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Abstract
Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which
presents challenges to estimating exposures for health effects assessment. Here we created an
model to predict ambient particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5)
across the contiguous United States to be applied to health effects modeling. We developed a
hybrid approach combining a land use regression model (LUR) selected with a machine learning
method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals.
The PM2.5 dataset included 104,172 monthly observations at 1,464 monitoring locations with
approximately 10% of locations reserved for cross-validation. LUR models were based on remote
sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R2 values
for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote
sensing is a strong predictor of ground-level concentrations. In the models including the BME
interpolation of the residuals, cross-validated R2 were 0.79 for both configurations; the model
without remotely sensed data described more fine-scale variation than the model including remote
sensing. Our results suggest that our modeling framework can predict ground-level concentrations
of PM2.5 at multiple scales over the contiguous U.S.

INTRODUCTION
Epidemiologic studies aimed at estimating the health effects of ambient air pollution require
exposure assessments that accurately describe the expected variability in the pollutant of
interest. Air pollution varies at multiple spatiotemporal scales1. Spatially, this occurs at the
local scale from immediate sources and over larger spatial areas from secondary reactions
and transport mechanisms. Temporally, the majority of variation in air pollution comes from
changing traffic patterns and meteorological conditions. Improving exposure assessment
techniques to estimate this kind of variability is important for deriving defensible health
effect estimates. Potential misclassification in the expected spatiotemporal variability of the
exposure will likely introduce bias in health effects estimation. Exposure misclassification is
a critical concern for health researchers at any time2 but especially when a large number of
subjects reside across many metropolitan areas or states. The ability to leverage statistical
power from a large sample size will be reduced by exposure misclassification.

Air pollution exposure models used to derive estimates for health studies fall into several
classes: (1) nearest monitor value assignments3–4; (2) weighted averages of proximate
monitoring locations 5–6; (3) geostatistical methods such as kriging7–8; (4) both
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Bayesian9–12 and Non-Bayesian multivariate models13–16, which include land use
regression; (5) point, line and area source dispersion models17–18; (6) estimates derived from
remote sensing data19–20; and (7) hybrid approaches that may utilize two or more of the
previously mentioned approaches 5, 15, 19. Depending on the quality of the data support, each
of these different exposure assessment approaches may have varying levels of exposure
misclassification. Methods 1 to 3 are often employed when there are especially sparse
monitoring networks over very large areas. The exposure misclassification in these kinds of
exposure assessments can typically be classified as Berkson errors21 because large groups of
individuals, living near each other, may all receive the same or similar exposure values. This
is unlikely to bias health effect estimates, but will reduce the power to detect an effect. By
their nature, these estimation methods fail to capture the multiple scales of variability
inherent in traffic-related air pollution19, 22. In contrast, the other exposure modeling
methods – while potentially able to estimate exposures at more resolved scales – are prone
to random error that may bias the health effects estimates downward.

As higher quality and quantity of point exposure observations become available, statistical
techniques can be used to take advantage of assumed or observed dependencies in the data,
and these methods may include auxiliary information. Techniques including both
Bayesian9–12, 23 and non-Bayesian 13–16, 22 multivariate statistics aim to estimate ambient
air pollution exposure by deriving a set of relationships between auxiliary information and
the pollutant of interest. In many cases, information about proximate land use, traffic and
other contributing factors appear to be significant predictors of observed pollution levels.
Models in this class are typically referred to as land use regression (LUR)17. These
may12, 15–16, 22, 24–25 or may not10, 13–14 account for spatiotemporal dependencies in the
data. Baxter and colleagues26 reaffirmed that creating refined air pollution exposure models
using auxiliary data increases the power to detect health effects, when the auxiliary data is
strongly correlated with the exposure of interest.

Hybrid approaches attempt to combine the best qualities of the above mentioned methods.
Most are implemented by using multivariate regression5 or some form of generalized
additive model15, 19. These hybrid approaches are particularly useful when the exposure
may vary at multiple scales and no single method is capable of describing the expected
variability. Building on previous air pollution exposure modeling efforts in California27 we
develop spatiotemporal models at the national scale to predict ambient PM2.5 for the purpose
of estimating exposure at residential locations for health effects analyses. The model uses a
hybrid approach that combines land use regression (LUR) and Bayesian maximum entropy
(BME) interpolation. As part of the hybridization approach – using the LUR – we integrated
remote sensing estimates that used state-of-the-art atmospheric chemistry and transport
models. The supplementary goal of this integration is to capture variability within the
remote sensing grid cell using land use information as the remote sensing estimates are at a
coarse resolution (~8.9 km). By introducing spatiotemporal interpolation of the residuals we
aimed to predict on finer temporal scales than are typically available through LUR or remote
sensing methods alone.

MATERIALS AND METHODS
Monthly PM2.5 data preparation for the United States

The raw PM2.5 data were acquired from the US Environmental Protection Agency (EPA)’s
Air Quality System (AQS) and included only measurements from Federal Reference Method
(FRM) monitors over the period January 1999 through December 2008. After processing the
monitoring data, there were a total of 1,464 PM2.5 monitoring locations across the
contiguous United States. As these were government monitors, there tended to be slight
under-representation of near traffic environments, but there was good representation of most
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other environments where study subjects likely reside for our secondary health effects
analysis (see online supplemental material for details [Section 1]).

The dataset was partitioned into a training set for model-fitting purposes and a cross-
validation dataset using a uniform random variable procedure in Stata (Stata Corp, College
Station, TX) (see online supplemental material [Section 1] for details on data collection and
preparation for modeling and cross-validation). A purely random method, i.e., non-stratified
or unconditional, was used to ensure that cross-validated performance measures were
representative over the entire study area. The training dataset included 1,317 monitors with
93641 monthly observations; the cross-validation dataset included about 10% of the data, or
147 monitors with 10,531 monthly observations.

Land use, traffic and remotely sensed data
Prior to the beginning of the analysis, we decided that for any given class of LUR input data
(i.e. land use, road network, traffic, etc), that all spatial data was completely represented
over the contiguous United States and came from a sole source. For example, land use data
sourced from different municipalities would not be combined to create a larger land use
dataset. This was meant to ensure consistency in the classification and regression parameter
estimates. While these criteria limited the variety of potential covariates, it ensured our
ability to provide predictions at any location over the contiguous United States.

Generation of land use data—Land use data were based on United States Geological
Survey (USGS) National Land Cover Database (NLCD) for 2001. The original 20 classes
were aggregated into the following seven categories: agricultural, barren, all developed land,
high-density development, green space, water, and wetland. Measures of land use proximate
to the monitor were derived with Euclidean buffers of sizes: 100, 200, 300, 400, 500, and
1000 meters.

PM2.5 estimates derived from remotely sensed data—Ground-level concentrations
of PM2.5 were estimated using satellite atmospheric composition data combined with local,
coincident scaling factors from a chemical transport model28. Specifically, PM2.5 estimates
were derived from aerosol optical depth (AOD) data from the Terra satellite, in combination
with output from GEOS-Chem simulations to estimate the relationship between aerosol
optical depth over the atmospheric column and ground-level PM2.5

20. PM2.5 was estimated
at a 0.1 × 0.1-degree resolution. These were later projected into a Euclidean space using the
Albers projection. The resulting grid resolution was approximately 8.9km × 8.9km. These
estimates of PM2.5 represent an average over the period 2001–2006; this ensured sufficient
observations for stable estimation. Remote sensing estimates were integrated into the LUR
method as a potential covariate.

Generation of traffic counts for roadways
Although actual traffic on a particular road segment is determined by a wide variety of
factors, many of which cannot be captured by available geographic information systems
(GIS) layers, we have developed weights that can be applied to road segments near air
monitoring locations. To develop these weights we used more than 1.2 million spot traffic
counts obtained from the Traffic Metrix dataset, purchased from MPSI (Tulsa, Oklahoma,
US) limited to the years 1991–2009. Weights were assigned as the median count within a
broad category of road type (i.e., expressway, major road, local road, etc.) stratified by the
following classifications: urban, urban county, urban county size of population, rural county
and rural county size of population. This enabled us to calculate traffic-weighted road
density for those monitoring locations within the same set of Euclidean buffers used for the
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estimation of proximate land use (See online supplemental material [Section 2] for more
detail on the derivation of the traffic weights).

Traffic weights showed good large-area correspondence with traffic counts. Within the
larger buffer sizes, i.e., 500 m and 1000 m, the Spearman correlation between the estimated
traffic weights and the Metropolitan Planning Organization (MPO) traffic data were 0.87
and 0.91, respectively29.

Modeling approach overview
We used a multi-stage modeling strategy that included LUR and BME interpolation. In the
first stage, we constructed the LUR model attributing measures of surrounding traffic, land
use, and other auxiliary data to predict the PM2.5 based on their empirical relationships. We
expected that the LUR method alone would be insufficient to describe the variability in the
space-time domain, as we were modeling spatiotemporal data and the LUR model only
included spatial data. To capture the residual spatiotemporal variation, we then employed
the BME methodology in the second stage. The BME theory, methodological
characteristics, and computational techniques are discussed in detail elsewhere30–33. The
BME technique interpolated the LUR spatiotemporal residuals using the expected
distribution of the predicted values as prior information to inform the prediction. The
‘residual surface’ describes the spatiotemporal variability of the pollution estimates that
could not be described by the LUR model. The final predicted estimate of PM2.5 has the
following form (Eq. 1):

Eq. 1

where the estimator of PM2.5, Ĝ, is indexed at location s, in Euclidean space, at time t by
ordinal month; the basis function Ψ describes the land use regression function containing the
subset of land use measures L used to estimate PM2.5 at location s. The BME interpolator
error model B, at location s and time t, is estimated as a function of the set of observations
Ō, near s at time t, that are be used to estimate at location s as specified by the BME
covariance estimator.

Machine learning for land use regression—Under the framework of the LUR
methodology, we employed a machine learning approach using the Deletion/Substitution/
Addition algorithm (DSA)34 when selecting the LUR models. DSA uses an aggressive
covariate search algorithm to fit a generalized linear model, with polynomial basis functions,
predicated entirely on the power of cross-validation (CV) to select the best predictive model.
The CV method used for this research has been shown to have optimal properties when
applied to the selection of prediction models35. This method attempts to minimize the CV
risk, where the CV risk is the v-fold CV mean squared error. Details on the implementation
of this method are contained in the Online Supplement [Section 3]. Two different model
configurations were run using this method. The first configuration allowed the DSA to
choose amongst all of the auxiliary data and included traffic, land use and remote sensing;
the second did not include remote sensing.

Bayesian maximum entropy methods—This exposure modeling method relies on
BME and its numerical implementation, BMElib30, 36–37, to describe the residual
spatiotemporal variability. BME is a non-linear estimator and integrates several important
components of information: (i) composite space-time metrics (space/time analysis rather
than purely spatial or purely temporal); (ii) data fluctuation (noise); (iii) data uncertainty
(i.e., inaccurately modeled data, extrapolation, stochastic empirical laws, missing records,
disaggregation or downscaling, and measurement errors); and (iv) secondary information

Beckerman et al. Page 4

Environ Sci Technol. Author manuscript; available in PMC 2014 July 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correlated with a primary variable in a mathematically rigorous and unified manner. It
derives spatial regression techniques involving ordinary, simple, and intrinsic kriging as its
limiting cases under restrictive assumptions about spatial or temporal correlation structures,
types of data, and mean trend models considered. In addition, it deals with rationally non-
stationary mapping situations and incorporates higher order statistical moments, (i.e.,
skewness) modeling even the coincidence of extreme events. Additional description of the
methods is outlined in the online supplemental material [Section 4]. Similar to kriging, the
covariance is estimated from the observations. Details of the general form of the model in
this research are provided below (Eq. 2).

(Eq.

2)

where, s=location of observation of interest, s′=a proximate location to s, t=time point of
interest, t′=proximate time point, ci and ari/ti are coefficients to be estimates from the data
and γ is a scaling factor which differs between the two model configurations.

RESULTS AND DISCUSSION
Land use regression of PM2.5

The distribution of the PM2.5 measurements for the USA did not appear to be very skewed,
so untransformed observations were modeled. The cross-validation risk plots (Figure 1)
show the expected prediction error for each of the best models chosen by DSA as a function
of model size. This plot illustrates that as the two models grow in size by the number of
covariates, a point exists where an increase in model size does not increase predictive
capacity. We chose models that maximize prediction and minimize complexity even if there
appeared to be a small increase in predictive capacity as reported by the estimate of the
cross-validated risk. In the model including remote sensing, after inclusion of three variables
(i.e., remote sensing squared, remote sensing cubed and developed land at 200 m) there was
minimal gain by including more (see Figure 1 and Table 1 for model results). For the model
without remote sensing, there is little gain after the inclusion of two variables (i.e., traffic at
1000 m and green space at 100 m raised to the third power). The average cross-validated
risks of the chosen LUR models with and without remote sensing are 18.25 and 22.44,
respectively.

The models chosen by the DSA conform to the assumption of homoscedastic errors — and
the errors appear to be close to normally distributed (results not shown). Given these results,
the standard errors reported in Table 1 are likely to be plausible.

Bayesian maximum entropy estimation of spatiotemporal residuals
Table 2 reports the estimated parameters of the covariance functions for the residuals of the
two LUR models. The parameter cx represents a covariance-scaling coefficient; arx and atx
are the range coefficients representing the scale of autocorrelation in space and time,
respectively. We identified a phase shift in the temporal periodicity for observations on east
and west coasts. It was determined that this was inconsequential to the estimation process as
the largest average covariance weighted distance of the range parameters was less than
2000km. This indicated that there would be very little influence from observations on
opposite coasts.

Given the smallest range in the covariance estimators was 70 km (Table 2: model without
remote sensing), we decided that BME models would be predicted at the same grid
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resolution and receptor locations as the remote sensing data (i.e., approximately 8.9 km
grids). This was done, in part, for spatial consistency in the input and output datasets. The
large range in the covariance estimator was also indicative of large-area structure that would
not benefit from a highly resolved prediction grid.

Results from the BME analysis showed that the model residuals were fit well by the BME
approach (see online supplemental material [Section 5]). Online materials show plots of the
DSA model residuals versus the BME estimated residuals at the 8.9km resolution grid based
on 93,486 observations.

Combined LUR-BME predictions, fit and cross-validation—The LUR-BME
estimates are the sum of the DSA derived LUR model estimates and the BME estimates of
the residuals. This section describes results of both how well the LUR-BME approach fit the
observations used during the model-training phase and how well it predicted on the ten
percent reserved cross-validation dataset. Mean squared error (MSE) in addition to R2 and
normalized R2 (denoted as normR2 in Table 3) are reported as measures of model fit and
predictive capacity. As the LUR model is cross-sectional in nature, while the observed data
is longitudinal, the R2 value is unable to quantify how well the LUR model describes the
chronic exposure trend in the data. Therefore, we generated a by-site mean model which
perfectly predicts the monitoring site mean — the best possible result given the limitations
of the LUR framework as applied to this research. The R2 of the by-site mean model is used
as the standard to compare the R2. Normalized R2 values are R2 values for the LUR models
divided by the R2 of the by-site mean model (Eq3):

Eq. 3

The fit of the combined LUR-BME model performed very well. There was a substantial
reduction in residual error indicating the residual error from the DSA models had
spatiotemporal structure.

A large reduction in MSE (seen in Table 3) is observed on the data fit for the LUR-BME
model. See Figure b in Section 5 of the online supplemental for plots of the model fits.
Unlike the noticeable difference in MSE between the two configurations for the LUR
models where the difference in MSE is approximately four, there is not much difference in
the MSEs of the LUR-BME models – both are approximately 0.4. R2 values for LUR
models are 0.21 and 0.03 with and without remote sensing, respectively, but appear to
perform better as a chronic exposure model as measured by the normalized R2 of 0.51 and
0.08, respectively. In contrast, the LUR-BME model fit appears to be excellent with R2 of
0.98 for both models.

Cross-validation analysis—An examination of the reserved 10% cross-validation
dataset showed strong agreement between observed data and LUR-BME predictions with no
indications of bias or exceptional outliers. The randomly selected cross-validation dataset
did not include any observations larger than 35.7 μg/m3, whereas the training data had 135
observations larger than 35.7 μg/m3 with a maximum observed concentration of 74.7 μg/m3.

Figure 2 compares cross-validation predictions of both LUR and LUR-BME models against
the observed data. Plots indicate that the combined LUR-BME model is better at predicting
observations.
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In Table 3, the variance of PM2.5 is provided as a reference value to compare against model
MSEs. In the training dataset, modest reductions in MSE are observed with the LUR models
for both model configurations, with the larger reduction in MSE observed in the model using
remote sensing data. Unsurprisingly, the MSE becomes very small – near zero – after
incorporating the spatiotemporal BME error model. In the training dataset, there is very little
difference in MSE between the two configurations once the BME model is integrated into
the estimates.

In the cross-validation dataset, the MSEs for the LUR models appear to be noticeably
smaller than in the training dataset; however, the cross-validation dataset did not include
observations larger than 35.7 μg/m3. If these extreme values are excluded (for comparability
between training and CV datasets), the MSEs for the LUR models appear to be more similar
between training and cross-validation datasets. After integrating the spatiotemporal BME
error model, a substantial reduction in MSE is observed with both model configurations.
There appears to be little difference in predictive capacity between the two model
configurations once the BME estimates are integrated; the CV MSE for both LUR-BME
models is 4.63, which translates to an R2 of 0.79.

Figure 3 shows side-by-side maps of the LUR-BME models averaged over the entire study
period. The top map shows the model configuration using the remote sensing variable; the
bottom map shows the model configuration without remote sensing. Additional maps of the
prediction surfaces (including temporal estimates) can be found in the online supplemental
material [Section 6].

Implications
There is only one other recent paper that has attempted to develop a national-scale
spatiotemporal model to estimate ambient air pollution concentrations. In this research –
conducted in Canada by Hystad and colleagues38 – their aim was to create predictive models
for nitrogen dioxide (NO2), PM2.5 and ozone (O3). There have also been several other
papers which have predicted a single annual average surface at the national scale, one in the
United States for NO2

39 and another in Canada for PM2.5, NO2 and several volatile organic
compounds40.

In creating a spatiotemporal predictor, Hystad et al.38 took two approaches. The first used a
scaling calibration method to offset a single-year remote sensing estimate based on the ratio
of co-located current and historical monitors. The second used a regression calibration
technique to adjust the remote sensing by year and by census population for a respective
year. No other auxiliary data is considered; this significantly reduced their capacity to
predict smaller scale variability. Additionally, monitoring locations are sparse in Canada.
They used 177 total suspended particulate locations that were calibrated from 25 PM2.5
monitors. For NO2, there were 120 monitoring locations, and 187 locations were available
for O3. This small number of monitors raises the possibility of insufficient data support to
inform predictions over large areas.

While these models represent substantial contributions to the literature, our models represent
an advance in several important ways. First, our model is informed by 1464 monitoring
locations that were used for model calibration and cross-validation. Second, none of the
existing national models used actual traffic data, but relied on basic road networks or
deterministic distance estimates to inform predictions for fine-scale variation. In our model
we derived national traffic coverage from more than 1.2 million actual traffic counts, and
these data significantly improved the fit of the model and the capacity of the model to
predict fine-scale variation. Third, we introduced a machine-learning method that prevents
over-fitting and derives the best prediction using an aggressive search algorithm. We
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recently implement DSA at the state level in California to predict fine-scale variability in
NO2 and PM2.5

27; the research presented here has generalized its application to the national
scale. Beyond the California model, our new modeling framework also allows for a flexible
incorporation of the space-time dimensions so predictions can easily be made by the month
in a theoretically sound manner. In sum, our model represents an advance because of the
high level of data support, the innovative means of model selection, and the theoretically
informed framework for integrating the space-time dimensions of the prediction.

When compared to the 2-stage approach implemented by Liu and others19 across the state of
Massachusetts our results of a CV-R2 = 0.79 are in part similar to theirs, where they reported
CV-R2 = 0.78 for their model using remotely sensed data. However, in their model that did
not use remote sensing, CV-R2 = 0.46. As their research was estimating daily
concentrations, differences in the study design make the results not entirely comparable.
There also exists the possibility that spatiotemporal dependency across the nation may
appear more stable and predictable than at the state scale. However, the combined results
suggest that the framework of combining land use, remote sensing and spatial models in a 2-
stage approach is effective for predicting observed PM2.5 across multiple spatial and
temporal scales.

At the national scale, a LUR type model alone is insufficient to describe the complex
spatiotemporal variability in ambient PM2.5. Here, only a small explanation of the spatial
variability resulted from the first stage of the modeling. In the model with remote sensing,
developed space was included. The model without remote sensing included a traffic and
green space variable. Even though DSA selected variables that are ‘best’ predictors with no
a priori specification on the direction of association, their estimated coefficients are
intuitively congruent with our expectation of how they behave in the environment.
Developed space and traffic act as sources of pollution (positive coefficient), while green
space possesses below average pollution (negative coefficient). The apparent predictive
capacity of the model configuration without remote sensing is small – the CV-R2 is 0.05 –
these results are in agreement with our understanding of primary on-road emissions where
they contribute to only 3% of the overall ambient variability in PM2.5

41. Notwithstanding
their small influence on the observed variability of PM2.5, primary emissions such as fine
particle, ultrafine particles, specific metals, and elemental carbon may be responsible for a
large portion of the observed health impacts42. This adds to the importance of ensuring that
these components of the ambient air pollution mix are described in exposure assessment
tools intended for health effects assessments. The maps in Figure 3 illustrate the difference
in the fine scale variability of PM2.5 when remote sensing is not part of the model. The LUR
models without remote sensing data includes traffic estimates that allow for prediction of
PM2.5 at scales much finer than either the remote sensing alone or the BME interpolator; this
may be describing the portion of the air pollution mixture of interest to health researchers.
Additionally, the BME method implicitly accounts for the resulting effects of meteorology
and secondary transport that were not possible in other ways for this analysis.

A main assertion of this research was that after accounting for local scale variation, the
residual variation would operate over larger areas. The range of the estimated covariance for
the BME models indicates this long-range effect. When compared against research that used
the BME method to interpolate observed PM2.5 in a dataset nearly identical to that used
here, but did not use auxiliary data43, spatial dependence on the small scale was 20 km. The
models presented here show the residual spatial dependence to operate at between 70 km
and 120 km at the small scales. This is consistent with the premise that LUR would capture
variability on a smaller spatial scale and the remaining spatial variability would have larger
scale structure.
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Limitations in auxiliary data used for the LUR models are likely responsible for their
restricted predictive capacity. These limitations are a function of the cross-sectional nature
of the land use, remote sensing and available traffic data. Although all data used here
represent the best available information, they provided only a snapshot of these
environmental contributors. Additionally, during the derivation of the traffic data, it was
identified that the traffic-weighted estimates were likely descriptive of larger spatial scale
variability in traffic and not necessarily the expected local traffic conditions. Still, given
these limitations, the results appear to suggest that our LUR modeling efforts were effective
in predicting the intended scale of variability consistent with our understanding of exposures
of interest for health effects analyses. Remote sensing supplied important predictive
information as shown by its selection by DSA, but the spatial resolution is coarse. The BME
interpolation predicted the residual spatiotemporal variability very well, but the interpolation
is influenced by the topology and density of the network. Over-smoothing of the estimates
may happen where the network is sparse; this is typically where few people reside.

Given the highly predictive results, we expect that our estimates will have utility for public
health and environmental science researchers. To facilitate use, temporal exposures
(monthly) will be made available at census tracts representing the exposure at the centroids
for both models with and without remote sensing (see Online Supplemental Information
[Section 8]).

Future work should be directed towards refining the data inputs for the land use regression
model that describe both local traffic and temporal variability in contributing environmental
and land use factors. Opportunities to improve the accuracy of the remote sensing estimates
should be pursued. In addition, downscaling the remote sensing estimates merits further
investigation. Finally, explicit comparisons of the hybrid approach to other large-area
exposure models in health effects modeling may help to understand the marginal benefit of
including auxiliary data at multiple scales over purely in-situ or remotely sensed models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cross-validation (CV) risk plots as a function of model size
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Figure 2.
Comparison of cross-validation prediction for LUR models and combined LUR-BME
models
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Figure 3.
Maps illustrating differences in spatial variability of LUR-BME exposure models averaged
over the study time period: model using remote sensing (top), model without remote sensing
(bottom).
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