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Abstract
Escherichia coli (E.coli) is a widely used indicator of fecal contamination in water bodies. External
contact and subsequent ingestion of bacteria coming from fecal contamination can lead to harmful
health effects. Since E.coli data are sometimes limited, the objective of this study is to use secondary
information in the form of turbidity to improve the assessment of E.coli at un-monitored locations.
We obtained all E.coli and turbidity monitoring data available from existing monitoring networks
for the 2000 – 2006 time period for the Raritan River Basin, New Jersey. Using collocated
measurements we developed a predictive model of E.coli from turbidity data. Using this model, soft
data are constructed for E.coli given turbidity measurements at 739 space/time locations where only
turbidity was measured. Finally, the Bayesian Maximum Entropy (BME) method of modern space/
time geostatistics was used for the data integration of monitored and predicted E.coli data to produce
maps showing E.coli concentration estimated daily across the river basin. The addition of soft data
in conjunction with the use of river distances reduced estimation error by about 30%. Furthermore,
based on these maps, up to 35% of river miles in the Raritan Basin had a probability of E.coli
impairment greater than 90% on the most polluted day of the study period.

Introduction
Fecal Indicator Bacteria in River Systems

Fecal indicator bacteria (FIB) provide important health and ecological information for many
river basins. Although FIB’s themselves are not harmful, their presence in streams suggests
that pathogenic microorganisms might also be present, leading to possible human health risks.
Diseases and illnesses that can be contracted in water with high fecal contamination include
typhoid fever, hepatitis, gastroenteritis, and dysentery (1). The most commonly tested FIBs are

*Corresponding Author: Marc_serre@unc.edu, 919-966-7014 (phone), 919-966-7911 (fax).
Supporting Information Available:
A detailed description of the study area and E.coli and turbidity data is presented in figures S1, S2, table S1. The mathematical steps used
to obtain the flow-connected covariance model are described, and the Ver Hoef et al. (2006) model is shown in figure S3 to be a limiting
case of Eq. 5. Additional figures illustrate the E.coli/turbidity relationship and a summary of all estimation results. Movie S1 shows
E.coli concentrations estimated every day for a subset of the study period. This information is available free of charge via the Internet at
http://pubs.acs.org.
Brief:
This study combines E.coli and turbidity data in a river-based space/time geostatistical framework to provide a more accurate basin-wide
assessment of fecal contamination.

NIH Public Access
Author Manuscript
Environ Sci Technol. Author manuscript; available in PMC 2010 May 15.

Published in final edited form as:
Environ Sci Technol. 2009 May 15; 43(10): 3736–3742.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345208094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pubs.acs.org


total coliforms, fecal coliforms, Escherichia coli (E.coli), and enterococci. E.coli is a species
of fecal coliform that is specific to fecal material from humans and other warm blooded animals.
Based on studies conducted by the Environmental Protection Agency (EPA), E.coli is the best
indicator of health risk from water contact in recreational waters (2). Therefore many states
are now measuring E.coli instead of total coliforms to assess streams for fecal contamination.
However, due to the limited scope of existing monitoring networks, budget limitations, and
manpower constraints, it is difficult to assess all river miles. The purpose of this study is to
examine the use of a modern spatiotemporal geostatistics technique, known as Bayesian
Maximum Entropy (BME), to statistically assess E.coli’s presence in both monitored and un-
monitored streams using not only existing E.coli data but also integrating secondary
information in the form of turbidity measurements to further improve the mapping of basin-
scale fecal indicators.

Autocorrelation in E.coli
Geostatistical techniques such as kriging rely on the fact that many natural phenomenon exhibit
spatial autocorrelation. Monitoring stations along the same stream, for example, tend to report
similar physical and chemical characteristics. Kriging methods construct a regional model of
correlation to estimate variables, such as E.coli, at un-sampled locations based on data from
sampled locations (3–5). Cokriging, subsequently, uses not only the spatial correlation of a
single variable, but also the correlations associated with other environmental variables. There
have been numerous examples of cokriging for environmental variable estimation ranging from
soil salinity, suspended sediment, and rainfall, to regional stream quality (6–9). It is most
beneficial where the primary variable is under-sampled with respect to the secondary variable,
as is the case for this study when examining E.coli and turbidity as secondary information.
Generally the inclusion of secondary information results in more accurate local predictions
than when considering a single variable alone (6,10).

A more general approach, and the approach used in this study, to estimating at un-sampled
locations is the BME method of modern space/time geostatistics (11). This method accounts
for both spatial and temporal correlations between data points. BME has been successfully
applied to a variety of environmental issues, including water quality (12–13). As demonstrated
in these studies, BME presents the flexibility of providing the space/time kriging methods as
its linear limiting case, while it can be expanded to a non-linear estimator if other non-linear
knowledge bases (e.g. soft data, non Gaussian distribution, etc.) need to be considered. In
addition, the BME approach has recently been updated with river-based functionality to
incorporate river distance instead of the typical Euclidean distance when dealing with river
parameters. Several studies have noted that river distances might provide more appropriate
models for the spatial autocorrelation of water quality along river networks (9,12). Therefore
a major component of this study is to determine whether the use of river distances along with
turbidity as a secondary variable, improves our estimation of E.coli for un-monitored stream
reaches.

Turbidity and E.coli
Turbidity is the expression of the optical property that causes light to be scattered and absorbed
rather than transmitted with no change in direction of flux level through the sample (14).. It is
related to E.coli concentration in that research has shown that FIBs are oftentimes associated
with particulate matter in the water column and transport of fecal bacteria via suspended
sediments is an important aquatic mechanism (1,15). Numerous studies have examined the
relationship between turbidity and E.coli and found significant correlation between both
parameters (16–19). Our study area contained a larger number of measured turbidity values
relative to E.coli, therefore turbidity was chosen as a secondary variable.
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Experimental Section
Study Area and Data

The area under investigation is the Raritan River Basin in north-central New Jersey (Figure
S1). The basin is 1100 square miles and consists of 36% urban, 19% agriculture, 27% forest,
and approximately 17% wetland/water land uses. Approximately 1.2 million people live within
this basin and both fecal coliforms and turbidity have been cited as major resource concerns
(20). Water quality data for the Raritan Basin was obtained through the National Water
Information System (NWIS), maintained by the United States Geological Survey (USGS) for
the period January 1, 2000 – December 30th, 2007. A total of 44 monitoring stations provided
579 space/time data points for measured E.coli while 118 monitoring stations yielded 739
measurements of turbidity for the study period. E.coli data were log-normally distributed with
a mean of 5.4 log-colony forming units (cfu)/100mL.

Generation of Soft Data
One of the primary goals of this research is to introduce a secondary variable, in the form of
turbidity, to predict E.coli concentrations in areas where there are no direct E.coli
measurements. These predicted values are referred to as ‘soft’ data because of the uncertainty
associated with the predicted values. There are two types of soft data employed in this study,
probabilistic and interval. To construct the probabilistic soft data, we used a total of 27
collocated samples of turbidity and E.coli. First, a simple linear regression was performed using
log-transformed data to determine an initial correlation (r-squared = 0.54) which was consistent
with other studies relating turbidity to E.coli or fecal coliform concentration (16–19). Because
of the limited number of collocated points and relatively low values of turbidity represented,
the final least squares predictive model for E.coli is a continuous piecewise function containing
the linear relationship along with a polynomial model of order 2 to reduce overestimation of
E.coli at extremely high turbidity values :

(1)

where log-E.coli is expressed in log-cfu/100mL, and log-turbidity (z) is expressed in log-NTU.
Using this relationship the log-E.coli prediction error variance was calculated using the mean
of the squared differences between predicted and measured log-E.coli for a series of given
windows of log-turbidity values. Finally, for every space/time point where log-turbidity (but
not necessarily log-E.coli) was measured, a Gaussian probability distribution function (PDF)
was constructed for log-E.coli with a mean given by (1) and a variance corresponding to the
prediction error variance at the measured log-turbidity. This mean and variance were then used
to construct soft log-E.coli data of Gaussian probabilistic type at 739 space/time points.

We also accounted for the uncertainty associated with the direct measurements of low levels
of E.coli. The data downloaded from the USGS use the membrane filtration (m-Tec) method
for bacteria enumeration and several intercalibration studies suggest ± 0.5 log as a working
point to account for measurement error (21–22). Therefore, for any measured log-E.coli < 2
log-cfu/100mL in this study, interval soft data were introduced in the general form of equation
(2), where a = measured log-E.coli − 0.5 and b = measured log-E.coli + 0.5. This resulted in
an additional 15 soft data points.

(2)
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Bayesian Maximum Entropy Framework
To integrate the soft data with the measured log-E.coli values and then estimate at un-monitored
locations, the BME method of modern space/time geostatistics is used. BME provides a
rigorous mathematical framework to process a wide variety of knowledge bases characterizing
the space/time distribution and monitoring data available for log-E.coli, and obtain a complete
stochastic description at any un-monitored space/time point in terms of its posterior PDF. The
BME method was introduced by Christakos (11), and a detailed description of the conceptual
underpinnings of the BME framework are provided in Christakos (23–24), while its BMElib
numerical implementation is described in Serre et al. (25), Serre and Christakos (26) and
Christakos et al (27). BMElib version 2.0b with river functionality was used in this analysis.
It was written using the MATLAB® R2000a programming platform. Details about the
implementation of river distance calculations in BMElib are provided in Money et al. (28). The
BME procedure consists of defining the general knowledge (i.e. covariance), site specific
knowledge (i.e. monitoring data), and integrating the two to calculate a posterior PDF. Site
specific knowledge includes both hard data (e.g. measured values) and soft data (i.e. log-
E.coli predictions based on turbidity). By way of summary, BME uses the maximization of a
Shannon measure of information entropy and an operational Bayesian updating rule to process
the general and site specific knowledge bases, and obtain the posterior PDF describing log-
E.coli concentration at any un-sampled point of the river network.

Covariance Model Selection
An important aspect of this work is to select a covariance model that uses river distances. We
restricted our mapping analysis to rivers that can be represented by a directed tree consisting
of a set of downstream-combining stream reaches (Fig 1), which is highly relevant for the
Raritan River considered in this study. Each stream reach is identified by a unique stream reach
index i, and we let V be the set of all stream reach indexes; V={1,2,…}. We define the
longitudinal coordinate l of a point on the river network as the length of the continuous line
connecting the river outlet to that point along the river network (by convention, negative l
values represent fictitious locations downstream of the outlet). A point r=(s,l,i) on the river
network is uniquely identified by either its spatial coordinate s=(s1,s2); or its river coordinate
(l,i) identifying the longitudinal coordinate l and the reach index i where the point is located
(Fig 1). Using this convention to define points along a river network, we consider two classes
of covariance models that incorporate river distances.

The first class of models to consider are isotropic river covariance models, which can be
expressed as a function of the distance between two points r and r’, i.e. cov(r,r’)=c(d(r,r’)),
where d(r,r’) is a distance metric. An important member of this class is the isotropic
exponential-power river covariance model introduced by Money et al. (28–29)

(3)

where dα(r,r’)=αdR(r,r’)+(α−1)dE(r,r’) is a linear combination of the river distance (i.e.
shortest length along the river connecting r and r’) dR(r,r’) and the Euclidean distance (i.e.
straight-line distance) dE(r,r’), and ar is the overall spatial range. This covariance model is
permissible for any directed tree river network for (α=0,β∈[0,2]) or for (α=1,β =1) (28–29).

Another important class of river covariance models are flow-connected covariance models,
which are a function of both river distance and flow. We introduce here a novel (although
modest) generalization of the flow-connected covariance model introduced by Ver Hoef et al.
(30). We let ω(r) be a positive density function characterizing the flow entering the river per
unit stream length along the river network, and we refer to its corresponding flow function Ω
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(r) as its integral along all flow lines upstream of r, i.e. , where is U(r) is
the set of points upstream of r, and l(u) is the longitudinal coordinate of point u. The density
function ω(r) may be obtained from overland flow discharge if that information is available,
or from a proxy such as contributing watershed area, or it may be set to a constant value. When
ω(r) is non-zero throughout the river network, the resulting flow function Ω(r) varies with r,
as illustrated in Fig 1. Combining ideas introduced in Ver Hoef et al. (30), de Fouquet and
Bernard-Michel (31), and Cressie et al. (32) to construct permissible flow-connected
covariance models, we propose here to define a spatial random field X(r) as

(4)

where W(u) is a white noise process, Y(l) is a zero mean random process on R1 with covariance
cov(Yi(l),Yi(l’))=c1(h), h=|l−l’|, and c1(h) may be any permissible covariance function in R1.
The covariance of X(r) provides a permissible covariance model given by (see supporting
information for detailed steps)

(5)

where Ω(r,r’)=Ω(r)/ Ω(r’) if r is upstream of r’, and Ω(r,r’)=0 if r and r’ are not flow-connected.
Ω(r,r’) is a number between 0 and 1 that quantifies the flow connection between r and r’. As
shown in supporting information, the flow-connected covariance model introduced by Ver
Hoef et al. (30) corresponds to the limiting case of Eq. (5) where the flow function is constant
along each reach, i.e. Ω(r)= Ω(i(r)), and is additive at each junction so that

, where i(r) is the reach index of point r=(s,l,i), and Vr(∞) is the set of
the indexes of the leaf reaches (i.e. stream reaches at the upstream ends of the river network)
feeding into r. Our covariance model (Eq. 5) adds the flexibility to consider flow functions Ω
(r) that increase along any given stream reach. For example, as shown in Fig. 1, this added
flexibility allows our flow-connected covariance model (Eq. 5) to account for overland flow
discharge between points r’ and r”, as well as the flow contribution of the small river reach
(shown in dotted lines) that was ignored in the representation of the river network. This is
illustrated by the fact that Ω(r’)< Ω(r”) in Fig. 1, even though r’ and r” are on the same reach.
This generalization of Ver Hoef et al. (30) covariance model is useful in situations where there
are several monitoring data points along the same stream reach.

An obvious advantage to using flow-connected models is that they incorporate flow
connectivity into the model of autocorrelation. However, as noted by Peterson and Urquhart
(33), setting the covariance to zero when points are not flow-connected may be a hindrance if
very few monitoring sites are flow-connected, leading to less informed estimation maps than
those produced using an isotropic covariance model. In the case of log-E.coli in the Raritan
Basin, considering a spatial range equal to the area of the basin itself, on average only 1.6 data
points were flow-connected. Therefore an isotropic covariance model was chosen to estimate
log-E.coli in the Raritan Basin. The final model used in this study for the space/time covariance
of log-E.coli between space/time points p=(r,t) and p’=(r’,t’) is

(6)
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where t and t’ are times, h=dα(r,r’) and τ=|t-t’| are the spatial and temporal lags, respectively,
and ar and at refer to the overall spatial and temporal ranges, respectively. In this study we
used either α=0 (Euclidean distance) or α=1 (river distance).

Comparing River and Euclidean Based Estimation
A comparison was made between estimations using river distance, as described above, and
estimation using the typical Euclidean distance, alongside the incorporation of soft data from
measured turbidity. Cross-validation tests were performed on three different scenarios to
determine the best model for estimating basin-wide log-E.coli. Each data point was removed
sequentially and re-estimated using the remaining space/time data points. The Mean Square
Error (MSE) is calculated as the sum of the squared differences between re-estimated and
measured values. Scenario 1 used the measured log-E.coli data (i.e. the 15 interval soft data
points and all the hard data) with the Euclidean distance. Scenario 2 contained the same data
as scenario 1 except the river distance was used. Scenario 3 built upon scenario 2 by adding in
the turbidity data (incorporated as the soft Gaussian data constructed using Eq. 1). The method
with the lowest MSE was then used in the assessment and estimation of E.coli for the entire
Raritan Basin.

BME Estimation of Basin-wide E.coli
Using the selected distance metric within the BME framework we estimate E.coli at equidistant
estimation points (i.e. distributed at a fixed interval of 0.1km) along the Raritan River Basin
network. The network shapefiles were obtained from the NJDEP, and projected in a geographic
coordinate system (NAD83) using decimal degrees. For visualization purposes, a small buffer
(.01km) was overlaid using a geographic information system. For each estimation point we
select the hard and soft log-E.coli data situated in its local space/time neighborhood, and
calculate the corresponding BME posterior PDF describing log-E.coli at that estimation point.
The variance of the BME posterior PDF provides an assessment of the estimation uncertainty,
while the back-log transform of the mean of the BME posterior PDF is used as an approximation
of the median estimator for E.coli concentrations. This is then used to produce chloropleth
maps of estimated E.coli concentration, and delineate river miles that are more-likely-than-not
impaired.

Assessing Impaired River Miles
In order to better understand the pattern of fecal contamination impairment and better quantify
the probability of these impairments, a criterion-based space/time assessment framework is
used to categorize the fraction of river miles meeting certain probability thresholds, as
discussed in Akita et al. (12). These thresholds give us the ability to classify the probability of
violation of a standard for any space/time estimation point based on the BME posterior PDF
of log-E.coli. We set our standard for E.coli concentration at235cfu/100mL, which is the
standard set by NJDEP for primary contact recreation. Using this standard, the probability of
violation at space/time point p is defined as the probability that E.coli>235cfu/100mL, i.e.

(7)

The fraction of river miles impaired on any given day of the study period is then obtained by
calculating the fraction of equidistant estimation points for which the probability of violation
(Eq. 7) is in excess of some pre-selected probability threshold (e.g. 90%).
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Results and Discussion
Covariance Analysis

Figure 2 shows the covariance cX(h,τ) of log-E.coli obtained for the Raritan Basin. The top
panel displays cX(h,τ=0) which shows how the covariance varies as a function of spatial lag
h for a temporal lag τ equal to 0, while the bottom panel displays cX(h=0,τ) which shows how
the covariance varies as a function of temporal lag for a zero spatial lag. Experimental
covariance values estimated from data are shown with markers, while the covariance models
obtained by fitting Eq. 6 to the markers are shown with lines. The covariance was calculated
and modeled using both a Euclidean distance (dashed line) and river distance (plain line). The
covariance model parameters obtained with the Euclidean and river distances are summarized
in table 1. The first structure of the covariance model (with parameters c01, ar1 and at1) is similar
for both Euclidean and river distance-based models, with 50% of the total variability of log-
E.coli being characterized by a fairly short range of 30–40km in space and 80 days in time.
This could be due to variability we would expect from point-like sources of E.coli pollution
that are not constant and therefore may dissipate over a few months. The second and third
structures of both Euclidean and river covariance models indicate that the remaining 50% of
variability in log-E.coli levels is autocorrelated over longer distances and durations. As noted
before, E.coli, and fecal bacteria in general, is oftentimes associated with suspended sediment
in the water column. Because of this association it is hypothesized that E.coli associated with
suspended sediment remains in the water at high levels for a longer period of time than free
bacteria because sediments are retained along a stream network for long distances (15). This
phenomenon is captured in the longer spatial and temporal ranges of the covariance models.
In the Euclidean based model, the longer range was between 100–200km in space and 200–
500 days in time. Interestingly, for the river based-model, the spatial ranges were anywhere
from 1.5 to 2 times longer (300–400km), suggesting that by accounting for the river connections
between points, E.coli concentrations may remain correlated over much longer distances than
previously considered.

Cross-Validation Analysis
The cross-validation analysis outlined above resulted in mean square errors of MSE1=2.87
(log-cfu/100mL)2 for scenario 1, MSE2=2.57(log-cfu/100mL)2 for scenario 2, and MSE3=1.99
(log-cfu/100mL)2 for scenario 3. Comparing scenario 1 to scenario 2 we see that by using river
distances instead of Euclidean distances we reduce the estimation error by about 10%, which
is similar to the reduction found in a previous study examining dissolved oxygen in the Raritan
Basin (28). If we then add in soft log-E.coli data derived from measured turbidity (scenario 3),
there is an additional 24% decrease in estimation error. Therefore by incorporating river
distances along with soft data from turbidity, the estimation error was reduced by 31% when
compared to log-E.coli estimation using the typical Euclidean distance and no secondary
information. This is one of the first instances in a space/time context that river distances and
secondary information have been combined to significantly reduce estimation error. As a result,
the river-based covariance model was deemed to be the most accurate representation of
E.coli in the Raritan Basin, and was used in the subsequent basin-wide estimation and mapping
of fecal contamination.

Fecal Contamination in the Raritan Basin
Median estimates of E.coli concentration were calculated for every day of the study period
between 2000–2007. A movie showing changes in these estimated concentrations over time
and space can be viewed in supporting information. Figure 3 depicts the E.coli concentration
on May 4th, 2002 and is representative of many of the days in this study. The squares indicate
locations of monitoring stations with measured E.coli values and the chloropleth map shows
areas where the concentration exceeds the single sample standard of 235cfu/100mL. One can
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see from this map and the animation that extremely high E.coli concentrations (> 600cfu/
100mL) can be found along the eastern side of the basin in the North and South Branch and
Lower Raritan watershed management areas (WMA). Over the study period the Lower Raritan
WMA remained consistently contaminated with E.coli well above the state standard for contact
recreation. A large proportion of the Lower Raritan is urban while the NS Branch is a mix of
agricultural/forest/urban (figure S1). Urban areas have a large concentration of potential E.coli
sources, while forested and agricultural areas have fewer controls on surface water inputs,
therefore higher E.coli concentrations may be expected in these areas. In addition, several hot
spots could be identified in the upper Millstone WMA that would appear and then dissipate,
suggesting the occurrence of acute point source contamination in those areas. Figure S1
illustrates the locations of sewage receiving plants that discharge into surface water. A large
cluster of these plants in combination with a high percentage of agricultural land in the
Millstone WMA could potentially explain these hot spots, but further investigation is needed
to identify specific sources and is beyond the scope of this work. It should also be noted that
high E.coli concentrations were estimated in many areas where no monitoring stations existed.
In these areas, additional monitoring strategies may be needed to capture potential harmful
levels of E.coli. On a basin-wide scale, the average daily E.coli concentration was highly
variable, with exceedances spiking in 2003 (Figure S5).

It is also important to assess the confidence in these estimations and describe the probability
that a particular river mile is impaired for E.coli. This information is important for decision-
makers and environmental managers when deciding how to allocate resources and devise
public warnings of fecal contamination. Using the log-E.coli posterior PDF calculated at
regularly spaced estimation points along the Raritan, we calculated for each day of the study
period the percentage of river miles with a probability of impairment (Eq. 7) greater than 90%.
Figure 4 depicts these results for a 300 day window of the study period. The x-axis is the day
of estimation and the y-axis is the percentage of river miles in the Raritan Basin that exceeded
the standard with 90% confidence. The fraction of river miles having a >90% probability of
being impaired was highly variable from one day to another, and reached a maximum of 35%
on the most polluted day of this time period. Figure 4 and Figure S5 show a similar trend toward
high E.coli concentrations in late 2003/early 2004, suggesting larger than normal influences
on E.coli emissions. Vidon et al. (18) suggest that discharge and precipitation are the best
indicators of E.coli loading, they also found loading tended to be higher in the winter/spring,
which may help to account for the higher than normal readings estimated in the Raritan basin
for this time period. Further analysis of precipitation and discharge patterns would help to
quantify these potential influences in the Raritan. In addition, a majority of E.coli
measurements were taken in the summer months, while turbidity measurements occurred
throughout the year, which provides crucial secondary information during the high E.coli
winter months and may further explain the accuracy improvement that we obtained.

It should be noted that our geostatistical model can be applied to a variety of basins with varying
data density; however, too few data can affect the covariance calculations. A minimum of 10–
50 data points should exist to construct a correlation model, and depending on the size of the
watershed, more points may be necessary. A larger watershed with large datasets may also be
numerically challenging, something that will be expanded upon in future work. Overall this
study provides a unique spatiotemporal framework for incorporating river distances and
secondary information into the basin-wide assessment of water quality. Accuracy has been
improved by over 30% when combining river distances and turbidity as an indicator of
E.coli concentration. By constructing our model in this way, we are better able to estimate
E.coli along un-monitored stream segments, thereby increasing the overall number of river
miles assessed and providing environmental managers with accurate maps that not only show
the spatial and temporal distribution of E.coli but that can also highlight areas of concern, which
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can be useful when evaluating future monitoring strategies and allocating state and local
resources.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Directed tree river network represented by 3 stream reaches numbered in circles. The small
stream reaches shown in dotted lines have been ignored in this representation. Points r’=
(s’,l’,i'=1) and r”=(s”,l”,i”=1) are on reach 1, and point r=(s,l,i=2) is on reach 2. The flow
function Ω(r) is shown varying as a function of r.
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Figure 2.
Spatial (top) and temporal (bottom) covariance for E.coli in the Raritan Basin
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Figure 3.
Estimation of E.coli(cfu/100mL) on May 4, 2002 in the Raritan Basin. The NJ standard for
E.coli is 235cfu/100mL. NS=North/South Branch WMA; ML=Millstone WMA; LR=Lower
Raritan WMA.
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Figure 4.
Percentage of river miles with a probability of impairment > 90%. Impairment = exceeding
the single sample standard of 235 cfu/100mL.
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