
Bayesian Maximum Entropy Integration of Ozone Observations
and Model Predictions: An Application for Attainment
Demonstration in North Carolina

Audrey de Nazellea,b,c,d, Saravanan Arunachalama, and Marc L. Serrea,*
a University of North Carolina, Chapel Hill, NC, USA
b Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
c Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona, Spain
d CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain

Abstract
States in the USA are required to demonstrate future compliance of criteria air pollutant standards
by using both air quality monitors and model outputs. In the case of ozone, the demonstration tests
aim at relying heavily on measured values, due to their perceived objectivity and enforceable
quality. Weight given to numerical models is diminished by integrating them in the calculations
only in a relative sense. For unmonitored locations, the EPA has suggested the use of a spatial
interpolation technique to assign current values. We demonstrate that this approach may lead to
erroneous assignments of non-attainment and may make it difficult for States to establish future
compliance. We propose a method that combines different sources of information to map air
pollution, using the Bayesian Maximum Entropy (BME) Framework. The approach gives
precedence to measured values and integrates modeled data as a function of model performance.
We demonstrate this approach in North Carolina, using the State’s ozone monitoring network in
combination with outputs from the Multiscale Air Quality Simulation Platform (MAQSIP)
modeling system. We show that the BME data integration approach, compared to a spatial
interpolation of measured data, improves the accuracy and the precision of ozone estimations
across the State.

1. Introduction
Ozone is the main component of smog and a powerful oxidizing agent, associated with a
wide range of adverse health outcomes including premature mortality, asthma exacerbation
and hospital admissions for respiratory causes [1]. The Clean Air Act charged the U.S.
Environmental Protection Agency (EPA) with establishing standards and implementation
rules for six “criteria” pollutants, including ozone. Consistent with recommendations by its
panel of science advisors (the Clean Air Scientific Advisory Committee) and based on its
review of scientific evidence, the EPA is currently revising the National Ambient Air
Quality Standard (NAAQS) for ozone established in 2008, deemed insufficiently protective
of people, trees, and plants [2]. The EPA proposes to strengthen the “primary” ozone
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NAAQS, from 0.075 parts per million (ppm) to a level within the range of 0.060–0.070
ppm.

The form of the primary standard, established in 1997, is not disputed. To meet the standard,
the 3-year average of the fourth highest 8-hour value at a particular monitor, known as the
design value (DV), is not to exceed the established standard (0.080 ppm in 1997, 0.075 ppm
in 2008). An important and unchallenged element of compliance demonstration instituted in
1997 is the reliance on observed ozone values for determining current and future attainment.
As detailed later, the attainment guidance states how ozone model predictions are to be used
in a relative rather than absolute sense, and in concert with measured values. That is, the
ratios of the model’s future to current (baseline) predictions at monitors, called the relative
response factors, are multiplied with the observation-base “baseline” design value to predict
the “future concentrations” which are then compared to the standard [3]. This attainment test
in principle makes the process more forgiving of the potential inaccuracies of model outputs
because it is based on “real” ambient concentration.

Reliance on observed data, however, poses a challenge for determining compliance in areas
where no monitoring stations exist. The EPA suggested using interpolated measured values
such as through Kriging [3], which naturally raises concerns since the method cannot
account for chemistry and emission information. Un-monitored areas away from polluting
sources - where monitoring stations are predominantly located - or rural and suburban areas
where the monitors are usually sparsely located, may thus not reliably be assessed.

We propose an approach within a spatiotemporal epistemic knowledge processing
framework that integrates observations and model predictions to obtain baseline design
value, which we apply to North Carolina. Specifically, instead of using measured or
modeled values by default, our approach, while giving preference to measured data, also
uses model outputs as a function of model performance, thus making the integration more
robust.

Examples exist of data integration efforts for air quality mapping making the best use of
available information [4–9]. EPA guidance suggested combining modeled and monitored
data to assess un-monitored areas. The recommended adjusted Voronoi Neighbor Averaging
(eVNA) method interpolates neighbouring monitored values with a simple inverse-distance
weighing scheme, and scales upwards or downwards given relative model predictions at the
measured sites and the model prediction at location of interest [3]. This approach, while
accounting in a limited way for the rich information contained in air quality models, suffers
from the classic drawbacks of distance-weighing interpolation techniques, such as inability
to provide error estimates, and exaggerated variability [10].

Statistical approaches provide a more rigorous framework to integrate observations and
model predictions. An important member of these approaches is the Bayesian melding
framework developed by Fuentes and Raftery [4]. That approach basically consists in taking
a weighted average of the linear kriging estimator in a way that accounts for parameter
uncertainty. However; the limitation of Bayesian melding, and the limitation of linear
Bayesian hierarchical modeling approaches in general, is their reliance on Gaussian
assumptions and linear models, which limits their estimation accuracy.

By contrast we use in this work the Bayesian Maximum Entropy (BME) method of modern
Geostatistics. BME is a spatiotemporal epistemic knowledge processing framework that can
integrate a wide variety of non-linear, non-Gaussian knowledge bases [11,12]. BME has
been applied to map criteria pollutants previously [13–15]. In particular, spatiotemporal
ozone maps were developed in California using 15 years of monthly measured values from
the state’s large monitoring network[15]. Importantly for exposure assessment, the BME
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maps were shown to be more accurate than linear kriging methods and provided important
insights into the spatial distribution of seasonal patterns. However, to the best of our
knowledge, none of the previous example of BME criteria pollutant mapping dealt with the
problem of integrating ozone observations and model predictions, and this work is the first
BME analysis to do so.

In our data integration approach, rather than rely on a Gaussian, linearized model to account
for the change of support (as in Fuentes and Raftery[4]), we use a more transparent non-
linear, non-Gaussian data-driven approach based on the direct comparison between model
predictions and observations, which might be more acceptable within the contentious policy
context. Our aim is to give precedence to monitoring data, thus we only weigh the model
prediction according to how well it reproduces the observed values. A stochastic analysis is
used to generate soft data from air quality model predictions, which is then processed by the
BME method together with the hard observed data to provide a representation of space-time
ozone distribution.

We begin by presenting the EPA compliance test, then our data, and finally present results
comparing our approach to an analysis that only accounts for observed data. We conclude on
the policy relevance of this work for ozone attainment demonstration.

2. Materials and Methods
2.1. Ozone attainment demonstration

The ozone compliance demonstration test accompanying the 8-hour primary standard
formulation makes use of photochemical models to calculate relative response factors
(RRF) that compare future-scenario to baseline modeled ozone levels [3]. Where monitoring
stations exist, the RRF is applied to the measured current design value (DVC) to calculate
the future design value (DVF) that is to be compared to the standard:

(1)

where RRF = (mean projected 8-hr daily max “near” monitor “x”)future/(mean projected 8-hr
daily max “near” monitor “x”)present, and DVC is the 3-year average of the fourth highest 8-
hour value observed at the monitor.

2.1. Ozone monitoring data
Ozone observations used in this work, retrieved from the U.S. EPA Aerometric Information
Retrieval System (AIRS), were collected hourly at 46 sites across NC June 19th to June 30th

1996 (Fig. 1 and Fig. S1 in Supporting Information). This period represents one of the high
8-h ozone episodes extensively studied for NAAQS attainment demonstration in NC [16].

2.2 Air quality model predictions
The model data consists of ozone concentrations predicted by the Multiscale Air Quality
Simulation Platform (MAQSIP) on a 4×4 km grid resolution covering North Carolina, for
every hour of our study period. MAQSIP is a comprehensive urban- to intercontinental-scale
atmospheric chemistry-transport model, developed in collaboration with the U.S. EPA; it
has served as a prototype for the U.S. EPA’s Community Multiscale Air Quality (CMAQ)
modeling system [17,18], and is under continuing development. For this study, we modeled
only gas phase chemistry, and used CBM-IV with updated isoprene chemistry [19]. We
modeled horizontal and vertical advection using the Bott scheme, horizontal diffusion using
a constant Kh, and vertical diffusion based upon K-theory. We used one-way nesting
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(36/12/4-km) in MAQSIP for all the episodes, and did not use plume-in-grid technique for
any of the three resolutions. Detailed model specifications and evaluation are discussed
elsewhere [16,20].

2.3 The proposed BME approach
As described in section 1 of Supporting Information (SI) the traditional Bayesian melding
approach relies on linear and Gaussian assumptions. By contrast, the BME method is based
on a knowledge processing framework grounded on sound epistemic principles that can
process a wide variety of knowledge bases (stochastic physical laws, high order multi-point
statistical moments, empirical relationships, non-Gaussian distributions, hard and soft data,
etc.) that are beyond the reach of linear Geostatistics and classical spatial statistics. We only
provide here the fundamental BME equations for the ozone mapping problem; the reader is
referred to other works for descriptions of theoretical underpinnings used to derive these
equations[11, 12] and of the numerical implementation in BMElib [21, 22].

The BME framework is based on a Space/Time Random Field (S/TRF) representation of
ozone concentration Z(p), where p=(s,t) is the space/time coordinate, s is the spatial
location, and t is time. Our notation for variables will consist in denoting a single random
variable Z in capital letter, its realization z in lower case, and vectors or matrices in bold
faces, e.g. Z=[Z1,Z2,…]T and z=[z1,z2,…]T. The knowledge available is organized in the
general knowledge base (G-KB) about the S/TRF (e.g. describing its space/time variability,
physical laws, high order statistical moments, etc.), and the site-specific knowledge base (S-
KB) corresponding to the hard and soft data available at a set of specific space/time data
points pd. The BME fundamental set of equations is [23,24]

(2)

where z is a vector of ozone concentrations at mapping points p consisting of the union of
the data points pd and the estimation point pk, g is a vector of functions selected such that
their expected values E[g] is known from the G –KB, ξS[.] is an operator representing the S-
KB, A is a normalization constant, and fK is the BME posterior probability density function
(PDF) describing ozone concentration zk at the estimation point pk, where the subscript K =
G ∪ S means that fK is based on the blending of the G– and S–KB.

The G–KB for the S/TRF Z(p) corresponds to that obtained by extending the process model
(eq S3) used in Fuentes and Raftery (see SI section1) to the space/time continuum, i.e. it
consists in the space/time mean trend function μ(p;β)=E[Z(p)] parameterized on β and the
space/time covariance function cZ(p,p′;θ)=cov(Z(p),Z(p′)) parameterized on θ. The key
conceptual difference between our work and that of Fuentes and Raftery [4] is how we treat
the data models (S1–2) to obtain the S–KB. First, we restrict our application to a regulatory
context, and as a result, because of the widely recognized legal precedent of using
observations as enforceable evidence to calculate the DVC (Eq. 1), we treat the vector of
observations ẑo as an exact value for the vector of random variables Zo representing ozone
Z(p) at the set of points po where the observations were taken, i.e. we have Prob.[Zo= ẑo]=1,
and we will thereafter refer to ẑo as the “hard” data. Second, we do not restrict the complex
stochastic relationship between model prediction Z ̃(B) and ozone concentration Z(p) to the
Gaussian linearized model (S2). Instead, we refer to the vector of model prediction values z̃m
as soft data for the vector of random variables Zm representing ozone Z(p) at the set of
points pm corresponding to the centroid of the computational nodes {B} for which the model
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predictions were obtained. In other words, we do not make any restrictive assumptions about
the PDF fS(zm) characterizing Zm given knowledge provided by the model predictions z̃m.

Hence, overall, the knowledge bases considered consist of G = {μ(.,β), cZ(.,θ)} and S = {ẑo,
fS(.)}. In this case the BME fundamental set [25] of equations (2) reduces to

(3)

where fG (z) = eμTg(z) is the multivariate Gaussian PDF for (Zk,Zo,Zm) obtained from the G–
KB, z = (zk, ẑo, zm) is a realization of (Zk,Zo,Zm), ẑo is the hard observed data, zk and zm are
dummy variables that can take any value, fS(zm) is the (generally non-Gaussian) PDF of Zm
given knowledge of the soft data z̃m, and the normalization constant is A = ∫dzk ∫dzm fS(zm)
fG(z). When the parameters (β,θ) are known, fG (z) is simply equal to a multivariate normal
PDF with mean and covariance given by (β,θ), i.e. fG (z) = f(z | β, θ, ẑo), where the
conditioning on ẑo was noted to reflect that these values are known. When (β,θ) are not
known, we can remove the conditionalization on these parameters by taking the marginal
PDF of f(z, β, θ | ẑo) = f(z | ẑo, β, θ) f(β, θ | ẑo) with respect to z, which leads to

(4)

where f(β, θ| ẑo) is fully defined by the likelihood f (ẑo | β, θ) and some prior PDF f(β, θ) for
β and θ. However we found through simulations that the approximation

(5)

where (β ̂,θ ̂) are estimates of (β,θ), is reasonable (SI section 2). Since there is no noticeable
numerical difference between Eqs. (4) and (5), we use Eq. (5) with least square estimates (β ̂,
θ ̂) that are found to be physically meaningful from the exploratory analysis of the observed
data ẑo.

Eqs. (3) and (5) provide a solution to our problem once we specify how we obtain fS(zm)
from the soft data z̃m, which we present next.

2.4 Generation of the PDF characterizing the performance of the air quality model
The PDF fS(zm) essentially characterizes how well the air quality model predicts observed
ozone values. As explained above, fS(zm) is the PDF for Zm conditional solely on the
knowledge of the model predictions z̃m, hence, we may write

(6)

where nm is the number of computational nodes, f (zi | z̃i, pi) s the PDF for the ozone
concentration Zi at the centroid pi ∈ pm of a particular computational node Bi ∈ {B}, zm is a
vector of size nm and with value zi at the i-th computational node, z̃i is the computer model
prediction at the i-th node, and the conditioning is made explicit on the space/time location
pi to indicate that the performance of the air quality model may vary across space or time.
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As explained above, a key conceptual aspect of our work is that our proposed framework
does not impose any restriction on the form of the PDFs f(zi | z̃i, pi). This is an important
advantage over approaches restricted to using normal distributions, which as noted by Riccio
et al. [6], can be a problem because they may allow negative ozone concentrations that
cannot occur in reality.

Our approach is to use a parameterized statistical distribution f(zi | z̃i, pi) = Φ(zi; λ(z̃i, pi)),
where Φ(.) may be an exponential, truncated normal, Johnson SBB, etc. distribution with
parameters λ = (λ1,λ2, …). Then, the problem becomes that of estimating λ(z̃i, pi) rather than
f(zi | z̃i, pi).

An analysis of observations and their model predictions in our datasets indicated that a good
choice for Φ(.) is the normal distribution truncated below zero (Fig. S7) with an expected
value λ1 and variance λ2 that are only a function of model prediction (i.e. there was no
evidence that the prediction errors changed across space/time). Hence without loss of
generality, we can assume that

(7)

where Φ(.) will thereafter refer to the normal distribution truncated below zero.

Estimators for λ1(z̃i) and λ2(z̃i) are

(8)

where only co-located observed and model (ẑi and z̃i) values are considered, no(z̃i) is the
number of observed values ẑj throughout the study area for which the co-located model
prediction value z̃j was within some tolerance Δz of z̃i, i.e. such that z̃i − Δz ≤ z̃j ≤ z̃i + Δz. A
small tolerance Δz was selected and progressively increased so as to eliminate the noise in
the λ ̂1(z̃i) and λ ̂2(z̃i) relationships.

Hence Eqs. (6–8) provides the soft data PDF fS(zm) needed to calculate the BME posterior
PDF fK(zk) (Eq. 3 and 5) of the ozone concentration Zk at any estimation point sk of interest,
from which the expected value  provides a BME estimate of ozone concentration that is
relevant for the calculation of the DVC (Eq. 1) in a regulatory spatiotemporal context, and
the standard deviation  provides an assessment of associated estimation uncertainty.

2.5 Cross-Validation
Cross-validation is used to compare the accuracy of different BME estimation scenarios.
Each observed value ẑj at space/time point pj=(sj,tj) is considered one at a time, and the
corresponding ozone concentration Zj is re-estimated using only non collocated data outside
of a radius rv of sj, i.e. none of the data collected any time within a radius of sj is considered
in the estimation of Zj. The cross-validation estimate  obtained is a function of the
cross-validation radius rv. The cross-validation errors  can then be
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summarized in terms of their mean square error MSE(rv) equal to the arithmetic average of
estimation errors squared, i.e.

(9)

where no is the number of observed ozone values ẑj throughout the study domain. MSE(rv)
varies as a function of the cross-validation radius rv considered. We are particularly
interested to learn how an estimation scenario performs when estimating the ozone
concentration away from any monitoring station, which we may do by calculating MSE(rv)
for large cross-validation radii rv.

Using the cross-validation MSE we compare two estimation scenarios consisting in scenario
(a) using ozone observations only and scenario (b) using both observations and model
predictions. We let MSEh and MSEs be the mean square error for scenario (a) (hard data
only) and scenario (b) (hard and soft data), and we define the percent change in mean square
error PCMSE as

(10)

A negative PCMSE indicates a decrease in MSE, which corresponds to the percent
improvement in estimation accuracy resulting in integrating model predictions in the
estimation of the ozone concentration. (See SI section6 for significance test derivations).

3. Results
3.1. Mean trend model

As described above, the mean trend model μ(p;β)=E[Z(p)] is a function of space and time
parameterized on β that captures systematic trends in ozone concentration. A simple
approach is to model this mean trend as a function of some covariates, e.g. a polynomial
function of latitude, longitude and time. However, similarly to Riccio et al.[6], we found that
that simple mean trend model was not adequate because it failed to capture large area spatial
and temporal patterns. We found that a better model for the mean trend is

(11)

where μs (s; βs) captures consistent geographical trends in ozone concentration, μt (t; βt)
captures the strong statewide daily cyclic pattern in ozone concentration, and μ′ (p; β′) is a
polynomial function of space and time. We obtain μs (s; βs) and μt (t; βt) using an
exponential kernel smoothing of the time-averaged and spatially-averaged data. Following
Akita et al.[26], an exploratory analysis was used to select kernel smoothing parameters
resulting in a physically meaningful mean trend model (see for e.g. Fig. S3). We then found
no evidence that adding a space/time polynomial function μ′ (p; β′) decreases the cross
validation MSE, so we set μ′ (p; β′) =0.
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Three stations located in eastern NC mountainous areas were shown to be governed by very
specific and localized inversed ozone cyclic patterns, and were subsequently excluded from
the analysis. Once these areas were removed, the mean trend model selected, illustrated in
Fig. S3 for a single station, was found to provide a good representation of systematic trends
for our study domain.

3.2. Space-time covariance model
According to the “process” model (Eq. S3) extended to the space/time continuum, Z′
(p)=Z(p)−μ(p;β) is a zero-mean residual S/TRF with space/time covariance function cZ(p,p
′;θ)=cov(Z(p),Z(p′)) parameterized on θ. Since μ(p;β) captures the non-homogenous/non-
stationary trend in ozone, it is reasonable to assume that the covariance is homogeneous/
stationary, i.e. that the covariance between points p=(s, t) and p′ =(s′,t′) is only a function of
the spatial lag r=||s−s′|| and the temporal lag τ =|t−t′|;

(12)

Examination of the residual data ẑj − μ(pj, β), j=1,…,no did not provide any evidence
rejecting this covariance model.

Using Eq. (12) we obtained experimental covariance values cZ(r, τ) which we then used to
fit a space/time separable covariance model, detailed in SI section3.

3.3. Stochastic analysis of the air quality model performance
The model performance analysis (Fig. 2) shows that the photochemical air quality model on
average underestimates the measured values for very low ozone concentrations, and on
average overestimates values for levels above approximately 0.03ppm. However at low
levels fewer data points exist and they are widely dispersed. Fig. 2 illustrates the steps
described in the methods section (Eqs. 7–8) to obtain the PDF f (z | z̃) describing ozone
concentration z given a model prediction value z̃. (see Fig. S6 for the corresponding variance
var[Z| z̃]). These PDFs are then used in Eq. (6) to construct the soft data PDF fS(zm). We
note that higher predicted ozone levels (above approximately 0.07ppm) have lower error
variance, so that greater confidence can be assigned to the soft data generated using these
values.

3.4. Ozone estimates

Maps of the BME mean estimate of hourly ozone concentration  are obtained for the two
estimation scenarios: (a) using observations only and (b) using both observations and model
predictions, as shown in Fig. 3 for hour 250. It can be seen from this figure that ozone levels
in the immediate proximity of the monitoring stations (‘x’ marks) are the same in both maps,
but then the concentration gradient is steeper moving away from the stations for estimation
scenario (b), resulting in levels dropping lower far away from any stations.

Corresponding BME error variance maps are shown in Fig. S8. We find that the two
scenarios provide quite different results, with error variances remaining relatively low in
areas where no stations exist for the estimation scenario (b) (except on the map borders
where the model predictions are not available). Thus, estimates of ozone away from
monitoring stations are found to be more accurate (and substantially different) when
integrating both observations and model predictions.
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3.5. Cross-validation
Fig. 4 and Table 1 show the percent change in MSE (Eq. 10) as a function of cross-
validation radius rV. Let’s consider first the Fig. 4 curve labeled “cut=0ppm”, which
includes all observations in the cross-validation dataset. As can be seen, the PCMSE is
consistently negative, indicating that integrating both observations and model predictions is
consistently more accurate than relying solely on observations. Furthermore, the percent
reduction in MSE consistently improves as rV increases: there is only a 1.5% reduction in
error for rV=1.5km, while there is at least a 28% reduction in error at locations more than
100 km away from a monitoring station. The MSE reduction is highly significant (p-
value<0.0001) for rV ≥ 30 km (Table 1).

We found that the reduction in MSE was even greater when restricting our cross-validation
to high ozone observations, as illustrated in Fig. 4 for observations greater than 0.04ppm and
0.07ppm. This was expected since the air quality model was shown to perform better for
higher concentrations.

3. Discussion
We have presented an ozone mapping approach that integrates predictions weighed
according to model performance and observations treated as an error-free proxy for ozone
concentration. This framework uses observations as hard data, and uses model predictions to
construct soft data (Eqs. 6–8). We thus produce estimates that put priority on observations
and take advantage of model prediction only to the extent that they are deemed accurate with
respect to observed values. Importantly in this regulatory context, spatial fields generated
provide an observation-driven representation of ozone across space/time that is more
accurate and precise than those produced using observation data only, especially for
locations distant from monitoring stations and at higher concentrations. A strength of our
approach is that the mapping error variance can reflect various forms of uncertainty –such as
distance to monitoring stations and variance in model performance as a function of ozone
prediction levels (Fig. S5), so that the mapping accuracy is meaningful everywhere. The
better performance of the model is explained by the historical purpose of grid-based air
quality models developed to study extreme events, i.e. periods of high air pollution. In fact,
guidelines for evaluating air quality model performance for ozone typically used a cutoff
value of 60 ppb in the past[27]. Since this application the model has been updated to
perform better during low observed concentrations[28], and could be integrated in future
work.

To assess implications in determining ozone attainment areas, we performed additional
analyses (SI section7) in which we find clear consistency between the two estimation
scenarios in determining the core of non-attainment areas, and disagreements on the extent
of the area in non-attainment. Our results validate concerns regarding an observed-ozone
spatial interpolation methodology to assess current design values (DVC). In un-monitored
areas where interpolation gives an artificially high DVC, if no major sources are present and
thus predicted ozone reductions are relatively insignificant the relative response factors are
necessarily close to 1. This would make future compliance difficult to demonstrate if the
DVC is above the standard, since, applying Eq (1), the future design value would be close to
the DVC.

Further, the BME methodology offers information on the precision of ozone estimates,
providing opportunities for more tailored approaches to ozone compliance (see illustrations
of probability of attainment scenarios in SI section7). The EPA could reward greater
precision, useful in particular for developing targeted health-protective policies, by
establishing criteria for granting reclassification requests based on the level of confidence
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associated with estimates. In addition, the error variance assessment can be particularly
useful for designing the spatial distribution of monitoring networks. Such considerations are
particularly relevant in the context of the current ozone NAAQS review process which may
include modifications in the monitoring network design [2].

Finally, our data integration framework provides a novel approach to account for the
complex non-Gaussian, non-linear stochastic relationship between observed values and
model predictions. One limitation of our current application is the 4-km grid resolution of
the air quality model, too low to assess exposures near scavenging sources. To study ozone
impacts near roadways and high traffic densities using models at this resolution, one can use
sophisticated techniques such as variable-grid resolutions or adaptive grid resolutions in air
quality models, where the grid resolution can be a lot finer than 1-km, perhaps in the
hundreds of meters range. There is no limitation in the type of information the BME
framework may integrate, hence it would be an interesting future application to develop
higher resolution ozone maps using such models. Similarly, the methodology could usefully
be applied for health assessments or regulatory purposes to other criteria pollutants that are
routinely monitored, extensively modeled, and display spatial-temporal patterns. Particulate
matter, for example, is of great health concern and is strongly influenced by emission
sources, and as such would benefit from our mapping approach.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Observed and model prediction of ozone concentrations (ppm) across North Carolina at hour
250 of the study period. The background color depicts model predictions at a 4×4km grid
resolution. Triangles represent concentrations observed at monitoring stations.
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Figure 2.
Dots show ozone observed values ẑj against their colocated model prediction values z̃. The
stars-and-dashed lines show the estimator λ ̂1(z̃) (Eq. 17) of the expected value E[Z| z̃] of
observed ozone concentration given a model prediction z̃. The four PDFs shown are
truncated normal PDF representing f (z | z̃) (Eq. 16) for z̃ =(0.02, 0.05, 0.08 and 0.11ppm).
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Figure 3.
BME mean estimate of ozone (ppm) at hour 250 obtained for two estimation scenarios
consisting in (a) using ozone observations only and (b) using both ozone observations and
model predictions, for hour 250. Monitoring stations are represented by “x” marks.
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Figure 4.
Percent change in mean square error PCMSE (Eq. 19) shown as a function of cross-
validation radius rV. Each curve corresponds to the PCMSE calculated using only
observations above a given cutoff (0ppm, 0.04ppm, and 0.07ppm) of all observations values.
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Table 1

Statistics to compare estimation methods using hard and soft data versus using hard data only. The analysis
uses a constant mean trend, and compares statistics for different cross-validation radii of exclusion points

Stat rv=10 rv=30 rv=50 rv=100

MEs −1.1407E-03 −1.0634E-03 −9.1051E-04 −8.9985E-04

MEh −4.5917E-04 −2.7240E-04 5.0473E-05 1.6704E-04

MSEs 2.5634E-04 2.8936E-04 3.3093E-04 4.1262E-04

MSEh 2.6021E-04 3.1216E-04 3.9202E-04 5.7070E-04

PCMSE −1.4863 −7.3057 −15.5833 −27.6988

MaxRE −27.2217 −27.2217 −33.8706 −44.2374

Pval 0.2117 <0.0001 <0.0001 <0.0001

P01 4.6512 13.9535 18.6047 74.4186

P05 13.9535 23.2558 44.1861 90.6977

P1 16.2791 27.9070 53.4884 100.0000

rv is the cross-validation radius (km) around monitoring stations within which all observation points are excluded in the cross-validation estimation

MEs is the mean error using soft data

MSEs is the mean square error using soft data

MEh is the mean error using hard data only

MSEh is the mean square error using hard data only

PCMSE is the percent change in mean square error = (MSEs-MSEh)/MSEh*100;

MaxRE is the maximum achieved relative reduction error at a station (soft compared to hard)

Pval is the p-value testing the hypothesis that there is no difference between the mean square errors using soft vs. hard data

P01 is the percentage of stations with a significant reduction in error with a p value less or equal to 0.01

P05 is the percentage of stations with a significant reduction in error with a p value less or equal to 0.05

P1 is the percentage of stations with a significant reduction in error with a p value less or equal to 0.1
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