with a higher risk of pulmonary artery and valve defects (PAVD) by Ritz et al. (2002). The
associated meta-analysis from Vrijheid et al. (2010) showed a statistically significant
relationship between particulate matter with aerodynamic diameter less than 10μm (PM10)
and the atrial septal defect (ASD) outcome. Their literature review concluded that sufficient
evidence exists linking pollution exposure with common birth defects but suggested that
improvements were needed in the areas of pollution exposure assignment and multivariate
defect analysis. The current epidemiological studies succeed in identifying large scale trends
in the data but the underlying statistical models require improvement to provide more
accurate resulting inference. These models often ignore the spatial aspect of the data,
oversimplify the pollution exposure assignment process, and handle joint birth defect
outcomes and pollution exposures separately through the fitting of multiple models with
various outcomes and pollutant combinations being investigated individually.

Our model introduces pollutant and defect specific risk effects which are allowed to vary
across space and time, leading to the identification of critical periods of exposure during
developmental stages of the pregnancy. Warren et al. (2012) investigated similar critical
windows of interest in the preterm birth outcome setting. Through use of a newly specified
semiparametric prior distribution, the model also allows for conditional nonstationary
spatial-temporal behavior which o ers more flexibility than relying on the more common
modeling assumptions. This model is able to account for complex spatial-temporal behavior
between risk effects which have rarely been accounted for in the environmental health
setting. Our analysis incorporates a dataset of numerical chemistry model output which
contains estimates for multiple PM2.5 species located on a 12km × 12km spatial grid over
the domain of interest. Through these data we have daily pollution information in all areas
of interest, not only where active pollution monitors exist. Use of these data allows us to
obtain more accurate pollution exposure information for women across the entire spatial-
temporal domain and represents an improvement of closest monitor matching used by the
standard models. Our model also handles a multivariate defect outcome from each birth as
well as multiple pollutants simultaneously, something not considered in standard studies.

In our analysis, weekly averages of the speciated PM2.5 exposures, based on each woman’s
geo-coded location and dates of pregnancy, are created using the provided numerical
chemistry model output. The introduced health model is then applied to an area spanning
multiple regions in Texas and the resulting critical windows are examined. A simulation
study is also carried out to investigate the settings in which the developed prior distribution
is more appropriate than other competing methods. Our model allows for more accurate
identification of the periods during the pregnancy when the child is at higher risk of cardiac
congenital anomaly development by allowing for a more complex spatial-temporal
relationship between the risk effects. This work contributes to the increasing body of
evidence supporting the link between pollution exposure and cardiac birth defects while
introducing new statistical methodology previously not seen in the environmental health
setting.
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In Section 2 we describe the data used in the analysis. We discuss previous extensions of the
stick-breaking prior in Section 3 and the full statistical model is introduced in Section 4.
Section 5 presents results from the analysis, including a simulation study, real data example,
sensitivity analysis, and model adequacy checks. We close in Section 6 with the discussion.
Technical details are found in Web Appendix A of the Supplementary Materials Section.

2 Data Description
2.1 Texas Health Data

The analyzed health dataset includes full birth record information for all births in Texas,
2001-2004. Births that resulted in a congenital anomaly that was monitored by the Texas
Birth Defects Registry were labeled as cases and defect free births were considered as
controls. Included cases must have resulted in a live birth or fetal death with a gestational
age of more than 19 weeks based on the clinical estimate of gestational age. The available
pregnancy information includes date of birth, sex, birth weight, and clinical estimate of
gestational age. Parental information such as age, birthplace, race and ethnicity, and
education level is also included.

The data were geocoded to the residence at delivery by the Geographic Information System
group at the Texas Department of State Health Services (TDSHS). We use residence at
delivery to assign pollution exposures during the pregnancy. Lupo et al. found that in Texas
30% of mothers identified as cases and 24% of the controls moved between conception and
birth. However, the likelihood of misclassification error is likely low as the authors
concluded that the distance moved is typically very short and does not differ significantly
between cases and controls.

2.2 Pollution and Weather Data
We have access to the Community Multiscale Air Quality (CMAQ) numerical model output
for the entire state of Texas, 2001-2004. The CMAQ modeling system has the ability to
model a number of pollutants simultaneously in areas where monitoring data are scarce or
even non-existent. CMAQ relies on expertise in a number of scientific areas to provide
gridded pollution estimates at various resolutions across the specified spatial domain.
CMAQ output is also available at a number of temporal resolutions (CMAS, 2012).

The output used in the analysis lies on the 12km × 12km CMAQ grid and represents block
estimates of daily average particulate pollutants (micrograms per cubic meter (ug/m3)) at
each grid point. Our dataset consists of four of the main species of PM2.5: elemental carbon
(EC), nitrate (NO3), sulfate (SO4), and organic carbon (OC). Daily average temperature data
in Texas, 2001-2004, are obtained from the National Climate Data Center.

3 Nonparametric Bayesian Overview
The Dirichlet process (DP) prior, originally introduced by Ferguson (1973), has historically
been the most common method for specifying Bayesian nonparametric models. Sethurman
(1994) showed that the DP could be constructed so that G has a DP(αG0) prior if

, where π1 = V1,  for k > 1, , δx represents a
Dirac measure at x, and θk arise from a base distribution G0. More generally a stick-

breaking prior can be constructed such that G has a stick-breaking prior if 

with , i = 1, …, M − 1.

This general formation of the stick-breaking prior has been extended to incorporate
information in a number of different data settings, including for spatial and time series data.
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MacEachern (1999) introduced the dependent Dirichlet process which allowed the
introduction of covariate information through the locations (θk) and the masses (πk). In the
univariate spatial setting Gelfand et al. (2005) used the locations alone to introduce spatial
information while Griffin and Steel (2006) used the masses to incorporate spatial
information by introducing a spatial Dirichlet model. Duan et al. (2007) and Gelfand et al.
(2007) allowed both the locations and masses to contain spatial information by introducing
the generalized spatial Dirichlet process. In the multivariate setting, Reich and Fuentes
(2007) introduced a semiparametric spatial model for hurricane wind fields through the use
of kernel functions. Dunson and Park (2008) generalized the kernel stick-breaking process
(KSBP) model for use with predictors in different data settings, including the spatial setting.

4 Statistical Model
We introduce a hierarchical framework to analyze the association between exposure to
multiple air pollutants during the pregnancy and the multivariate cardiac congenital anomaly
outcome. The model is formulated such that  are independent for i = 1, …, N where Yi

= (Yi1, …, YiJ)T, , , and  is the probability that
birth i results in cardiac defect j. Yij is a binary variable taking value one if the birth for
woman i resulted in anomaly j and zero otherwise. Yi represents the vector of responses
from birth i, one entry for each defect in the analysis. In our Texas health analysis we
consider J = 3 cardiac anomaly groups: atrial septal defects (ASD), pulmonary artery and
valve defects (PAVD), and ventricular septal defects (VSD). We link each probability with
the exposure from multiple pollutants experienced by the woman during the relevant
timeframe of the pregnancy and other covariates of interest such that

(1)

We utilize the probit link for the probability by letting Φ−1(.) represent the inverse
cumulative distribution function of the standard normal distribution. Use of the probit link
results in conjugacy for the model. The B (si) term represents the region of interest

containing location si. In general , where L is the number of unique
regions considered and  represents the center of gravity of all births located in region i.
This formulation allows for B(si) = si as a special case.

We allow the vector of parameters relating the covariates to the probability of developing
defect j, βj, to vary according to the particular anomaly of interest. This allows us to
determine if the included covariates affect the anomaly groups differently. The xi vector
includes an intercept term, paternal age group, maternal race/ethnicity, parental education,
number of previous live births, the plurality of the pregnancy, and seasonality information.
Six age groups are considered for the fathers, including 10-19, 20-24, 25-29, 30-34, 35-39,
and 40+. For the mothers’ race/ethnic group we consider White (non-Hispanic), Black (non-
Hispanic), Hispanic, and Other in the analysis. The three parental education groups include
< high school, = high school, and > high school. For the number of previous live births
variable we use three categories: no previous live births, one previous live birth, and two or
more previous live births. For the plurality of the pregnancy we consider one fetus and two
or more fetuses as the included categories. To account for seasonality we include the first
trimester average temperature using a cubic B-spline with three degrees of freedom along
with the season of birth.
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The ηj{B(si) , d, q} parameters are pollutant and defect specific, spatially and temporally
varying coefficients. They represent the effect of the concentration of air pollutant q at
pregnancy week d and location si within region B(si) on the probability of developing
anomaly j for woman i. These parameters are our main focus in the environmental health
setting as their values indicate if exposure to a particular pollutant at a specified location
during a certain week adversely affects the health of the child in terms of developing an
anomaly of interest. The pollution exposure for pollutant q on calendar week ti(d) at location
si is represented by zq{ti(d), C(si)}, where C(si) is the CMAQ grid point containing location
si. In the analysis we set Q = 4 and use the four species of PM2.5 included in the CMAQ
dataset: elemental carbon (EC), nitrate (NO3), sulfate (SO4), and organic carbon (OC). We
focus on gestational weeks 3-8 in the analysis and therefore set the total number of included
weeks to D = 6 and the lag to l = 2 for the proposed summation.

The ηj {B(si), d, q} parameters are grouped across defects and pollutants into vectors which
depend only on location and pregnancy week such that

The introduced prior for these random vectors accounts for the correlation that potentially
exists across these defect and pollutant groups. We use an unstructured covariance matrix to
describe the association and the groupings are chosen based on a lack of information
regarding how effects between these defect and pollutant groups are correlated. We allow
for the association to be as general as possible through use of this structure and choose to
more specifically model the spatial-temporal correlation where many options are available.

4.1 Prior Specifications
Inference is carried out in the Bayesian setting by assigning prior distributions to the model
parameters. The random pollution risk effect vectors are given different multivariate KSBP
prior distributions, G{B(si),d}, where the masses are shared across the defect and pollutant
groups. These distributions are unknown and we allow them to be spatially and temporally
smoothed such that

(2)

where M represents the number of mixture components. For finite M, the prior for these
effects is introduced as a finite discrete mixture model such that

 where

 and , k = 1,

…, M, where . The  vectors have length QJ and contain

all of the defect (J) and pollutant (Q) group effects from location  and pregnancy week d. It
is possible for M to be infinite but in practice this creates computational difficulties and is
often unnecessary. M is indicative of the amount of heterogeneity contained in the data and
as it increases so does the level of nonstationary and non-Gaussian behavior of the risk
effects. Historically, choosing the appropriate value of M has been difficult for similar
mixture models. In our model this process is simplified since we can approximate the
infinite case by choosing M large enough to ensure that pM {B(si) , d} is suitably small for
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all B(si) and d combinations. The pM {B(si) , d} parameters represent the portion that is
unexplained by the first M − 1 components and posterior samples of these parameters are
easily obtained and monitored from the resulting Markov Chain Monte Carlo (MCMC)
model output. The acceptable size for pM {B(si) , d} will depend on the setting in which the
model is applied and care must be taken to ensure that the value is small enough for the
model to perform well. We recommend performing a simulation study similar to Section 5.1
to determine this value.

The covariance matrix of the θk vectors has the form  where ⊗ represents the
Kronecker product, Σs represents the spatial correlation matrix, Σt represents the temporal
correlation matrix, and Σ represents the unstructured covariance matrix describing the cross-
correlations between the anomaly groups and pollutants. While this prior covariance matrix
for the θk vectors is fully separable, the resulting covariance structure for the η{B (si) , d}
vectors is nonseparable and this form is used to facilitate computation. It still allows for
shrinkage across space and time and represents a reasonable assumption in the model. The

spatial correlation matrix has the form , ρs > 0 and the temporal
correlation matrix has the form  These specifications allow for
separate degrees of shrinkage across locations and pregnancy weeks.

The probabilities which define the g{B (si) , d} categorical variables are given the KSBP
representation with spatial-temporal weights which depend on kernel functions such that

,  and a, b > 0. In
the finite M case we set wM {B (si) , d} VM ≡ 1 for all B(si) and d combinations to ensure

that . Many options are available for the spatial-
temporal weights and Table 1 shows a few of the possibilities. These spatial-temporal
weights depend on unknown knot and bandwidth parameters. Knot ψk = (ψk1, ψk2, ψk3)T

controls the center of the weights associated with component k while the spread is controlled
by the bandwidth parameter, εk = (εk1, εk2, εk3)T. The bandwidth parameter also depends on
unknown range parameters λ = (λ1; λ2)T.

Specific settings for the prior distributions and starting values are determined based on
numerous pilot studies conducted to determine settings which lead to convergence. Overall
the priors are chosen to be intentionally vague so that the data drive the inference rather than
the choice of priors. The specific chosen prior distributions for the KSBP parameters are
similar to those specified in Reich and Fuentes (2007) and represent common specifications
used in Bayesian mixture model analyses. The spatial and temporal smoothness parameters
(ρs, ρt) are given gamma priors with a mean and variance of 0.05. The components of knot
ψk are given priors which are uniform over the spatial and temporal domains respectively.
The range parameters (λ) are also given uniform prior distributions with a lower limit of 0
and upper limit of λi,max, i = 1, 2. The λi,max variables represent the maximum distance
between any two locations (i = 1) and the maximum temporal lag in weeks (i = 2). The βj
parameters are given independent normal prior distributions with a large prior variance and
Σ−1 is given a rather uninformative Wishart prior distribution. The a and b parameters which
control the size of the Vi parameters are given gamma prior distributions with a mean and
variance of one.

4.2 Model Properties
Introducing spatial and temporal information through the locations and masses allows for
increased flexibility in the covariance structure which exists between the η{B (s) , d}
random vectors and therefore the ηj{B (s) , d,q} parameters. Understanding this structure is
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necessary in order to fully utilize the introduced flexibility. Conditional on only the vector of
probabilities, p, that define the g vector we have Cov[η{B (s) , d}, η{B(s’) , d’} |p] =

Therefore the introduced prior distribution accommodates conditionally nonstationary
spatial-temporal behavior, allowing for complex dependencies seen in many real world
examples.

Allowing for M → ∞, and integrating over (V, ψ, ε) which define the p vector, the
unconditional covariance between the effects becomes

similar to results in Reich and Fuentes (2007). Unconditionally the introduced prior
maintains the stationary spatial-temporal assumption, depending on the form of γ (., .).
Table 1 shows some of the options available for the space-time weights and the induced γ
(., .) functions which help to define the type of unconditional spatial-temporal covariance
structure used in the analysis. The uniform kernel function with exponentially distributed
bandwidth parameters yields the usual exponential correlation structure in one dimension
which is separable in space and time. A similar structure, with the distances now squared, is
seen for the squared exponential kernel function with fixed bandwidth parameters. In our
analysis we choose to work with this structure after investigating the performance and
flexibility of each option in Table 1.

4.3 Fitting Algorithm
Sampling from the posterior distribution of the model parameters is done using MCMC

techniques. We introduce latent variables, , at the first stage to facilitate the MCMC

sampling. We define , where

. Incorporating these latent
variables results in conjugacy of the full conditionals for the βj, θk, and Σ parameters,
allowing use of the Gibbs sampler. The Metropolis-Hastings algorithm is used for the spatial
and temporal correlation parameters, ρs and ρt. The full conditional distributions for the Vk
parameters have a conjugate form which can be updated using the Gibbs sampler. To sample
from the posterior distribution of the g (s, d) parameters we once again introduce latent

variable which result in conjugacy. We define  and

 which results in g (s, d) = min {k: Ak(s, d) = Bk(s, d) = 1}.
We then update {Ak (s, d) , Bk(s, d)} together using the Gibbs sampler. The a, b, ψ, and
parameters are updated using the Metropolis-Hastings algorithm. More details can be seen in
Web Appendix A of the Supplementary Materials Section.

5 Model Application
5.1 Simulation Study

We conduct a simulation study to explore the properties of the introduced semiparametric
prior distribution developed for the pollution risk effects and to compare its performance
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with similar competing models. Our main interest in the environmental health setting is to
accurately and efficiently estimate the pollution risk effects, ηj (s, d, q). Therefore, we
choose to monitor the mean square error (MSE) of the estimators of this vector of
parameters provided by the various models.

We consider three methods and five data settings in the simulation study. The form of the
health model in (1) is assumed to be correct for each method with the prior distribution of
the risk effect parameters changing. The considered prior distributions (methods) include:

• Method 1: Semiparametric spatial-temporal KSBP prior distribution for the risk
effect parameters using the squared exponential kernel function with fixed
bandwidth parameters to define the spatial-temporal weights.

• Method 2: Gaussian process prior distribution with separable exponential spatial
and temporal covariance structures for the risk effects; special case of Method 1
with number of mixture components set to one.

• Method 3: Spatial-temporal independence assumed between the risk effect vectors,
resulting in a standard multiple probit regression model.

Method 2 uses the statistical model in (2) with the number of mixture components fixed at
one (M=1). The resulting prior covariance structure between the random vectors of risk
effects becomes

. This model
provides separate degrees of shrinkage across spatial locations and weeks of the pregnancy
but fails to allow for the possibility of conditional nonstationary behavior among the risk
effects and is not as flexible in general as Method 1.

Method 3 assumes that the η{B (s) , d} random vectors are independent across space and
time but still allows the cross-correlation between the pollutants and birth defect groups to

exist such that . We
include Method 3 as a baseline to show the improvements that are possible when
considering the spatial-temporal smoothing that both Methods 1 and 2 provide to some
extent. It is also important to note that just as Method 2 is a special case of Method 1,
Method 3 is a limiting case of Method 2, as ρs and ρt become large. Therefore these methods
are nested within each other and will perform similarly under certain data settings.

We test the performance of these three methods under five different data settings. We
generate data from the model in (1) under different assumptions regarding the true prior
distribution of the risk effects. These assumptions include:

• Setting 1: Spatial-temporal independence assumed between the risk effect vectors.

• Setting 2: Gaussian process prior distribution with separable exponential spatial
and temporal covariance structures for the risk effects.

• Setting 3: Nonstationary parametric correlation structure prior distribution for the
risk effect vectors.

• Setting 4: Non-Gaussian risk effect vectors with nonstationary parametric
correlation structure prior distributions.

• Setting 5: Semiparametric spatial-temporal KSBP prior distribution for the risk
effect parameters using the squared exponential kernel function with fixed
bandwidth parameters to define the spatial-temporal weights.
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We order these settings based on the complexity of the prior distributions. A single dataset is
generated under a specified setting and each method is applied. In total we generate n = 50
datasets under each setting. Settings 1, 2, and 5 match Methods 3, 2, and 1 respectively.

Under Setting 3 we assume a nonstationary spatial prior process where each entry of the

spatial covariance matrix is given by  and

(3)

Location c represents a point source in the spatial domain. This correlation function,
introduced by Hughes-Oliver (1998), is itself nonstationary. It allows for the correlation
between locations to change depending on their respective proximity to the point source. We
use this function because of the complex correlation structure which results and to allow for
a convenient method of specifying a parametric nonstationary process through the
correlation function. We also increase the complexity by allowing the total variance of the
process to vary based on spatial location. The usual temporal correlation structure (σt) is
used but the variances are varied based on pregnancy week to increase complexity such that

. The final covariance structure for the risk effects has the form

. This structure assesses the
adequacy of each of the methods once the model assumptions are broken.

For Setting 4, we once again use the covariance in (3) but alter the distribution of the

generated risk effects such that  for each effect. These
risk effects are still spatially and temporally correlated but now also have a non-Gaussian
distribution. This helps us to identify which models work well once the underlying
normality assumption is broken, but spatial-temporal correlation still exists.

Once a dataset is generated under a specified setting, we fit the models from each method
and collect estimates of the MSE of the risk effect vector. The observation from Setting i,

Method j, and dataset k is  where

 is the true risk effect for defect p, location l, pregnancy week d, and pollutant q

under Setting i and  represents its estimate (posterior mean) obtained from
Method j and randomly generated dataset k.

In order to generate data from (1) the associated model parameters must be fully specified.
The specific settings for these parameters are chosen based on results seen while working
with the Texas cardiac anomaly dataset. The level of spatial and temporal strength is chosen
to be very strong in order to closely match our data application situation, as are the values of
the pollution exposures. The exposures are generated from a N(0, 1) distribution since we
standardize our pollution exposures in the model application. The pollution risk parameters
are drawn from their assumed true prior distribution according to Setting i and then analyzed
to ensure that they resemble the results witnessed while working with the Texas data. In this
way we hope to imitate situations which are potentially useful in the environmental health
setting. The chosen sample size is based on pilot studies carried out to investigate the
variance between the collected simulation data. Each generated dataset being analyzed
contains 500 observations which is large enough to estimate the model parameters well but
not so large that computational difficulties arise. Each model is fit in the Bayesian setting
and results are based on 1000 samples from the posterior distribution of the model
parameters after a burnin period of 2000 iterations.
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We analyze Yijk using a random effects model which accounts for the fact that multiple
methods are applied to a single dataset within a setting by allowing for a positive correlation
to exist between two observations from the same setting and dataset but different methods.
The results suggest that there is a significant interaction between method and setting. Figure
1 shows the interaction plots for all method and setting combinations. Our model clearly
outperforms the other methods under Settings 4 and 5. The differences in MSE values
between Method 1 and both other methods under these settings are highly statistically
significant even after using the Bonferroni correction for multiple testing. In Setting 5
Methods 2 and 3 are performing similarly due to the lack of spatial-temporal smoothness
seen in the simulated risk effects. This causes Method 2 to essentially become Method 3
since ρs and ρt are estimated to be large. Our method also does as well as Methods 2 and 3
under the settings which favor those two methods (Settings 1 and 2) because of the
flexibility of the introduced prior distribution. The difference in MSE values between
Methods 1 and 2 under Setting 3 is not significantly different from zero (Method 1: 1.91,
Method 2: 2.15) while both methods significantly outperform Method 3. The MSE estimates
under Setting 3 are all fairly similar between the methods when compared with the other
settings. This is the case because a large amount of the variability is explained by a
relatively small number of mixture components for Method 1, causing the results to be
similar to Method 2. Due to the nonstationary behavior though the simulated process also
lacks spatial-temporal smoothness, causing Method 2 to be similar to Method 3. Therefore,
all three methods are relatively similar under Setting 3 as a result of the nesting, although the
Method 3 estimate is statistically larger.

The overall method MSE estimates are 6.06, 9.08, and 13.25 for Methods 1, 2, and 3
respectively and each of the pairwise differences are significantly different from zero. As
expected Method 3 struggles in almost every setting while Method 2 performs well when
normality is true but struggles when the complexity increases. Therefore it appears that the
introduced prior in Method 1 has the flexibility to perform well under a number of different
scenarios and is never significantly outperformed by the competitor models in any of the
proposed settings in terms of MSE.

5.2 Congenital Anomaly Analysis
Texas Department of State Health Services (TDSHS) health service regions 6, 8, and 11,
shown in Figure 2, contain large urban areas such as Houston and San Antonio. This domain
also shares a border with Mexico and has had problems in the past with congenital anomaly
outbreaks (TBDES, 2012). We therefore consider these regions in the analysis from
2001-2004. Figure 2 also displays the locations of the centers of gravity of the residence at
delivery for the births included in the analysis. Individual birth locations are not displayed in
order to protect the identities. The included urban areas provide a large amount of
heterogeneity to our study population. The regions also include isolated rural areas where
monitoring data are scarce, but because of our use of the CMAQ output, we can include in
the analysis. We decide to use the CMAQ data directly in the analysis based on empirical
analyses to ensure that the CMAQ data represent adequate estimates of the pollution process
with respect to monitoring data. We divide these health regions into five subgroups
according to the locations of the births. The chosen subgroups are displayed in Figure 2.
These groups are determined by using a modification of the K-means method where the
sample size in each subgroup is required to be ≥500. This sample size restriction ensures
that the model is numerically stable and the results are accurate. We also supply initial
estimates of the center of each of the five subgroups based on the spatial pattern seen in

Figure 2. Therefore, from (1) we have . The actual location
information for  is determined by the center of gravity of births within subgroup i.
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The outcome variable of interest represents a multivariate vector of Bernoulli responses. We
include three (J = 3) cardiac anomaly groups in the analysis: ASD, PAVD, and VSD. These
cardiac groupings are chosen based on similar grouping in Gilboa et al. (2005). Among the
included cases, 63% have a single defect, 31% have two defects, and 6% have all three
defects of interest. The cardiac defects we analyze represent the most common anomalies
among the six cardiac groupings which were originally considered based on observed
sample sizes. Each included case in the analysis is matched with two controls (defect free)
based on year of delivery, mother’s age group, and the gender of the child. We include
gestational weeks 3-8 as the critical exposure period based on the formation of the heart
during the pregnancy and similar studies of cardiac anomalies (Dadvand et al., 2010; Gilboa
et al., 2005). The final dataset we analyze has a sample size of N=7701 with 2567 cases and
5134 controls. Results are based on 3,000 samples from the posterior distribution of the
model parameters after a burnin period of 7,000 iterations.

5.2.1 Results—The included covariate results for each defect are shown in Table 2 along
with the Monte Carlo (MC) error range and average values for the estimates. The results
suggest that the plurality of the pregnancy is an important predictor of the ASD and VSD
outcomes as having more than one fetus during the pregnancy significantly increases the
probability of their development. Giving birth during the summer season also has a negative
impact when compared to the winter season for the ASD and PAVD outcomes. Black
mothers are less likely to give birth to children with the ASD and VSD outcomes than White
mothers while the Other race/ethnic group are less likely than White mothers in terms of the
PAVD outcome. For the PAVD outcome, having one previous live birth as opposed to none
was actually beneficial in terms of developing the anomaly. No other included covariate
effects are shown to be significant.

Selected graphical results from our model output are shown in Figures 3-5. The estimated
effects are given on the probit scale and can be interpreted such that a one unit increase in
the standardized pollution exposure for a week/pollutant/site combination leads to an
increase in z-score of the estimated effect on average. We compare these results with results
from competitor models and these details are found in Section 5.3. The main signal seen in
the results suggest that week 3 of the pregnancy is a critical week in terms of ASD, PAVD,
and VSD development for the baby. This signal was fairly consistent across all sites for the
NO3 pollutant while EC and OC also showed significances but less frequently. Increased
exposure to NO3 also appears to negatively impact the pregnancy in terms of ASD and
PAVD development in weeks 7 and 8 of pregnancy for Sites 1-3. SO4 did not regularly lead
to significantly positive effects but was shown to be impactful at Site 1, week 5, for the ASD
and PAVD outcomes.

5.3 Sensitivity Analysis
We investigate the sensitivity of the results to changes in the prior distributions of the
hyperparameters. Due to the lengthy run time of the Texas health analysis we choose to
work in the simulation study setting to assess the sensitivity. By design, simulation data
Setting 4 (described in Section 5.1) closely resembles our actual Texas health analysis due to
the complexity of the risk parameters. In the original simulation study we utilize the same
prior distributions used in the Texas health analysis which are detailed in Section 4.1. For
the sensitivity analysis we modify the prior distributions of the a, b, ρs, and ρt parameters
and carry out the simulation study for data Setting 4 using Method 1 with these new priors.
Specifically we assume independence between each of the parameters and specify a, b ~
Uniform (0.001, 10) and ρs, ρt ~ Uniform (0.0001, 0.1). These parameters are critical in
describing the spatial-temporal smoothness of the process as well as the number of mixture
components required in the model. We once again collect and compare estimates of the
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MSE of the risk effect parameters for each set of prior distributions. If the inference is not
overly sensitive to the chosen priors then we would expect the estimation of the risk effect
parameters to be very similar across both prior settings. Recall the original MSE estimate for
Method 1 under Setting 4 was 5.1670 (SE: 0.4069). Using the alternative prior distributions
yields an MSE estimate of 5.8108 (SE: 0.4069). These estimates are not statistically
different from each other (p-value: 0.1616), indicating that the results are not very sensitive
to changes in the prior distributions. Because of the similarity of these simulation settings
with our actual Texas health analysis, we can extend these results to our setting. This
outcome is expected since the prior distributions for these hyperparameters are specifically
chosen to be vague, allowing the data to drive the resulting inference.

5.4 Model Diagnostics
We compare results from the health model in (1) using the three prior distributions for the
risk effects detailed in Section 5.1 (Methods 1-3). Each method assumes that the health
model in (1) is correct but the prior process for the risk effects is varied. Sections 4.2 and 5.1
discuss the prior covariance structures induced by each of these three models. We fit all
models in the Bayesian setting for comparison purposes.

Selected graphical results are shown in Figures 3-5 for each of the methods. The plots from
Method 1 show how the flexible prior distribution is able to detect significant weeks when
Methods 2 and 3 fail to do so. The credible intervals for Method 2 are the shortest but this is
due to the amount of spatial and temporal sharing of information that is occurring. Method 2
over-smooths spatially and temporally due to an overall lack of signal in the cardiac
congenital anomaly setting. In other settings, such as working with the preterm birth
outcome, there are a number of significantly positive weekly effects in multiple locations
throughout the pregnancy which allow the spatial-temporal smoothing to occur effectively
(Warren et al., 2012). In the congenital anomaly setting, where the overall signal is weak
and sporadic weeks are shown to be significantly impactful, the signal is lost due to the over
smoothing towards a zero effect size. Method 1 credible intervals are smaller than those
from Method 3 and are able to detect significances that are missed by Method 3.

The deviance information criterion (DIC) is useful in comparing competing hierarchical
models based on their overall fit and complexity, with smaller values indicating a better
model (Spiegelhalter et al., 2002). The DIC criterion clearly favors Method 1 (DIC:
20212.6, pD: 170.8) and Method 2 (DIC: 20211.8, pD: 109.8) when compared with Method
3 (DIC: 20474.4, pD: 412.6). Method 1 utilizes a larger number of effective parameters
which increases the model complexity but as a result provides a better fit of the data.
Method 2 cuts down on the number of effective parameters but does not provide as good of
a fit as Method 1. The balance between model fit and model complexity cause the two DIC
values to be similar as differences of more than seven are considered significant. We further
investigate the adequacy of the methods using an alternative technique.

We perform posterior predictive comparisons to investigate the adequacy of the considered
models using ideas introduced by Dey and Chen (2000) and implemented by Warren et al.
(2012) in a similar setting. We first define the observation-level Pearson residual

discrepancy measure as , where  represents
the probability of cardiac j development for birth i given the βj and η vectors. To assess the
overall performance of each of the methods we work with the total Pearson residual

discrepancy measure, . Values of the discrepancy measure
are simulated from the posterior predictive distribution (ppd), f {D(ynew,βj, ) |yobs}, and also
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from the observed data distribution, f {D(yobs,βj,)|yobs}, where yobs represents the vector of
observed outcomes and ynew represents the vector of simulated outcomes from the ppd,
f(ynew|yobs). Comparison of the samples from these respective distributions provides
information regarding the overall fit of the model to the data.

The Bayesian p-value, introduced by Meng (1994), is a quantity which is useful in
determining model adequacy. We estimate this quantity, defined as

, using the posterior samples from the ppd and observed
data distribution of the discrepancy measure. The estimate for Method 3 (0.029, MC Error:
0.003) shows that overall Method 3 provides a poor fit to the data. The Method 1 (0.095,
MC Error: 0.006) and Method 2 (0.222, MC Error: 0.008) estimates indicate that both
methods are adequate. These results along with the DIC values and graphical results suggest
that Method 1 provides an adequate fit to the data and is preferable in the cardiac congenital
anomaly setting.

6 Discussion/Conclusion
Using our model we are able to analyze the effect of multiple pollutants on the multivariate
cardiac congenital anomaly birth outcome simultaneously. Our introduced prior distribution
for the risk effects allows for complex spatial-temporal relationships and outperforms two
other considered competitor models in this setting. The flexibility of the model allows us to
uncover the true relationship between pollution exposure and the adverse impact on the
development of the defects, something which the alternative models fail to do.

In terms of the other covariates of interest, mother’s race, the plurality of the pregnancy, and
season of birth appear to be the most influential predictors of the analyzed defects. The
simulation study indicates that the newly proposed model outperforms the competitors in a
variety of data settings and is flexible enough to be efficient in the data settings which favor
those models. Increased levels of NO3, EC, and OC all show signs of negatively impacting
the resulting birth for the included defects during weeks 3, 7, and 8 of the pregnancy. The
story remains fairly consistent over the spatial domain as well.

These results further build the evidence supporting the link between air pollution exposure
and cardiac congenital anomaly development while extending our knowledge regarding the
specific periods during the pregnancy that have the greatest impact in terms of common
cardiac defects.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Estimated MSE values for each setting and method combination. The standard error for each
of the displayed estimates is 0.6711.
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Figure 2.
TDSHS health service regions and the residence at delivery center of gravity locations of the
births used in the analysis, 2001-2004. Site 1: Blue, Site 2: Green, Site 3: Black, Site 4: Red,
Site 5: Orange.
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Figure 3.
Pollution risk effect estimates (posterior medians) and 95% credible intervals from Site 1,
the atrial septal defect outcome, and organic carbon pollutant.
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Figure 4.
Pollution risk effect estimates (posterior medians) and 95% credible intervals from Site 2,
the pulmonary artery and valve defect outcome, and nitrate pollutant.
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Figure 5.
Pollution risk effect estimates (posterior medians) and 95% credible intervals from Site 3,
the ventricular septal defect outcome, and elemental carbon pollutant.
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Table 1

The induced γ (.,.) functions for the uniform and squared exponential kernel functions under different settings

for the bandwidth parameters.  and  for a particular location and week

combination. I(.) represents the indicator function and (.)+ is the max {0,.}.

Name wk (s* ,d) Model for εkj γ{(s ∗, d ), (s ∗′, d ′)}

Unif. Π j=1
3 I ( ∣ θj − ψkj ∣ <

∊kj
2 ) ∊kj ≡ λ j−I ( j≠1) Π j=1

3 {1 −
∣ θj − θj

′ ∣

λ j−I ( j≠1)
}+

Unif. Π j=1
3 I ( ∣ θj − ψkj ∣ <

∊kj
2 ) ∊kj ∼ Expo{λ j−I ( j≠1)} exp{ − Σ j=1

3
∣ θj − θj

′ ∣

λ j−I ( j≠1)
}

Squar.
Expo. Π j=1

3 exp{ −
(θj − ψkj)2

∊kj
} ∊kj ≡ λ j−I ( j≠1)

2 ∕ 2
1

23∕2
exp{ − Σ j=1

3 (θj − θj
′)2

λ j−I ( j≠1)
2 }

Squar.
Expo. Π j=1

3 exp{ −
(θj − ψkj)2

∊kj
} ∊kj ∼ IG{1.5, λ j−I ( j≠1)

2 ∕ 2} 1

23∕2
Π j=1

3 {1 +
(θj − θj

′)2
λ j−I ( j≠1)

2 }−1
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