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Abstract

Background—Inorganic arsenic is a carcinogen whose mode of action may involve telomere 

dysfunction. Recent epidemiological studies suggest that chronic arsenic exposure is associated 

with longer telomeres and altered expression of telomere-related genes in peripheral blood. In this 

study, we evaluated the association of urinary arsenic concentration with expression of telomere-

related genes and telomere length in Bangladeshi individuals with a wide range of arsenic 

exposure through naturally contaminated drinking water.

Methods—We used linear regression models to estimate associations between urinary arsenic 

and array-based expression measures for 69 telomere related genes using mononuclear cell RNA 

samples from 1,799 individuals. Association between arsenic exposure and a qPCR-based 

telomere length was assessed among 167 individuals.

Results—Urinary arsenic was possitively associated with expression of WRN, and negatively 

associated with TERF2, DKC1, TERF2IP and OBFC1 (all P < 0.00035, Bonferroni correction 

threshold). We detected interaction between urinary arsenic and arsenic metabolism efficiency in 

relation to expression of WRN (P for interaction = 0.00008). In addition, we observed that very 
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high arsenic exposure was associated with longer telomeres compared to very low exposure 

(P=0.02).

Discussion—Our findings suggest that arsenic’s carcinogenic mode of action may involve 

alteration of telomere maintenance and/or telomere damage. This study extends our knowledge 

regarding the effect of arsenic on telomere length and expression of telomere-related genes.

1. Introduction

The telomere is a tandem repeat sequence (TTAGGG)n at the end of human chromosomes 

that binds a protein complex to protect chromosome ends from erosion and chromosome 

fusion events. In differentiated cells, the telomere sequences shorten with each cell division 

due to the “end replication problem” (Olovnikov, 1973), eventually triggering senscence. In 

stem cells, telomere length is maintained by telomerase, but length grandually decreases 

over the lifecourse (Finkel et al., 2007; McEachern et al., 2000). Telomerase activity is low 

or absent in most differentiated cells, resulting in a finite capacity for replication. Short 

telomere length in peripheral blood leukocytes is often considered a general biomarker of 

aging (Butler et al., 2004), but both shorter and longer telomeres have been associated with 

risk of a number of chronic diseases (Cawthon et al., 2003; Fitzpatrick et al., 2007; Sanders 

et al., 2012) and cancers (Han et al., 2009; Nan et al., 2011a; Shen et al., 2011; Stewart and 

Weinberg, 2000; Zimmermann and Martens, 2008).

As a potential biomarker of cancer risk, telomere length may be influenced by cancer-

causing agents, such as arsenic. Exposure to inorganic arsenic through contaminated 

drinking water affects >100 million people worldwide (Ravenscroft et al., 2009), and 

chronic exposure to high levels (e.g., >300 µg/L in drinking water) shows clear association 

with increased risk for cancers of the lung (Celik et al., 2008), bladder (Mink et al., 2008), 

liver (Liu and Waalkes, 2008), skin (Yu et al., 2006), and kidney (Chen et al., 1992; Yuan et 

al., 2010). The mechanisms by which arsenic contributes to carcinogenesis are not entirely 

understood. Arsenic is not believed to directly damage DNA (Basu et al., 2001), and a 

variety of potential modes of action for arsenic toxicity have been proposed (Bhattacharjee 

et al., 2013; Hughes, 2002; Hughes et al., 2011; Kitchin, 2001; Schoen et al., 2004). These 

include oxidative stress, reduced DNA repair capacity, and increased cell turnover due to 

cytotoxicity, all of which could potentially damage telomeres.

Experimental studies suggest that arsenic has dose-dependent effects on telomere length and 

telomerase. Studies of cell lines (Zhang et al., 2003), animal models (Liu et al., 2003), and 

human cells (Ferrario et al., 2009) indicate that arsenic reduces telomere length at high 

concentrations (>1 µM), decreasing cell survival, but may increase telomerase activity and 

main telomere length at lower concentrations (<1 µM) (increasing survival). Recent 

epidemiological studies suggest that chronic arsenic exposure is associated with longer 

telomeres in peripheral blood leukocytes (Chatterjee et al., 2014; Li et al., 2012) and 

increased expression of telomerase (Mo et al., 2009b), although few studies have addressed 

these research questions in human populations. In the present study, we estimated the 

association between arsenic exposure and expression of 69 telomere-related genes in 

mononuclear cells among 1,799 Bangladeshi individuals. We also estimate the association 
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between arsenic exposure and telomere length in peripheral blood in separate sample of 167 

Bangladeshi individuals.

2. Materials and methods

2.1. Study participants

Participants for this work were drawn from two longitudinal studies in Bangladeshi with 

similar source populations: the Bangladesh Vitamin E and Selenium Trial (BEST) (Argos et 

al., 2013) and the Health Effects of Arsenic Longitudinal Study (HEALS) (Ahsan et al., 

2006).

BEST is a randomized chemoprevention trial evaluating the long-term effects of vitamin E 

or selenium supplementation on non-melanoma skin cancer (NMSC) risk and oxidative 

stress. BEST participants(n=7,000) are adult residents in Araihazar, Matlab, and surrounding 

areas in Bangladesh with prevalent arsenic-related skin lesions (Argos et al., 2013). For all 

participants, biological samples were collected at the time of the baseline interview prior to 

dietary supplementation, including urine samples for arsenic measurement and mononuclear 

cells for RNA isolation. 1,799 individuals were randomly selected from BEST for genome-

wide expression profiling.

HEALS is a large prospective cohort study designed to investigate the health effects of 

arsenic exposure through drinking water in a population-based sample of adults in 

Araihazar, Bangladesh. Details of the study design have been published previously (Ahsan 

et al., 2006). At baseline (2000–2002), study interviewers collected information on 

demographic and lifestyle characteristics, conducted clinical examinations, and obtained 

bio-specimens (blood and urine). We measured telomere length among 167 participants 

selected from the extremes of the arsenic exposure distribution to enhance power to detect 

an association. High exposure was defined as arsenic concentration >145 µg/L in water and 

>339 µg/g in urine (measured at baseline). Low exposure was defined as <12 µg/L in water 

and <107 µg/g in urine.

Data for 1,799 BEST participants were used to estimate associations between arsenic 

exposure and gene expression levels. Data on 167 HEALS participants were used to 

estimate the association between arsenic exposure and telomere length.

2.2. Measurements of arsenic in water and urine

In each study, urinary arsenic was measured using graphite furnace atomic absorption 

spectrometry in a single laboratory (Nixon et al., 1991). Urinary arsenic was measured at the 

Trace Metals Core Laboratory at Columbia University, which is a member of the quality 

control program run by Institute de Sante Publique du Quebec and uses their quality control 

samples to standardize the measurements of urinary arsenic. The laboratory has consistently 

measured urinary arsenic concentration with correlation >0.97 for blinded quality control 

samples. Urinary creatinine was measured by a colorimetric diagnostics kit (Sigma, St 

Louis, MO, USA). Total urinary arsenic concentration was divided by creatinine to obtain 

creatinine-adjusted total arsenic concentration (µg/g creatinine) (Nermell et al., 2008). 

Urinary arsenic metabolite data were not available for the majority of our study participants 
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but have been previously measured in a subset. In the subset we observed a very low 

proportion of total urinary arsenic to be arsenocholine or arsenobetaine (3%) (Ahsan et al., 

2007; Argos et al., 2010), most likely due to the relatively low seafood intake in the study 

region.

In HEALS, we also measured arsenic concentrations in drinking water at the baseline 

interview. Arsenic concentrations were analyzed by graphite furnace atomic absorption or 

by inductively coupled plasma-mass spectrometry when concentrations were below 5 µg/L. 

More detailed information about methods and QC have been described in our prior paper 

(van Geen et al., 2003).

2.3. Whole Genome Gene Expression Profiling

Total RNA was extracted from peripheral blood mononuclear cells (PBMC) preserved in 

buffer RLT, and stored at −86°C using RNeasy Micro Kit (cat# 74004) from Qiagen, 

Valencia, USA. Concentration and quality of all extracted RNA were checked on Nanodrop 

1000. Following Illumina protocols, we convereted RNA to cDNA and then to cRNA which 

was run on HT12 V4 BeadChip Expression Arrays. The chip contains a total of 47,231 

probes covering 31,335 genes.

2.4. Selection of telomere-related genes for expression analysis

Telomere-related genes were selected based on prior literature. We selected genes related to 

the shelterin complex, genes involved in telomere maintence, as well as genes that are 

transiently associated with the telomere, including gene involved in DNA repair and helicase 

genes, (as classfied previously (Mirabello et al., 2010)). The majority of our candidate genes 

were selected based on three prior studies of telomere-related genes (Mirabello et al., 2012; 

Mirabello et al., 2010; Nan et al., 2011b) and one study of arsenic exposure, telomere length, 

and gene expression (Li et al., 2012). We also included all 11 genes reported in recent 

genomewide association studies of telomere length (Codd et al., 2010; Gu et al., 2011; Levy 

et al., 2010; Mangino et al., 2012; Mangino et al., 2009; Prescott et al., 2011): ZNF676, 

CTC1, OBFC1, TERC, DHX35, WDR65, PELI2, KPNA5, SLC44A4, CXCR4 and CELF4 

(BRUNOL4). In addition, we included 2 additional genes related to telomere biology 

(OGG1 and ERCC1) (Lu and Liu, 2010; Vannier et al., 2009) whose expression was 

reported to be associated with arsenic exposure among individuals in Inner Mongolia, China 

(Mo et al., 2009a; Mo et al., 2006). In total, we identified 71 genes of interest.

To ensure each probe mapped uniquely to a single gene, we aligned the Illumina probe 

sequences to all transcriptome sequences contained in both the known Gene mRNA and the 

known Gene Tx-mRNA tables from the UCSC Genome Browser (version GRCh37/hg19), 

as recommended by Barbosa-Morais et al. (Barbosa-Morais et al., 2010). After excluding 

probes that mapped to multiple genes, we identified 31,853 probes were specific to 20,143 

genes. Among the 71 selected genes, 143 probes mapping to 69 genes remained for analysis 

(Supplementary Table S1&S2).
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2.5. Assessment of telomere length

Our small (pilot) study of telomere length was conducted in HEALS because HEALS has a 

wider exposure distribution than BEST, so were better able to select individuals at the 

extremes of exposure (83 with “very high” exposure and 84 with “very low” exposure). 

Relative telomere length (TL) was measured for 167 HEALS participants using DNA 

samples extracted from clot blood using Flexigene DNA kit (Cat # 51204) from Qiagen 

(5ng/µl) (Pierce et al., 2012). A high-throughput SYBR Green RT-PCR assay was carried 

out on an Applied Biosystems (ABI) RT-PCR System and software in 96-well format. Using 

10 ng of DNA, mean telomere content relative to genomic DNA was measured using two 

RT-PCR reactions (each in quadruplicate), one amplifying a 78 bp telomereic repeat unit (T) 

and the other amplifying a single-copy housekeeping gene (S), 36B4U, as described by 

Cawthon, et al (Cawthon, 2002). The fluorescent signal from the T reaction is proportional 

to the number of telomere repeat units in the genome available for primer binding. The S 

signal is used to account for between-sample variation in abundance of template DNA. 

Reaction efficiencies (the steepness of fluorescence increase, calculated using LinRegPCR 

software) and the crossing-point deviation of an unknown sample versus a control was used 

to calculate T/S ratios corrected for betweenindividual and between-gene differences in 

efficiency (Pfaffl, 2001). This method produces a highly accurate and reproducible T/S ratio, 

which is proportional to the relative telomere length of an individual. All samples were 

randomly distributed across plates. For quadruplicate measures with coefficients of variation 

(CV) of <5% for cycle threshold, we excluded an outlying value to ensure CVs<5%. 

Laboratory technicians were trained to adhere to the MIQE guidelines.

2.6. Statistical analyses

We used linear regression to estimate the association between creatinine-adjusted total 

urinary arsenic and gene expression traits (i.e. probes, log10 transformed), adjusting for 

gender, age (continuous), experimental batch, smoking status (current, former, and never) 

and BMI (< 18.5, < 25 and ≥ 25). Because of some extreme exposure values, analyses were 

performed both with and without log-transformation of urinary arsenic. Arsenic metabolism-

related variants in the AS3MT region, identified in our recent GWAS, were used to represent 

arsenic metabolism efficiency (coded as 0 to 4 risk alleles for rs9527 (A) and rs11191527 

(G)) (Pierce et al., 2012). We estimated the association between arsenic metabolism 

efficiency and gene expression. In addition, we assessed the interaction between urinary 

arsenic exposure (split by median=158.02 ug/g) and SNP-based arsenic metabolism 

efficiency (0,1,2,3,4) using linear regression model adjusting for sex, age, experimental 

batch, smoking status, and BMI. For those probes with p for interaction surpassing the 

multiple correction p value, we examined the association between arsenic and expression 

stratified by SNP-based arsenic metabolism efficiency (Pierce et al., 2012). Because gene 

expression of some telomere-related genes may differ by arsenic exposure or sex, we 

conducted analyses stratified by low/high arsenic exposure (split by median) and by sex. A 

Bonferroni correction was used to account for multiple testing (143 tests, p threshold = 

0.05/143 = 0.00035) as well as a false discovery rate (FDR) of 0.05.

In HEALS, the association between arsenic exposure status (high vs. low) and telomere 

length was estimated using linear regression adjusting for gender, age (four groups), BMI (< 
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18.5, < 25 and ≥ 25), and smoking status (smoker and non-smoker). The association 

between SNP-based arsenic metabolism efficiency and telomere length was also estimated.

All statistical analyses were performed using SAS Version 9.3 (SAS Institute, Inc., Cary, 

NC, USA). Q values according for FDR were calculated by Q-VALUE software package 

(Storey, 2003).

2.7. Effect of arsenic on telomere-related genes in human cell lines

We searched the Gene Expression Omnibus (GEO) database to determine if our 

differentially-expressed genes were also associated with arsenic exposure in human cell 

lines (http://www.ncbi.nlm.nih.gov/geoprofiles). Using the search terms of “human” and 

“arsenic” and a specific gene ID (such as “TERF2” or “WRN” etc), we identified one study 

of human cells (hepatoma HepG2) with data on the most genes analyzed in this work: 

“Heavy metals effect on liver cell line” (Kawata et al., 2007). The relationship between 

arsenic and gene expression level was tested using the non-parametric Exact Wilcoxon Two-

Sample Test. Because this is a test of the hypothesis that the association is in the same 

direction as in our gene expression analyses, we applied one-sided tests to assess 

significance.

2.8. Protocol approvals and participant consent

The study protocol was approved by the Institutional Review Boards of The University of 

Chicago, Columbia University, and the Bangladesh Medical Research Council and all study 

participants provided informed consent.

3. Results

Participant characteristics are shown in Table 1. Urinary arsenic concentrations ranged from 

1.3 to 4,004 µg/g (median = 158.02 µg/g) in BEST and from 8 to 8,556 µg/g in HEALS. 

Relative telomere length ranged from 0.22 to 1.78 (median = 0.62) among the 167 

participants from HEALS (data not shown). Arsenic concentrations in drinking water among 

HEALS participants ranged from 0.1 to 864.0 µg/L (median = 50.0 µg/L), that majority of 

which are far higher than the Maximum Contaminant Levels (MCLs) water established by 

the U.S. Environmental Protection Agency (10 µg/L, EPA 2001). We do not have water 

arsenic data for the BEST participants but all BEST samples involved in this study were 

recuited from the same arears as HEALS.

In analyses of log-transformed creatinine-adjusted urinary total arsenic and expression of 

telomere-related genes, we identified 9 expression probes (corresponding to 8 genes) with q 

< 0.05, and four of these surpassed the Bonferroni significance threshold (p < 0.00035, 

Table 2, Figure S1–9). This group of significant genes included TERF2 (Figure S1, shelterin 

pathway), WRN (Figure S2, helicase), DKC1 (Figure S3, regulation of telomerase) and 

OBFC1 (Figure S4&5, telomere length locus from GWAS). Most of the results above were 

consistent with the effects of arsenic observed in liver cell lines. Though the samples in the 

GEO database were quite limited (3 controls Vs. 3 treated with arsenic for each gene), 

TERF2, RAD51AP1 and MRE11A showed significant associations (p=0.05) and were in the 

same direction as our results (Supplementary Table S3). The direction of association was 
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also consistent for WRN and MYC, but these associations were not statistically significant. 

DKC1 showed an association in the opposite direction with our data, while TERT was not 

significantly associated with arsenic. In addition, three out of the 143 probes showed 

associations with BMI after Bonferroni correction (threshold for p = 0.05/143=0.00035). 

Compared with the underweight group (BMI < 18.5), the participants who were overweight/

obese (BMI ≥ 25.0) had down-regulated expression for ERCC1 (β=−0.04, p = 0.00005) and 

PEILI2 (β=−0.06, p = 0.0002) in contrasting to increased expression of MYC (β=0.08, p = 

0.00006).

Supplementary Table S1 lists the results for all 143 probes tested for association with 

urinary arsenic, including the proportion of samples with a detection p <0.05, an indicator of 

our ability to detect the presence of a transcript in the RNA samples. Based on these P-

values, our platform was unable to detect expression of TERT. Neither probe of TERT, 

ILMN_2373119 (long isoform) and ILMN_1796005 (short isoform) were detected with 

p<0.05 in any sample. In addition, arsenic exposure was not associated with expression of 

ERCC1 or OGG1 in contrast to previous studies (Mo et al., 2009a; Mo et al., 2006). In 

analyses of the association between telomere-gene expression and SNP-based arsenic 

methylation capacity, there were no associations passing the FDR correction (q > 0.05) 

(Supplementary Table S1).

In analyses of non-transformed urinary arsenic and expression of telomere-related genes 

(Supplementary Table S2), an additional gene (TERF2IP, sherlterin pathway) was found to 

be statistically significant at P< 0.00035 in addition to TERF2, DKC1, and OBFC1.

Because the effect of arsenic exposure can be modified by arsenic metabolism efficiency, 

we assessed the interaction between the total urinary arsenic concentrations and SNP-based 

metabolism efficiency in relation to gene expression. Only one out of the 143 probes was 

significant at the Bonferroni threshold (p = 0.00035) or FDR correction (q < 0.05): WRN 

(ILMN_1679881, p for interaction = 0.00008). Associations between urinary arsenic and 

WRN expression stratified by arsenic methylation capacity (0,1,2,3,4 risk alleles) are shown 

in Figure 1. Interaction p values for all 143 probes are in supplementary Table S2.

We tested the association between telomere length and arsenic exposure in the 167 samples 

from HEALS. Telomere length was positively associated with high arsenic exposure (β = 

0.12, SE = 0.05, p = 0.02) compared to low arsenic exposure (Table 3, Figure 2). Although 

not statistically significant in our sample, telomere length was inversely associated with age, 

as expected. In addition, gender, BMI, smoking and metabolic efficiency did not show 

association with telomere length (p = 0.85 for rs9527, p= 0.40 for rs11191527 and p = 0.47 

for cumulative risk alleles of both SNPs).

4. Discussion

In this population-based study, we assessed the associaton of arsenic exposure with 

mononuclear cell expression of telomere-related genes and telomere length measured in 

whole blood. We observed associations between urinary arsenic and expression of several 

genes with known roles in telomere biology, including TERF2, WRN, DKC1, TERF2IP and 
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OBFC1. We also observed an interaction between urinary arsenic and arsenic metabolism 

efficiency in relation to expression of WRN. In addition, we observed that very high arsenic 

exposure was associated with longer telomeres as measured in whole blood, consistent with 

a prior research (Li et al., 2012).

In a recent study of arsenic exposure and telomere-related gene expression, Li et al 

examined associations between urinary arsenic and expression of 62 genes (120 probes) in 

whole blood among 90 arsenic exposed women in Northern Argentina (Li et al., 2012). Very 

little evidence of association was observed for the genes analyzed, but Li et al did observe 

suggestive evidence of a positive association between urinary arsenic and TERT expression, 

consistent with a prior study of arsenic exposure and TERT expression in whole blood (Mo 

et al., 2009b).

In this work, we did not detect TERT expression in mononuclear cell RNA, but we do 

provide evidence that arsenic affects the expression of several telomere-related genes. 

Urinary arsenic was inversely associated with expression of genes that code for components 

of the shelterin complex (i.e., TERF2 and TERF2IP) and positively associated with genes 

involved in repair of telomeric DNA (i.e., RAD51AP1 and MRE11A) and a helicase gene 

(i.e., WRN). Interestingly, down-regulation of shelterin genes has been suggested to be a 

cause of telomere damage and dysfunction due to lack of telomere protection (Augereau et 

al., 2011). Telomere deprotection, specifically, down-regulation of TERF2, may also 

contribute to activation of “alternative telomere lengthening” (ALT) (Kamranvar et al., 

2013), a recombination-based lengthening mechanism that does not involve telomerase and 

is believed to occur in differentiated cells (Neumann et al., 2013). Urinary arsenic was also 

positively asssociated with expession of MRE11A, a gene involved in ALT as well as 

homologous recombination (Escoffier et al., 2005) and WRN, which codes for a helicase 

protein that is involved in replication of telomereic DNA (including ALT) (Bhattacharyya et 

al., 2010) and prevention of telomere dysfunction (Crabbe et al., 2004; Eller et al., 2006; 

Mendez-Bermudez et al., 2012). Expression of WRN was modified significantly by the 

efficiency of arsenic metablism, suggesting an interaction between arsenic and metabolism 

efficiency. We provide a summary of potential mechanisms by which arsenic exposure 

could lengthen telomeres in Figure 3.

The relationship between arsenic exposure and telomere length has been assessed in both 

exprimental and observational studies. In studies of cell lines (Zhang et al., 2003), animal 

models (Du et al., 2005), and human cells (Ferrario et al., 2009) high concentrations of As 

(>1 µM) have been observed to shorten telomeres and reduce cell survival. However, at 

lower levels (<1 µM), arsenic increases telomerase activity and maintains telomeres, 

promoting proliferation. A recent population-based study of 202 Nothern Argentina women 

(Li et al., 2012) showed a positive association between urinary arsenic and telomere length, 

consistent with our result. While this finding may seem conterintuitive, a recent study of 

telomere length in yeast suggests that exposure to environmental stressors can shorten or 

lengthen telomeres, with the direction of the effect being stressor-dependent (Romano et al., 

2013). Thus, the direction of the effect of exposures on telomere length may be dependent 

on both the exposure type and the level of exposure. Thus, arsenic’s carcinogenic mode(s) of 

action could involve extending telomeres in pre-malignant cells to increase lifespan. Results 
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from prior studies suggest that arsenic exposure results in longer telomeres due to up-

regulation of TERT (Li et al., 2012; Mo et al., 2009b). Unfortunately, expression of neither 

TERT isoform (ILMN_2373119 or ILMN_1796005) was detected in our study. However, 

expression of OGG1 (ILMN_1706652 and ILMN_2352609) and ERCC1 (ILMN_1652369, 

ILMN_1797172 and ILMN_2377496) were detected, and these genes have been reported to 

be correlated with expression of TERT (Mo et al., 2009b). Consistent with Mo et al (Mo et 

al., 2009a), OGG1 expression was correlated strongly with all ERCC1 probes (p < 0.0001). 

However, our data showed no association between urinary arsenic and any probes of OGG1 

and ERCC1, findings inconsistent with the prior studies (Mo et al., 2009a; Mo et al., 2006).

Discrepancies between our gene expression study and the prior studies by Li et al’s (Li et 

al., 2012) and Mo et al’s (Mo et al., 2009a; Mo et al., 2009b; Mo et al., 2006), could be due 

to a number of factors. First, RNA was extracted from mononuclear cells in our study, but 

from whole blood in the prior studies. Second, gene expression was assessed using 

Illumina’s HT12 array in the Li H et al’s study and in our study, while quantitative real-time 

qPCR was used by Mo et al. While studies have shown that micro-array-based and qPCR-

based expression measures typically show very high correlation, qPCR may have higher 

sensitivity for detection of low-abundance transcripts. Third, these studies were conducted in 

different populations, with different levels of arsenic exposure and other environmental and 

lifestyle factors.

Our gene expression study included 11 genes from regions identified in recent GWA studies 

of telomere length (Codd et al., 2010; Codd et al., 2013; Gu et al., 2011; Levy et al., 2010; 

Mangino et al., 2012; Mangino et al., 2009; Prescott et al., 2011). Among these genes, 

urinary arsenic was inversely associated with OBFC1 and CXCR4 expression and positively 

associated with PELI2 expression. OBFC1 is a subunit of an alpha accessory factor that 

stimulates the activity of DNA polymerase-alpha-primase, the enzyme that initiates DNA 

replication (Casteel et al., 2009). It also appears to function in a telomere-associated 

complex (Miyake et al., 2009). Although we have little knowledge regarding the roles of the 

other two genes in the regulation of telomere length, current studies have linked abnormally 

expressed CXCR4 with some cancers (Sun et al., 2010) and PELI2 with the inflammatory 

and immune response.

This population-based study of arsenic and telomere-related gene expression is one of the 

the most comprehensive analysis of telomere-related genes to date, and has a larger sample 

size than any prior study on this topic. We are the first to examine associations between 

arsenic exposure and expression of genes at loci kown to harbor genetic variants that 

influence telomere length. In this analysis, we applied a conservative Bonferroni correction 

as well as an FDR correction to account for multiple testing. For our analysis of arsenic and 

telomere length, we selected individuals at the extremes of the exposure distribution to 

enhance power to detect and assocition. However, our study also has several limitations. The 

data on expression and telomere length were obtained from two different cohorts, thus, we 

were unable to examine the association between telomere length and gene expression. Our 

analysis of gene expression is based on the assumption that the effects of arsenic on 

expression of telomere-related genes can be detected in peripheral mononuclear cells. While 

much of the telomere maintenance relevant to mononuclear cells is believed to occur in 
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hematopoietic stem cells and precursor cells, it is possible that arsenic may impact telomeres 

and telomere maintenance in differentiated cells (Hodes et al., 2002). Furthermore, we are 

unable to assess expression for transcripts expressed at levels too low to be detected using 

the Illumina array (e.g. TERT). In our analyses of arsenic metabolism efficiency and gene 

expression, we did not have data on urinary arsenic metabolites, but we used metabolism-

related variants in the AS3MT region (Pierce et al., 2012) as a proxy for metabolism. 

Similarly, we lacked data on urinary arsenic metabolites for the majority of the participants 

with telomere length data, and no association was observed between telomere length and the 

two AS3MT SNPs.

While our results need confirmation based on large independent studies, these findings, 

taken together, provide suggestive evidence that arsenic’s carcinogenic mode of action may 

involve alteration of the telomere maintenance and/or telomere damage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

· Urinary arsenic was associated with expression of multiple telomere-related 

genes.

· High arsenic exposure was associated with longer telomeres.

· Arsenic’s association with WRN expression was modified by arsenic 

metabolism status.

· Arsenic’s carcinogenic mechanism may involve telomere dysfunction.
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Fig. 1. Associations between urinary arsenic and expression of WRN (ILMN_1679881), stratified 
by arsenic metabolism capacity
The p for interaction between urinary arsenic and arsenic metabolism efficiency in relation 

to expression of WRN (ILMN_1679881) was obtained from a linear regression model, 

adjusting for sex, age, experimental batch, smoking status and BMI. Diamond shapes and 

error bars denote beta coefficients and 95% confidence intervals (95% CI) derived from 

linear regression model stratified by arsenic metabolism efficiency. Arsenic metabolism 

efficiency was represented by the cumulative frequency (0,1,2,3,4) of risk alleles of 

rs9527(A) and rs11191527(G). Arsenic metabolism capacity ranges from from high (0) to 

low (4).

Gao et al. Page 15

Environ Res. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. Relationship between arsenic exposure status and telomere length
P-value was obtained from a linear regression model adjusted for age, sex, smoking, and 

BMI.
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Fig. 3. A summary of potential mechanisms by which arsenic exposure could lengthen telomeres
Examples of genes showing association with arsenic exposure are provided.
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Table 1

Characteristics of individuals participating in BEST (gene expression study) and HEALS (telomere length 

study) a

Expression study
(BEST Cohort)

Telomere length study
(HEALS Cohort)

N 1,799 167

Gender (%)

Men 991 (55.1) 63 (37.7)

Women 808 (44.9) 104 (62.3)

Age 43.5 ± 10.6 35.5 ± 9.7

Smoking status

Never 1095 (60.9) 116 (69.5)

Former 186 (10.3) 13 (7.8)

current 518 (28.8) 38 (22.8)

BMI

Underweight (<18.5) 685 (38.1) 72 (43.1)

Normal (18.5–24.9) 951 (52.9) 83 (49.7)

Overweight/obese (≥25.0) 163 (9.1) 12 (7.2)

Urinary arsenic (µg/g) 336.7 ± 437.7 Lowb: 61.9 ± 23.7
Highb: 856.0 ± 913.1

Water arsenic (µg/L) N/A Lowb: 3.6 ± 3.4
Highb: 288.0 ± 108.6

a
Categorical variables were shown in counts and percentages; continuous variables in means±standard deviation (SD).

b
Participants were selected from the extremes of the arsenic exposure. High exposure was defined as arsenic concentration >145 µg/L in water and 

>339 µg/g in urine (measured at baseline). Low exposure was defined as <12 µg/L in water and <107 µg/g in urine.
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