
Pyrethroid insecticides have been used in
agricultural and home formulations for more
than 30 years and account for approximately
one-fourth of the worldwide insecticide mar-
ket (Casida and Quistad 1998). Currently,
16 pyrethroids are registered for use in the
United States in a large variety of agricultural
or consumer products (Bryant and Bite
2003). Often, pyrethroids are sold and/or
used as mixtures containing a combination of
two or more compounds (Farm Chemicals
Handbook 1997). Exposure to pyrethroids
has been widely documented in humans,
including exposure of pregnant women,
infants, and children (Berkowitz et al. 2003;
Huedorf et al. 2004; Schettgen et al. 2002;
Whyatt et al. 2002). Although the acute toxic-
ity of these compounds to adults has been well
characterized, the potential for developmental
toxicity of pyrethroids is not well understood.

In the present review we focus on the
potential for neurotoxicity after developmental
exposure to pyrethroid insecticides. We also
consider the current state and quality of scien-
tific data that could be used to support risk
decisions related to pyrethroid developmental
and age-dependent neurotoxicity. Specifically,
in this review we a) provide a brief overview of
the toxicity of this class of compounds;
b) review pyrethroid effects on voltage-sensitive

sodium channels (VSSCs), a primary mode of
action of pyrethroids; c) discuss the develop-
mental profiles of VSSCs; d) provide examples
of the results of perturbation of VSSCs during
development by other insults; e) discuss the evi-
dence for age-related sensitivity to this class of
compounds; f ) summarize and critique studies
of pyrethroid neurotoxicity after developmental
exposure; and g) make recommendations
regarding future research needs related to the
developmental neurotoxicity of pyrethroids.

In addition to being important to scien-
tists interested in characterizing the neuro-
toxicity of these compounds, this information
will be useful when considering the scientific
data needed to inform risk decisions related to
pyrethroid insecticides. Under the Food
Quality Protection Act (FQPA; 1996), the
U.S. Environmental Protection Agency (EPA)
is required to include a default 10× safety factor
(uncertainty factor) in risk decisions to protect
against potentially greater sensitivity of develop-
ing individuals to toxic insult. This factor can
be adjusted only if compelling scientific data
exist regarding age-related differences in sensi-
tivity. Furthermore, developing individuals
must be considered under FQPA requirements
for cumulative risk assessments (classes of com-
pounds with the same mode of action). The
quality of the scientific data used to support

these and other risk decisions is an important
component of scientifically based risk assess-
ment. In addition, information regarding mode
of action improves the scientific basis for risk
decisions (Brock et al. 2003; Mileson et al.
1998; Sonich-Mullin et al. 2001), including
those related to developmental neurotoxicity
(Costa 1998; Tilson 2000a, 2000b).

The U.S. EPA has recently released the
revised cumulative risk assessment of the
organophosphate class of insecticides (U.S.
EPA 2002) and has requested that registrants
of these insecticides submit developmental
neurotoxicity studies to the agency. In the near
future, the U.S. EPA must consider develop-
mental and cumulative risk for other classes of
insecticides, including pyrethroids. Thus, in
this review we focus on issues of mode of
action and age-dependent and developmental
neurotoxicity as related to risk decisions under
the FQPA.

Overview of Pyrethroid
Toxicity
The pyrethroid class of insecticides was
derived from natural compounds (the
pyrethrins) isolated from the Chrysanthemum
genus of plants (Casida 1980). Although
natural pyrethrins do have insecticidal activity,
they also are inherently unstable when
exposed to light. Therefore, the pyrethrin
structure was modified to produce more stable
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compounds that retained the desirable insecti-
cidal and toxicologic properties (Valentine
1990). All pyrethroids contain several common
features: an acid moiety, a central ester bond,
and an alcohol moiety (Figure 1). The acid
moiety contains two chiral carbons; thus,
pyrethroids typically exist as stereoisomeric
compounds. Furthermore, some compounds
also contain a chiral carbon on the alcohol
moiety, which allows for three chiral carbons
and a total of eight different stereoenantiomers.
Pyrethroid insecticidal activity (Elliot et al.
1974), acute mammalian neurotoxicity (Gray
and Soderlund 1985), and effects on VSSCs
(Lund and Narahashi 1982) are stereospecific,
indicating the presence of specific binding sites.
For some compounds, several commercial
products are available that differ in stereo-
isomer content. For example, allethrin is a mix-
ture of all possible allethrin stereoisomers,
d-allethrin contains only the 1R isomers, bio-
allethrin contains only the 1R-trans isomers,
and S-bioallethrin is enriched in the S
stereoisomer of the 1R-trans isomers (Figure 2).

The acute mammalian neurotoxicity of
pyrethroids has been well characterized, and
several comprehensive reviews of pyrethroid
toxicity, metabolism, and actions are available

(Kaneko and Miyamoto 2001; Narahashi
2001; Ray 2001; Soderlund et al. 2002).
Verschoyle and colleagues (Verschoyle and
Aldridge 1980; Verschoyle and Barnes 1972)
conducted structure–activity relationship
studies with a series of pyrethroids and
described two generalized syndromes after
acute exposure. Based on toxic signs in the
rat, pyrethroids have been divided into two
types: a) compounds that produce a syn-
drome consisting of aggressive sparring,
increased sensitivity to external stimuli, and
fine tremor progressing to whole-body tremor
and prostration (type I or T syndrome); and
b) compounds that produce a syndrome con-
sisting of pawing and burrowing, profuse sali-
vation, and coarse tremor progressing to
choreoathetosis and clonic seizures (type II or
CS syndrome) (Verschoyle and Aldridge
1980). Analogous toxic signs have been
observed in mice (Lawrence and Casida 1982;
Staatz et al. 1982) and cockroaches (Gammon
et al. 1981; Scott and Matsumura 1983).
Structurally, a key difference between type I
and type II pyrethroids is the absence or pres-
ence, respectively, of a cyano group at the
α carbon of the 3-phenoxybenzyl alcohol
moiety of the compound. Thus, the type I/II

or T/CS nomenclatures are useful as general
classification schemes and are widely used 
in the published literature. However, a few
pyrethroids do not fit neatly into these
schemes because they produce signs related to
both syndromes (Verschoyle and Aldridge
1980; for review see Soderlund et al. 2002).
Further, these schemes are based on doses of
pyrethroids that cause overt neurotoxicity and
thus may not apply to either low-dose or
developmental exposures. Because it conveys
useful structural information, in this review we
use the type I/II classification system.

Effects of Pyrethroids on VSSCs 

The primary mode of pyrethroid action in both
insects and mammals is disruption of VSSC
function. Perturbation of sodium channel func-
tion by pyrethroids is stereospecific (Lund and
Narahashi 1982); those stereoisomers that are
the most potent disruptors of VSSC function
also have the most potent insecticidal or toxico-
logic activity (Ray 2001). Pyrethroids slow the
activation, or opening, of VSSCs. In addition,
they slow the rate of VSSC inactivation (or
closing) and shift to more hyperpolarized
potentials the membrane potential at which
VSSCs activate (or open) (for review, see
Narahashi 1996). The result is that sodium
channels open at more hyperpolarized poten-
tials (i.e., after smaller depolarizing changes in
membrane potential) and are held open longer,
allowing more sodium ions to cross and depo-
larize the neuronal membrane. In general,
type II compounds delay the inactivation of
VSSCs substantially longer than do type I com-
pounds. Type I compounds prolong channel
opening only long enough to cause repetitive
firing of action potentials (repetitive discharge),
whereas type II compounds hold open the
channels for such long periods of time that the
membrane potential ultimately becomes depo-
larized to the point at which generation of
action potentials is not possible [depolarization-
dependent block (Figure 3)]. These differences
in prolongation of channel open times are
hypothesized to contribute to the differences in
the CS and T syndromes after exposure to
type II and I pyrethroids, respectively (for
review, see Ray 2001).

Mammalian VSSCs are composed of one α
and two β subunits. Ten separate α subunits
(Table 1; Ogata and Ohishi 2002) and four dif-
ferent β subunits (Isom 2002) have been identi-
fied and are expressed in a tissue-, region-, and
time-specific manner. With one exception (the
NaX subunit), α subunits all comprise VSSCs
when expressed individually or with β subunits.
The α subunit forms the pore of the channel
and determines its major functional character-
istics, whereas the β subunits are auxiliary
proteins that influence gating properties, local-
ization in the membrane, and interactions with
cytoskeletal proteins (Isom 2001, 2002). The
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Figure 1. Structures of pyrethroids for which developmental neurotoxicity has been examined.
Developmental neurotoxicity studies have been conducted using either technical compound or formula-
tions of the seven pyrethroids illustrated; the numbers in parentheses after each compound name indicate
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diverse functional roles of VSSC, such as gener-
ating action potential spikes, amplifying sub-
threshold depolarizations, regulating repetitive
firing and generating after-depolarizations,
depend on the numerous potential combina-
tions of α and β subunits (Ogata and Ohishi
2002). The types of VSSCs expressed in differ-
ent regions, their relative sensitivity, and their
functional role may all contribute to the mani-
festation of pyrethroid effects.

VSSC Heterogeneity and
Pyrethroid Effects
All available evidence indicates that pyrethroids
bind to the α subunit of the VSSC. Trainer
et al. (1997) expressed only the Nav1.2 α sub-
unit in Chinese hamster ovary cells and found
that the presence of the α subunit is sufficient
for pyrethroids to produce their characteristic
effects on sodium channel function in mam-
malian cells. This conclusion is supported by
additional research demonstrating that
pyrethroids alter currents produced by expres-
sion of Nav1.2 (Smith and Soderlund 1998) or
Nav1.8 (Smith and Soderlund 2001) in oocytes
in the absence of coexpression with β subunits.
Interestingly, coexpression of the β1 subunit
with Nav1.2 increased the sensitivity of this
channel compared with expression of Nav1.2
alone (Smith and Soderlund 1998), indicating
that the β subunit modulates the affinity of
pyrethroid interaction with the channel.
Mutations in the α subunit of both insects (Lee
and Soderlund 2001; Smith et al. 1997) and
mammals (Vais et al. 2000, 2001; Wang et al.
2001) alter the sensitivity of VSSCs to
pyrethroid effects, supporting the conclusion
that pyrethroids interact with the α subunit.

The relative susceptibility of the 10 differ-
ent VSSC α subunits to pyrethroids is not
well understood. Differential sensitivity of
VSSCs to pyrethroids was first reported by
Tatebayashi and Narahashi (1994). In a com-
parison of tetramethrin effects on tetrodotoxin-
sensitive (TTX-S) versus -resistant (TTX-R)
sodium channels in dorsal root ganglion neu-
rons, TTX-R channels were demonstrated to
be more sensitive to perturbation by tetra-
methrin (Tatebayashi and Narahashi 1994).
However, TTX-R or TTX-S channels may
arise from several different VSSC α subunits
(Table 1). Although not all α subunits have
been examined, differences in sensitivity to
pyrethroids were reported after expression of
different subunits in vitro (details provided in
Table 1). For example, Nav1.2 (Smith and
Soderlund 1998) is sensitive to type II but not
type I compounds, whereas Nav1.8 (Smith
and Soderlund 2001) is sensitive to both.
Interactions of pyrethroids with other sodium
channel α subunits have not been investigated
to date. Importantly, the pyrethroid sensitivity
of VSSC subunits and splice variants expressed
during development has yet to be examined.

Developmental Expression 
of VSSC
VSSCs show complex regional and temporal
ontogeny, which is briefly summarized in
Table 1. In general, embryonically expressed
forms of VSSCs are replaced by expression of
adult forms as neurodevelopment proceeds.
For example, high expression of Nav1.3 dur-
ing embryonic periods (Albrieux et al. 2004)
diminishes as expression of Nav1.2 increases in
early postnatal periods in rodents (Felts et al.
1997), and expression of Nav1.2 at immature
nodes of Ranvier is replaced by Nav1.6 as
myelination proceeds (Boiko et al. 2001;
Jenkins and Bennett 2002). Similar changes
are observed with the β subunits, because β3
expression is replaced by β1 and β2 (Shah
et al. 2001). Alternatively spliced forms of the
VSSC subunits also contribute to develop-
mental differences in expression because the
Nav1.2, Nav1.3, and Nav1.6 subunits all have
splice variants that are expressed in rodents
from embryonic through early postnatal ages
(Gustafson et al. 1993; Plummer et al. 1997;
Sarao et al. 1991). Given the previously
reported differences in α subunit sensitivity to

pyrethroids, the complex ontogeny of VSSC
expression could result in altered sensitivity
(either increases or decreases) of the develop-
ing nervous system to perturbation by various
pyrethroids. In addition, understanding the
timing and localization of expression of the
most pyrethroid-sensitive VSSCs during
neurodevelopment could help in understand-
ing and explaining effects reported after
developmental exposure. With respect to age-
dependent toxicity of pyrethroids, research to
date indicates that toxicokinetic and not
toxicodynamic factors account for differences
in susceptibility between young and adult ani-
mals (Cantalamessa 1993; Sheets et al. 1994);
however, toxicodynamic factors have not been
systematically examined.

Disruption of VSSC Function
and Expression during
Development
Evidence from mutation and knockout models
demonstrates that perturbation of VSSC
function during development impairs nervous
system structure and function. Several examples
are discussed below for illustrative purposes.
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Common name Proprietary name Isomer composition

Allethrin Pynamin, Pyresyn, Pyresin, Allycancerin, Pallethrin All isomers
d-Allethrin trans-d-Allethrin, Pynamin A, B, C, D
Bioallethrin d-trans-Allethrin, +-trans-Allethrin, Depallethrin A, B
S-Bioallethrin Esbiol, Espallethrin, d-trans-Allethrin, d-Allethronyl A only



These examples demonstrate the plausibility
that perturbations in VSSC function by
pyrethroids during development could result in
adverse consequences in the developing nervous
system.

Knockout and mutant mouse models of
sodium channel α subunits demonstrate vary-
ing degrees of adverse outcomes associated
with loss or alteration of specific channel sub-
units. When mRNA for the Nav1.2 subunit
was reduced by approximately 85%, mice
exhibited reduced levels of electrical excitabil-
ity, had high levels of apoptotic neurons in the
brainstem and cortex, and died from severe
hypoxia within 1–2 days of birth (Planells-
Cases et al. 2000). In contrast, mutation of
the gene encoding the Nav1.6 subunit resulted
in development of hindlimb paralysis, skeletal
muscle atrophy by postnatal day (PND)10,
and death by PND20 (Porter et al. 1996).
Atrophy was specific to muscle innervated by
spinal and not oculomotor neurons (Porter
et al. 1996). Finally, Nav1.8 knockout mice
survived to adulthood and exhibited normal
behavior, although sensation of some types of
noxious stimuli was lost or diminished
(Akopian et al. 1999; Laird et al. 2002).

In humans, perturbation of nervous system
development has been associated with altered
VSSC structure or function. Recent advances
in molecular genetics have identified in genes
coding for VSSC subunits a number of muta-
tions that result in neuronal hyperexcitability
due to subtle changes in channel gating and
inactivation (see Meisler et al. 2001, their

Table 3). These mutations have been linked to
various forms of epilepsy in humans, providing
evidence that changes in VSSC function can
give rise to clinically definable disease (Claes
et al. 2001; Escayg et al. 2001; Meisler et al.
2002; Noebels 2002; Wallace et al. 2001).
Mouse models expressing these mutant ion
channels have been constructed, facilitating the
study of these diseases (Kearney et al. 2001;
Meisler et al. 2001). It is noteworthy that
pyrethroids, like these mutations, alter VSSC
activation, inactivation, and neuronal excitabil-
ity. The mechanisms and magnitude of muta-
tional versus pyrethroid effects are different, as
would be the duration of effect (dependent on
exposure for pyrethroids vs. permanent for
mutations). Because of these differences, results
from mutation and knockout models may not
be predictive of developmental exposure to
pyrethroids. Notably, potential interactions
between pyrethroids and these mutations to
VSSCs have not yet been examined.

Phenytoin, an anticonvulsant that blocks
VSSCs as well as other ion channels (Catterall
1999), has been demonstrated to disrupt ner-
vous system structure and function after
developmental exposure (Adams et al. 1990).
In humans, the use of anticonvulsants during
pregnancy has been associated with a number
of defects and malformations, which collec-
tively are referred to as fetal hydantoin syn-
drome, and include microcephaly and
intellectual impairment. Studies in animal
models support the human findings (Hatta
et al. 1999; Ohmori et al. 1997, 1999;

Schilling et al. 1999; Vorhees et al. 1995).
Thus, developmental exposure to this drug,
which acts on VSSCs, can produce significant
alterations in nervous system structure and
function. It should also be noted that,
although phenytoin is used as an example,
there are currently no data to suggest that
developmental exposure to pyrethroids results
in similar effects.

Age-Related Differences in
Sensitivity to Pyrethroids
The magnitude of the age-related toxicity of
pyrethroids appears to be much larger than for
many other pesticide classes, but the number
of studies is small. Whether this age-related
neurotoxicity includes both type I and type II
compounds is currently unclear. In neonatal
versus adult rats, the acute lethality of the
type II pyrethroid deltamethrin was 16-fold
greater in young animals (Sheets et al. 1994).
Concentration data indicate that the age depen-
dency was due to lower metabolic capabilities
in the young rats (Sheets et al. 1994). Similarly,
the type II pyrethroid cypermethrin was
17-fold, and the type I pyrethroid permethrin
was 6-fold more lethal in PND8 rats compared
with adults; metabolic inhibitors were used to
demonstrate that toxicokinetic factors were
responsible for this age-dependent susceptibil-
ity (Cantalamessa 1993). In contrast, evidence
has been presented that two type I pyrethroids,
cismethin and permethrin, did not have any
age-dependent toxicity (Sheets 2000).

Age-related sensitivity to pyrethroids may
be influenced by dose. In a symposium report,
Sheets (2000) argued that the age-dependent
sensitivity of pyrethroids is apparent only at
high acute doses. This report contained data
suggesting a lack of age-dependent differences
in the behavioral toxicity of type I and type II
pyrethroids at doses below those causing overt
toxicity. However, age-dependent differences
in pyrethroid neurotoxicity have not been
thoroughly studied at the lower end of the
dose–response relationship (sublethal doses).
The scientific basis for decisions related to the
FQPA could be strengthened by additional
studies comparing the relative susceptibility of
differential sensitivity between young and
adult animals, particularly at sublethal doses.
For example, replication of Sheets’s (2000)
report and expansion to include additional
compounds would provide useful information
regarding sensitivity differences between
developing and adult animals.

Pyrethroid Developmental
Neurotoxicity Studies
A total of 22 studies were evaluated for this
review (Tables 2–4), including 19 peer-reviewed
publications (Table 2), unpublished studies
(Muhammad and Ray, unpublished data; see
Table 3), and regulatory studies provided by
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Bayer AG (Table 4; Ivens et al., unpublished
data; Jekat et al., unpublished data). The
studies conducted by Muhammad and Ray
(unpublished data) consisted of several simi-
larly treated “cohorts” for both S-bioallethrin
and deltamethrin. Rather than present the
overall findings for each of these two com-
pounds, the results of individual “cohorts” are
summarized in Table 3 to provide more
detailed information. Tables 2–4 contain a
summary of important information from each
study, including test compound/formulation,
animal species, dosing period, and major find-
ings. Because the vehicle used and route of
exposure can have profound influence on the
expression of pyrethroid neurotoxicity in
adult rats (Crofton et al. 1995), this informa-
tion is included as well.

Allethrin (in the form of allethrin,
d-allethrin, bioallethrin, and S-bioallethrin)
and permethrin are the only type I pyre-
throids for which peer-reviewed studies of
potential developmental neurotoxicity have
been conducted. Of the type II compounds,
results of developmental studies have been
published for deltamethrin, cypermethrin,
fenvalerate, and cyhalothrin, and data regarding

the developmental neurotoxicity of cyfluthrin
(Jekat et al., unpublished data) have been
submitted to the U.S. EPA. Thus, no devel-
opmental neurotoxicity studies exist for many
pyrethroids.

Rodents were the sole animal models
used in these studies: 13 studies used rats
and 9 studies used mice. No studies were
conducted specifically to examine species
differences, nor could any clear species-
dependent effects be discerned. The choice
of rats or mice seemed to be based on
a) previous use of that species in the labora-
tory or b) whether or not the study was
designed to replicate (in whole or part)
results published previously by other inves-
tigators. A systematic comparison of factors
that underlie potential species differences in
neurotoxic responses could provide useful
information regarding the extrapolation of
data from animals to humans. For example,
Nav1.3 expression in rodents appears to be
primarily embryonic, yet in humans consid-
erable expression in adults has been reported
(Whitaker et al. 2000, 2001). How this and
other species differences influence neuro-
toxic responses has not been investigated.

Several studies reported persistent changes
in behavior and/or neurochemistry in animals
examined long after exposure had stopped.
Eriksson’s group (Ahlbom et al. 1994;
Eriksson and Fredriksson 1991; Eriksson
et al. 1993; Eriksson and Nordberg 1990) has
reported that mice exposed to pyrethroids
during PND10–16 exhibit increased motor
activity and lack of habituation, as well as
changes in density of muscarinic acetylcholine
receptor (mAChR) binding for as long as
5 months (Talts et al. 1998) after cessation of
exposure. Given the short half-lives for
pyrethroids (Anadón et al. 1991, 1996; for
review, see Kaneko and Miyamoto 2001),
these effects are likely due to exposure during
development and not residual tissue concen-
trations of pyrethroids. Studies conducted by
Eriksson and co-workers used bioallethrin
and deltamethrin, which contain only two
and predominantly one stereoisomer, respec-
tively. Thus, effects can be ascribed to the
compound that has insecticidal activity (vs.
studies conducted with formulated products).
In addition, dose–response relationships have
been demonstrated for bioallethrin (Ahlbom
et al. 1994), and the replication of effects,
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Table 1. Sodium channel α subunit nomenclature and effects of pyrethroids.a

TTX Tissue
α subunit Older names sensitivity expression Developmental expression Effect of pyrethroids

Nav1.1 Rat I, HBSCI, GPBI, TTX-S CNS, PNS, Purkinje, HP Not detected in HP during development, Not tested to date
SCN1A pyramidal cells, spinal detectable in CB Purkinje cells at PND15,

motor neurons, somatic detected at PND2 in SC; strong 
localization expression in motor neuronsb

Nav1.2 Rat II, HBSCII, HBA TTX-S CNS, forebrain, substantia In HP, increase between GD17 and PND30; Cypermethrin-induced tail currents 
nigra, HP mossy fibers, CB in CB granule cells on PND15 and Purkinje detectable at > 30 nM in rat 1.2 (adult 
molecular layer, axonal cells on PND2; detected at all ages in SCb splice variant) co-expressed with 
localization Splice variant expressed during β1 subunits; reported insensitive to 

developmentc permethrin or cismethrind

Nav1.3 Rat III TTX-S CNS and DRG HP expression at GD17, increasing at PND2, Not tested to date
then decreasing to barely detectable at PND30.
Detected at GD17 in CB neuroepithelium, 
decreasing thereafter, similar in SCb; 
developmentally regulated splice variante

Nav1.4 SkM1, µ1 TTX-S Skeletal muscle Increases with agef Only slightly modified by 10 µM 
deltamethrin when expressed in 
HEK 293t cellsg

Nav1.5 SkM2, H1 TTX-R Uninnervated skeletal mRNA expressed in rat PND0 limbic Not tested to date
muscle, heart, brain structures and medulla; expressed in fetal 

and adult human brainh

Nav1.6 NaCh6, PN4, Scn8a, TTX-S CNS, DRG (all diameter  Truncated form expressed from GD12 to Not tested to date
CerIII neurons), node of PND7, full-length mRNA expression is slight 

Ranvier–peripheral nerve at GD14 and increases with agei

Nav1.7 NaS, hNE-NA, PN1 TTX-S DRG (all diameter neurons) All DRG neurons at PND2, increased during Not tested to date
CNS, Schwann cells developmentb

Nav1.8 SNS, PN3, NaNG TTX-R DRG (small diameter Expression beginning at GD15 with adult Sensitive to both cismethrin and
neurons) levels by PND7; largely in unmyelinated cypermethrin at thresholds of 500 nM 

C-fibersj and 30 nM, respectively k

Nav1.9 NaN, SNS2, PN5, TTX-R DRG (small diameter Expression beginning at GD17 with adult Not tested to date
NaT, SCN12A neurons) levels by PND7; largely in unmyelinated

C-fibers j

Nax Nav2.1, Nav2.3 Na-G, ? Heart, uterus, skeletal  Transient between PND2 and 15 in HP; Not tested to date
SCL11 muscle, astrocytes, DRG peak expression at PND2 in CB, SC;

large DRG neurons, GD17 to PND30b

Abbreviations: CB, cerebellum; CNS, central nervous system; DRG, dorsal root ganglion; GD, gestation day; HP, hippocampus; PND, postnatal day; PNS, peripheral nervous system; SC,
spinal cord; TTX, tetrodotoxin; TTX-R, TTX resistant; TTX-S, sensitive to TTX. 
aData in the first four columns are based on information presented by Goldin et al. (2000) and Novakovic et al. (2001). bFelts et al. (1997). cSarao et al. (1991). dSmith and Soderlund (1998).
eGustafson et al. (1993). fKallen et al. (1990). gWang et al. (2001). hDonahue et al. (2000). iPlummer et al. (1997). jBenn et al. (2001). kSmith and Soderlund (2001). 



both behavioral and biochemical, within this
laboratory has been consistent over several
studies. Others have also reported persistent
changes in behavior and/or biochemistry,
including learning (Moniz et al. 1990), motor
activity (deltamethrin only; Husain et al.
1992), sexual behavior (Lazarini et al. 2001),
mAChR binding (Aziz et al. 2001; Malaviya
et al. 1993), and blood–brain barrier perme-
ability (Gupta et al. 1999a).

There were several studies that examined
both motor activity and mAChR expression
after developmental exposure to pyrethroids. A
summary of effects on these end points, inde-
pendent of dose, exposure period, and other
parameters, is provided in Table 5. In all of
these studies, quinuclidinyl benzilate (QNB)
binding was used to measure mAChR expres-
sion. QNB is a nonspecific antagonist for this
receptor (Watling et al. 1995) and does not
discriminate between mAChR subtypes
(M1–M5). Measurement of QNB binding
may in fact be one of the more comparable

end points across these numerous studies. In
addition, many but not all of these studies
examined mAChR expression at PND17
and/or 4 months of age.

Comparison of pyrethroid effects on QNB
binding across studies does not reveal clear
trends in reported effects between laboratories.
In preweanling animals, across all compounds
and treatment protocols, QNB binding was
reported to increase in six studies, decrease in
two studies, and not change in four studies
(Table 5). In cortical tissue, the data for
PND17 are more consistent in that five of
eight studies reported increases in mAChR
expression. If only the various forms of
allethrin are considered, four studies reported
increases and two reported no change in
QNB binding when measured on PND17.
Persistent alterations in mAChR in adulthood
after developmental exposure are less clear,
with three studies reporting increases, three
reporting decreases, and five reporting no
change in QNB binding. Considering only

allethrin forms again, QNB binding increased
or decreased in two studies each and was
unchanged in three studies.

Differences in a number of important vari-
ables may underlie some of the inconsistencies
in QNB binding data. One difference is expo-
sure route. Two studies used inhalation expo-
sure (Ivens et al., unpublished data; Jekat et al.,
unpublished data), whereas exposure in the
remainder of the studies was via oral gavage
(Table 5). A comparison of effects in Tables 2–5
suggests that this is not a tenable explanation for
these inconsistencies because results do not cor-
relate to route. Another variable that differed
between laboratories was the formulation of
allethrin used. Allethrin, like all pyrethroids,
exists as several different stereoisomers
(Figure 2), and the insecticidal and toxic effects
of pyrethroids are highly stereospecific. These
studies employed allethrin formulations with
differing contents of allethrin stereoisomers; two
groups used d-allethrin (Ivens et al., unpub-
lished data; Tsuji et al. 2002), one used 
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Table 2. Summary of peer-reviewed developmental neurotoxicity studies with pyrethroids.a

Species/compound Dose/route/vehicle Dosing period Effects Reference Comments

Rat (Wistar)
Cyhalothrin 0.02% in drinking water; PND0–21 ↓ learning avoidance latencies Moniz et al. 1990 Strengths: maternal behavior examined 

(type II) 0.4% sucrose at PND90, 0 effect on motor in Moniz et al., 1990 (no effect); culling
+ “cyhalothrin vehicle” activity in pup described but not even across studies

(culled to 5, 6, and 8 pups/dam)
Limitations: commercial product, 

unknown vehicle (“cyhalothrin vehicle”)
composition; dosing time frame not 
clear, but thought to be GD0–PND0 
(Gomes et al. 1991a, 1991b); 
inappropriate statistical models; 
minimal description of results; not clear 
that litter is statistical unit (numbers 
of replicates in figure legends do not 
always agree with number of treatment 
groups)

0.018%; 1 mL dermal, “Entire pregnancy” Delayed development of fur, Gomes et al. 
daily; “cyhalothrin ear/eye opening, and testes 1991a
vehicle” descent. PND90: ↓ hole-board 

head dips; 0 effect avoidance;
and locomotion in open field

0 change in sexual behaviors in Gomes et al. 
males or females 1991b

Fenvalerate 10 mg/kg, i.p.; GD18 and 0 effect: testis descent, weight, Moniz et al. 1999 Strengths: litter as statistical unit; more 
(type II) saline PND2–5 monoamine levels, stereotyped complete and appropriate statistical 

behavior, locomotion, rearing analysis, but still some incorrect uses 
↓ pup weight on PND21, of t-test (Moniz et al. 1999); maternal 
↓ ductus deferens and seminal weight examined/reported; Lazarini 
vesicle weight; female sexual et al. (2001) considered sex differences; 
behavior at PND120 only papers examining reproductive

Deltamethrin 0.08 mg/kg, p.o. GD6–15, PND21: ↑ rearing in males; 0 Lazarini et al. behavior; culling, male/female ratios
(type II) “deltamethrin vehicle” once daily effect on locomotion frequency 2001 described and even. Housing as adults

in males or females described
PND60 males: ↓ immobility Limitations: deltamethrin commercial 

time in forced swim test product; unknown (“deltamethrin  
↑ DOPAC, DOPAC/DA, NA vehicle”) vehicle composition; purity of 
0 effect on 5HT, 5HIAA, fenvalerate not known; discrepancies 
HVA/DA; 0 effect in between text and figures in Moniz et al. 
PND60 females (1999 their Figure 3); differences in 

control testes descent day in Moniz 
et al. (1999) vs. Gomes et al. (1991, 
1991b) (19 vs. 23 days)

Continued, next page



bioallethrin (Eriksson group: Ahlbom et al.
1994; Ericksson and Fredriksson 1991; Eriksson
and Nordberg 1990; Talts et al. 1998), and two
used S-bioallethrin (Muhammad and Ray,
unpublished data; Pauluhn and Schmuck
2003). Again, data in Table 5 suggest that this is
not a tenable explanation because d-allethrin
and bioallethrin result in either increases or no
effects on mAChR binding. An additional vari-
able in these data sets is the specific methods
used in the competitive binding experiments.
Competition experiments with carbachol were
used in several studies to distinguish between
high- and low-affinity QNB binding sites
(Ahlbom et al. 1994; Eriksson and Fredriksson
1991; Eriksson and Nordberg 1990; Ivens et al.,
unpublished data; Jekat et al., unpublished data;
Talts et al. 1998). Two studies (Ahlbom et al.

1994; Eriksson and Nordberg 1990) reported
that bioallethrin increased the percentage of
low-affinity binding sites in PND17 mice, an
effect not reported in adult mice, despite
changes in the density of muscarinic binding
(Eriksson and Fredriksson 1991; Talts et al.
1998). Ivens et al. (unpublished data) did not
find changes in the percentages of high- and
low-affinity sites, even though they did report
changes in the density of QNB binding sites in
PND17 animals. In some cases, the relative
proportion of high- and low-affinity sites was
not investigated even though changes in den-
sity were reported (Muhammad and Ray,
unpublished data). The ability to distinguish
high- and low-affinity sites, and effects
thereon, is dependent on the number of points
included on the agonist competition curve.

Studies conducted by the group at Bayer (Ivens
et al., unpublished data; Jekat et al., unpub-
lished data) used seven different concentrations
of carbachol, whereas studies conducted by
Eriksson’s group (Ahlbom et al. 1994;
Eriksson and Fredriksson 1991; Eriksson and
Nordberg 1990) used 18 concentrations of car-
bachol (Eriksson P, personal communication).
This information was typically not available to
evaluate and may account for some reported
differences, because use of too few points may
preclude detection of changes in the low-affin-
ity site. Overall, the data across laboratories
indicate that changes in QNB binding may
not be a robust response to developmental
exposure to pyrethroids and that conditions
may need to be more carefully controlled in
order to observe changes.
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Mouse (NMRI)
Bioallethrin 0.72 and 72 mg/kg PND10–16, PND17: ↑ mAChR density and Eriksson and Strengths: consistent demonstration of 

(type I) 20% fat emulsion (egg once daily altered ratio of high- and low- Nordberg 1990 increased motor activity and lack of 
lecithin/peanut oil) affinity QNB binding sites in habituation with bioallethrin and 

CTX but not HP with deltamethrin; dosing occurs over 
deltamethrin and bioallethrin a critical period of brain development; 
at low (0.7 mg/kg) but not dose response demonstrated for 
high doses bioallethrin for behavior and bio-

chemistry effects present 3.5–4 months 
Deltamethrin 0.71 and 1.2 mg/kg 0 change in nAChR density postdosing; behavior, biochemistry 

(type II) 20% fat emulsion (egg measured in same animals; changes in 
lecithin/peanut oil) mAChR binding in CTX ~10% at 

4 months, but changes not observed 
Bioallethrin 0.7 mg/kg, p.o.; 4 months: ↑ motor activity Eriksson and after 5 months (bioallethrin); consistent 

(type I) 20% fat emulsion (egg with lack of habituation; Fredriksson 1991 effects over several different studies; 
lecithin/peanut oil) ↓ mAChR density in CTX; history of publications with motor 

0 change in mAChR in HP, STR activity and QNB binding
Limitations: statistical analysis of 

Deltamethrin 0.7 mg/kg, p.o.; 4 months: ↑ motor activity biochemical data increases the
(type II) 20% fat emulsion with lack of habituation; possibility of type I error; unclear that

(egg lecithin/peanut oil) 0 change in mAChR in CTX, litter is unit of treatment; in some cases, 
HP, STR changes as small as 1–3% reported

Bioallethrin 0.42, 0.70, 42 mg/kg, PND17: ↑ mAChR density in Ahlbom et al. 1994 as significant (biochemistry); sex
p.o.; 20% fat emulsion CTX; ↑ low-affinity QNB differences not considered/included; 
(egg lecithin/peanut (mAChR) binding toxicity observed at high dose of 
oil) 4 months: ↑ motor activity deltamethin and bioallethrin by Eriksson

with lack of habituation; and Nordberg (1990), with tolerance
↓ mAChR density in CTX developing by the fourth day of dosing

Bioallethrin 0.7 mg/kg, p.o.; 20% fat PND10–16, once 5 months: ↑ motor activity Talts et al. 1998
emulsion (egg lecithin/ daily; again at with lack of habituation in BB 
peanut oil) 5 months for and BV groups 
4 treatment groups: 7 days, once daily Performance in H2O maze: 
vehicle as pup and ↓ reversal in BB groups; 0 effect 
5 months; VB, vehicle as in BV, VB groups 
pup, bioallethrin at mAChR density in CTX: ↑ in 
5 months; BV, bioallethrin BB treatment group; 0 effect in 
as pup, vehicle at BV, VB groups
5 months; BB, bioallethrin 
as pup and 5 months

Rat (Wistar)
Deltamethrin 0.7 mg/kg, i.p.; PND9–13 Examined on PNDs 12, 15, 21, Patro et al. 1997 Strengths: only study examining 

(type II) propylene glycol and 30: delayed cerebellar morphology; culled litters to equal 
cytogenesis and morphogenesis numbers; time course examined; within-
of interneurons, vascular litter dosing design
damage with focal Limitations: effects may be due to 
degeneration; ↓ brain and decreased growth, not direct neuro-
body weight toxicity; inappropriate statistical models; 

no control for “maternal” neglect 
effects in control vs. treated pups

Table 2. Continued
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A smaller number of studies examined
potential alterations in catecholaminergic sys-
tems. Both deltamethrin (Lazarini et al. 2001)
and bioallethrin (Muhammad and Ray,
unpublished data) were reported to increase
3,4-dihydroxyphenylacetic acid (DOPAC)
levels in the adult striatum after developmen-
tal exposure. However, developmental expo-
sure to a commercial product containing
fenvalerate had no effect on monoamine levels
in the striatum (Moniz et al. 1999). Malaviya
et al. (1993) reported that binding of
3H-spiroperidol to striatal membranes from
PND21 rats was decreased and increased,
respectively, after gestational and lactational
exposure to a commercial product containing
fenvalerate, whereas binding was increased
after only lactational exposure to a commercial
product containing cypermethrin. Thus, simi-
lar to the muscarinic cholinergic system, the

dopaminergic system may be affected by
developmental exposure to pyrethroids, but
studies examining this system have reported
inconsistent results to date.

Eriksson and co-workers have consistently
reported increased motor activity and a lack
of habituation after exposure to pyrethroids
(Ahlbom et al. 1994; Eriksson et al. 1993;
Talts et al. 1998). A comparison of effects of
pyrethroids on motor function between labo-
ratories is not as consistent. Muhammad and
Ray (unpublished data) observed effects on
motor activity in some cohorts but not in
others. After inhalation exposure to bioal-
lethrin (Tsuji et al. 2002) or d-allethrin (Ivens
et al., unpublished data), no effects on activity
or habituation were reported. By contrast,
inhalation exposure to cyfluthrin resulted in
hyperactivity and decreased habituation in
female mice (Jekat et al., unpublished data).

Several additional studies also examined other
measures of open field or motor activity
(Gomes et al. 1991a; Husain et al. 1992,
1994; Lazarini et al. 2001). Reports of effects
in these studies were also variable (Table 2).
The reasons for the discrepant nature of these
findings are unknown.

A small number of studies tested cognitive
functions (Table 2). Two studies reported that
bioallethrin exposure during PND10–16 (via
different routes) had no significant effect on
performance in the Morris water maze at 5
(Talts et al. 1998) and 11 (Tsuji et al. 2002)
months of age. Other studies reported decreases
in avoidance and Y-maze learning (Aziz et al.
2001; Husain et al. 1994; Moniz et al. 1990) or
no change in avoidance behavior (Gomes et al.
1991a). A major confounder in the Y-maze and
avoidance studies is the use of commercial for-
mulations rather than technical compound.
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Rat (Druckrey)
Cypermethrin Experiment 2: 5 mg/kg, PND10–13, ↑ BBB permeability at Gupta et al. Strengths: control data demonstrate 

p.o. (corn oil vehicle) 17, or 30 PNDs 13, 17, and 30 by 71, 61, 1999a maturation of BBB; within-paper 
and 80%; effect recovered by replication of effect; technical grade 
PND60 following withdrawal on (94.5% purity) cypermethrinb

PND18 Limitation: litter was not the
Experiment 3: 2.5 mg/kg, PND10–17 ↑ BBB permeability by 28% statistical unit
p.o. (corn oil vehicle), 
(1/100 LD50)

Allethrin 18 hr/day inhalation of PND2–19 ↓  body (23%) and brain (17%) Gupta et al. Strengths: replication of fluorescence 
vapors; unknown weights; ↑ BBB permeability, LH 1999b levels on PND10 compared with Gupta 
commercial product levels on PND10 but not PND18; et al. (1999a); litters culled to 
containing 3.6% ↑ (small) in conjugated dienes 8 pups/dam (size of litter is known)
Allethrin, 96% kerosine, (measure of lipid peroxidation) Limitations: unknown formulation; 
0.3% stabilizer on PND10; ↓ GSH 17% on PND10; exposure to kerosine > > allethrin; no 

↑ GSH by 28% on PND18 kerosine control
Deltamethrin 1.0 mg/kg, p.o., GD14–20 Delayed surface righting reflex Aziz et al. 2001 Strengths: examined two time points; 

deltamethrin 6 and 12 weeks postnatal: behavioral and biochemical changes
formulation in corn ↑ AChE activity; ↑ GAP-43 Limitations: unknown formulation, corn 
oil immunohistochemistry (both % oil used as “control”; unclear that litter 

area and total number of positive is statistical unit; maze learning 
cells); ↓ QNB Bmax; procedure is poorly described, and 
↓ relearning in Y-maze task “relearning” is poorly defined

Rat (Wistar)
Deltamethrin 7 mg/kg, p.o. GD5–21 ↓ weight of unspecified brain Husain et al. 1992 Strengths: work uniquely covers effects 

2.8% EC formulation, regions at PND22(?); of pyrethroids on different periods of 
peanut oil ↑ resorptions and neonatal death; perinatal development from shortly 

delayed surface righting, eye after conception to post-weaning, and 
opening, fur development, incisor suggests that effects may depend on 
eruption, and pinna detachment; the exposure period (includes Malaviya 
↓ grip strength; ↓ motor activity et al. 1993). However, different 
at PNDs 21 and 42; altered regional compounds were utilized; effects on 
polyamine levels maternal parameters, general toxicity

Fenvalerate 10 mg/kg, p.o.; 20% EC Delayed surface righting, eye recorded; litter size adjusted to an 
formulation, peanut oil opening, fur development, incisor average of 8 pups/litter

eruption, and pinna detachment; Limitations: formulated products used; 
↓ grip strength; 0 effect on motor lack of relevant vehicle controls; general 
activity; altered regional or less specific toxicity may be indicated 
polyamine levels by changes in fur development, pinna 

Cypermethrin 15 mg/kg, p.o.; 25% EC Delayed surface righting, eye detachment; statistical models are often 
formulation; peanut oil opening, fur development, incisor, inappropriate; descriptions of 

eruption and pinna detachment; comparisons (data sets) used for 
0 effect on motor activity; altered statistical tests are sometimes unclear 
regional polyamine levels or confusing; not clear that litter is the 

statistical unit

Table 2. Continued
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There are several common weaknesses in
the developmental studies that temper the sci-
entific strength of some individual reports, as
well as the data set when taken as a whole. A
key weakness is problematic statistical analyses.
Most behavioral studies [with the exception of
Ivens et al. (unpublished data), Jekat et al.
(unpublished data), and Tsuji et al. (2002)]
used multiple pups from the same litter with-
out correction in the statistical analysis. The
sampling of multiple pups from the same litter
inflates the sample size and increases the proba-
bility of a type I statistical error (Abbey and
Howard 1973; Holson and Pearce 1992;
Muller et al. 1985; Reily and Meyer 1984).
When biochemical end points were examined,

statistical analyses often lacked robustness or,
in some cases, were absent. In several studies
examining receptor binding, results were com-
pared (and significant differences found) using
multiple Student’s t-tests. Use of multiple
t-tests can easily increase the probability of a
type I error (Muller et al. 1985). These study
designs should use statistical models that con-
trol for multiple comparisons (e.g., analysis of
variance with appropriate post hoc test for
comparisons of different group means). Meta-
analyses or other statistical approaches to
examine related data sets from the same and
different laboratories could help strengthen
conclusions when effect magnitude is small but
have not been conducted to date.

An additional limitation common to these
reports was a lack of tissue concentration data.
None of the studies reported pyrethroid blood
or brain concentrations from dams or pups.
Such information would have greatly facilitated
comparisons between studies and would also be
useful to compare target tissue concentrations
in the test species with exposure estimates in
pregnant women (see Whyatt et al. 2002).

Lack of information about the stereoisomer
composition and/or purity of the test com-
pound was a serious confound in some reports.
Such information is important to be able to
compare studies generated in different labora-
tories, as discussed above for the different
allethrin products. In addition, several studies
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Deltamethrin 7 mg/kg; 2.8% PND22–37 ↓ hippocampal weight without Husain et al. 1994 Strengths: work uniquely covers effects 
EC formulation, effect on other brain regions; of pyrethroids on different periods of 
corn oil ↑ mitochondrial monamine perinatal development from shortly 

oxidase and microsomal AChE after conception to post-weaning, and 
without effect on Na/K suggests that effects may depend on 
ATPase; ↑ spontaneous the exposure period (includes Malaviya 
locomotor activity; et al. 1993). However, different 
↓ conditioned avoidance compounds were utilized; effects on 
response; altered regional maternal parameters, general toxicity
polyamine levels recorded; litter size adjusted to an 

Rat (Charles average of 8 pups/litter
Wistar) Limitations: formulated products used; 

Fenvalerate 10 mg/kg. p.o.; GD5–21 0 effect on dam weight, food/ Malaviya et al. lack of relevant vehicle controls; general 
corn oil (gestational water intake, gestation length, 1993 or less specific toxicity may be indicated

exposure) no. of offspring, sex ratio by changes in fur development, pinna 
or PND1–15 Gestational exposure: ↓ MAO, detachment; statistical models are often
(lactational Na/K-ATPase activity; spiro- inappropriate; descriptions of 
exposure) peridol binding; ↑ AChE activity comparisons (data sets) used for 
Biochemical Lactational exposure: statistical tests are sometimes unclear 
outcomes measured ↓ MAO, AChE activity; or confusing; not clear that litter is the 
at 3 weeks of age ↑ spiroperidol, QNB binding statistical unit

Cypermethrin 15 mg/kg, p.o.; GD5–21 0 effect on dam weight, food/ Malaviya et al. 
corn oil (gestational water intake, gestation length, 1993

exposure) no. of offspring, sex ratio
or PND1–15 Gestational exposure: 0 effect 
(lactational on MAO, Na/K-ATPase, AChE 
exposure) activity; spiroperidol binding
Biochemical ↓QNB binding
outcomes measured Lactational exposure: 
at 3 weeks of age ↓ Na/K-ATPase, AChE activity; 

↑spiroperidol, QNB binding
Rat (Wistar)

d-Allethrin 0.43–74.2 mg/m3 PND10–16, 6hr/day 0 Effects on weight gain, motor Tsuji et al. 2002 Strengths: measured air levels of 
Inhalation; unknown activity, mAChR density when allethrin during exposure; provides 
vehicle assessed on PND17 and additional exposure information; 

4 months multiple dose levels; litter controlledc

0 effect in Morris water Limitations: absence of positive controls;
maze at 11 months this would demonstrate that lack of 

effect is true negative
Mouse (ICR)

Permethrin Experiment 1: 0.33 to PND0–21 0 effect on weight in Imamura et al. Strengths: water consumption (ingested
(cis or trans) 33 µg/ml cis-permethrin or dam, pups; concentration- 2002 dose) measured; replication of c-fos

33 µg/mL trans-permethrin dependent decrease in c-fos decrease by different routes of 
in drinking water; mRNA in cerebellum at PND21; exposure; similar findings following 
0.33 µg/mL DMSO vehicle trend toward decrease in BDNF in vitro exposure to cerebellar granule 

mRNA at PND21; 0 effect on cells (Imamura et al. 2000)
β-actin mRNA Limitations: did not use litter as 

Experiment 2: 1 mg/day PND0–35 ↓c-fos mRNA at PND21 statistical unit. 3–4 samples/litter; 
cis-permethrin, p.o. only; 0 effect on β-actin mRNA BDNF data variable
corn oil at any time
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used formulated products rather than purified
compound (Aziz et al. 2001; Gupta et al.
1999a, 1999b; Husain et al. 1992, 1994;
Malaviya et al. 1993). Formulated pesticide
products typically contain solvents, emulsifying
agents, petroleum distillates, and other “inerts”
(Farm Chemicals Handbook 1997), many of
which are known or suspected to have neuro-
toxic properties. Although use of formulated
products may provide a more real-life exposure
situation, lack of information on the content of
proprietary formulations hampers comparisons
between studies and often precludes attributing
effects directly to the pyrethroid.

Several other limitations should also be
noted. The number of time points examined in
these studies typically was three or fewer, one
of which was often a measurement in adult
animals. Considerable ontogeny of both behav-
ioral responses as well as biochemical end
points is well established. Thus, the tendency
of most studies to examine a “snapshot in
time” may miss important ontogenic shifts
induced by these compounds. Dosing duration
and age at exposure are two other important
factors. Although a number of studies exam-
ined the period of PND10–15, the choice of
dosing periods in the present studies was 

variable, and, to date, there has not been a sys-
tematic evaluation of potentially sensitive
developmental periods. An additional consid-
eration regarding dosing periods is the differen-
tial rates of neurodevelopment in rodents
versus humans. Thus, studies such as those
conducted by Whyatt et al. (2002) could
potentially provide important information
about exposure to the developing fetus. In
addition, the effects of sex were not always
considered in the present studies, with a few
exceptions (e.g., Gomes et al. 1991b; Moniz
et al. 1999). Also related to this topic is the rel-
ative distribution of males and females in a lit-
ter. In some cases, culling information was
readily available; however, many studies pro-
vided no or insufficient information to evaluate
this variable.

Although not necessarily a limitation, there
is a significant conceptual gap between the vari-
ety of behavioral, biochemical, and physiologic
end points studied to date (Tables 1–4). The
relationships, if any, between these biochemical
and behavioral changes have yet to be estab-
lished. In addition, the relationship between the
end points examined in the present studies and
the major action of pyrethroids, disruption of
VSSC function, is also unknown. Only one

study to date has examined changes in VSSC
expression (Muhammad and Ray, unpublished
data). The relationship between biochemical
alterations and pyrethroid-induced develop-
mental neurotoxicity could be strengthened by
better characterization of neurochemical
mode(s) of action of pyrethroid neurotoxicity.
Establishing mode-of-action pathways increases
confidence that reported effects are the result of
pyrethroid action, particularly when the magni-
tude of those effects is small.

Conclusions and
Recommendations 
for Future Research
Several research needs in the area of develop-
mental neurotoxicity are apparent from this
review. These include additional information
regarding potential differences underlying age-
dependent sensitivity to pyrethroids, clari-
fication of changes in behavioral and
biochemical end points, and linking these end
points to VSSCs or other cellular targets. In
considering these potential areas for future
research, determining the priority of addressing
different research questions often depends on
individual perspectives. In this context, a differ-
ent conceptual approach to conducting future
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Mouse (NMRI)
Deltamethrin 0.7 mg/ml p.o.; 20% fat PND10–16 Pup mortality in hypothermic Pauluhn and Strengths: technical compound of known

emulsion (egg groups (control and S-bioallethrin), Schmuck 2003 purity used (99.8% for deltamethrin and
lecithin/peanut oil) including cannibalism; hypo- 95.7% for S-bioallethrin); statistical 
Hypothermic, normothermic, thermic pups displayed reduced analysis using ANOVAs; randomized 
and hyperthermic groups motility; body weight gain selection of pups and dams for treatment 

PND10–17 was affected by groups from a pool.
conditions of hypothermia, Limitations: pup mortality observed in 
hyperthermia; rectal temperature control, S-bioallethrin groups with no 
was affected by environmental information provided regarding number 
temperature, differences in of pups lost/cannibalized; replacement 
temperature between control pups came from a pool of pups that had 
and deltamethrin-treated animals been housed under “normal conditions,”
were present in hypothermic but which likely differed in temperature from 
not hyperthermic animals; group that lost pups (hypothermic pups); 
environmental temperature altered sample size for various end points is 
brain weight, with effects of difficult to determine; examined only 
S-bioallethrin and deltamethrin PND17 animals; not known if temperature
observed only in hypothermic differences could contribute to long-term
animals; both deltamethrin and changes in mAChR expression; 
S-bioallethrin decreased randomized assignment of pups to dams 
brain/body weight ratios in does not control for maternal effects; 
hypothermic animals; QNB did not demonstrate that typical p.o.
binding: on PND17, mAChR dosing causes hypothermia; because of 
density was increased in both design of study (incomplete block design), 
sexes by S-bioallethrin in comparisons between vehicle and 

S-bioallethrin 0.7 mg/mL p.o.; 20% fat PND10–16 hypothermic and normothermic pyrethroid treatments cannot be made; 
emulsion (egg groups; no differences were study design was to compare effects of 
lecithin/peanut oil) observed in the hyperthermic different temperature conditions within 
Hypothermic, normothermic group or in the deltamethrin- these treatments
and hyperthermic groups treated groups

Abbreviations: 5HIAA, 5-hydroxyindoleacetic acid; 5HT, serotonin; AChE, acetylcholinesterase; ANOVA, analysis of variance; BBB, blood–brain barrier; BDNF, brain-derived neurotropic
factor; Bmax, maximum number of binding sites; CTX, cortex; DA, dopamine; DMSO, dimethyl sulfoxide; EC, emulsifiable concentrate; GAP-43, growth-associated protein 43; GSH, glu-
tathione; HP, hippocampus; HVA, homovanillic acid; i.p., intraperitoneal; LD50, dose lethal to 50%; LH, luteinizing hormone; MAO, monoamine oxidase; NA, noradrenaline; nAChR, nico-
tinic acetylcholine receptor; p.o., per os; STR, stratum. 
aPublications by the same group of authors are indicated by shading; in some cases, comments are made on groups of papers published by the same group of authors rather than on
individual papers. bNot reported in original publication (Gupta et al. 1999a); data from A.K. Agarwal (personal communication). cNot reported in original publication (Tsuji et al. 2002); data
from R. Tsuji (personal communication).

Table 2. Continued

Species/compound Dose/route/vehicle Dosing period Effects Reference Comments



research may improve the resulting data’s use-
fulness for the purpose of risk decisions.

Biologically based dose–response
(BBDR) models (Andersen and Dennison
2001) describe the relationships between 

different components of the continuum
between exposure to and the adverse effects
of a chemical (Figure 4). For example, such a
model has recently been constructed for the
developmental neurotoxicity of perchlorate

(Jarabek et al. 2002). Mode-of-action models
strengthen science in two important ways.
First, the uncertainty regarding animal-to-
human extrapolations can be reduced if a
toxicant’s mode of action in an animal model
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Table 3. Summary of developmental neurotoxicity studies with pyrethroid compounds in NMRI mice dosed once daily on PND10–16 (Muhammad and Ray, unpublished
data).

Compound Dose/route/vehicle Effects Comments

d-Allethrin, 93% purity 0.7 mg/kg 4 months: 0 effect on motor activity; 0 effect on Strengths: each chemical was examined in several cohorts 
(cis/trans) egg lecithin/peanut oil mAChR (QNB) binding in CTX in this study; closely replicates methodology of Eriksson 
Experiment 13 (1:10) 40% fat emulsion and co-workers (see Table 2) for motor activity measure-

ments; examined vehicle differences; technical compounds 
of known purity (100% for deltamethrin and 95.2% for

S-Bioallethrin 0.7, 3.5 mg/kg 4 months: ↑ motor activity, habituation (slow S-bioallethrin)
(trans) egg lecithin/peanut oil mobile counts), 0 effect on mAChR in CTX Limitations: not published, peer-reviewed or submitted to 
Experiment 17a (1:10) 40% fat emulsion any regulatory agency; litter was not used as statistical 

S-Bioallethrin Attempt to replicate 4 months: ↑ mAChR in CTX, CB (3.5 mg/kg); unit; statistical models not well described; t-tests used 
(trans) experiment 17a ↑ mAChR brainstem (0.7 and 3.5 mg/kg);  for biochemical measures; date of study unknown, circa
Experiment 19a ↓ habituation (slow mobile counts) by mid-1990s

0.7 mg/kg dose; ↑ DOPAC, HVA in striatum; 
↑ saxitoxin binding in CB and MB, ↓ in CTX

S-Bioallethrin 0.7 mg/kg, corn oil PND17: 0 effect on mAChR in CTX
(trans) 4 months: no data provided, despite mention that 
Experiment 25a motor activity and mAChR were assessed

S-Bioallethrin 0.7 mg/kg, corn oil 4 months: significant delay in habituation of slow 
(trans) rearing, fast rearing, total rearing, and rearing 
Experiment 26a time; 0 effect on mobile activity and time, 0 

effect on mAChR
Deltamethrin 0.7 mg/kg, egg 4 months: ↑rearing time fast and total mobile counts

Experiment 12 lecithin/peanut oil (1:10) slow, fast, and total rearing; delayed habituation 
40% fat emulsion of counts, slow mobile counts, and mobile time 

mAChR not examined
Deltamethrin 0.7 mg/kg, corn oil 4 months: ↑ mAChR in CTX; no effect on any 

Experiment 23 measure of motor activity
Deltamethrin 0.7 mg/kg, corn oil PND17: ↑ mAChR; motor activity not examined

Experiment 25
Deltamethrin 0.7 mg/kg, corn oil 4 months: significant delay in habituation of slow 

Experiment 26 mobile counts, mobile and rearing time; 0 
change in mAChR (increased but not significant)

Abbreviations: CB, cerebellum; CTX, cortex; HVA, homovanillic acid; MB, midbrain.

Table 4. Summary of data from studies in NMRI mice (dosed once daily on PND10–16) submitted to the U.S. EPA.

Compound Dose/route/vehicle Effects References Comments

d-Allethrin 0.15, 4, or 100 mg/m3 PND17: motor activity: increased habituation Ivens et al., Strengths: technical compound, 95% purity; group sizes of 10; 
6 hr/day, inhalation; in 0.15 mg/m3 females when compared to unpublished litter was statistical unit; good statistical analysis, males and
polyethylene glycol control; effects not dose-related; mAChR: data females considered separately; second control group was

25% ↑ in QNB in cortex, smaller changes included; closely replicates methodology of Eriksson and
in hippocampus and striatum; nAChR: co-workers (see Table 2) for motor activity measurements
40–60% ↓ in cortex, hippocampus, and Limitations: not peer-reviewed or published; some biochemical 
striatum in both sexes; AChE: ↑  by 70–80% measurements were variable and not dose-related
in striatum but not significant due to large
variability; ChAT: 0 effect

4 months: motor activity: no significant 
effects; mAChR: 0 effect; nAChR: large 
sporadic changes but no clear sex- or dose-
related trends; AChE: 0 effect; ChAT: 
0 effect

Cyfluthrin 6, 15 or 50 mg/m3, All pups died in 50 mg/m3 dose group; Jekat et al., Strengths: technical compound, 96.8% purity; group sizes of 10; 
6 hr/day, inhalation; 15 mg/m3 pups had clinical signs including unpublished litter was statistical unit; good within-lab replicability for motor 
polyethylene glycol “clonic seizures” (probably tremors and/or data activity [comparison of data with Ivens et al. (unpublished data)]; 

choreoathetosis); ↓ pup weight in 15 mg/m3 closely replicates methodology of Eriksson and co-workers (see 
and in 5 mg/m3 females Table 2) for motor activity measurements

PND17: no measurements Limitations: not peer-reviewed or published; only examined adults; 
4 months: motor activity: 15 mg/m3 females general toxicity observed; QNB data variable, no dose-related 

were hyperactive and had decreased effects, difficult to compare with other studies because 
habituation in horizontal and vertical v presented either as dpm or percent of control
activity;mAChR: ↓ QNB binding (not 
statistically significant) of ~22% in 
15 mg/m3 males

Abbreviations: AChE, acetylcholinesterase; ChAT, choline acetyltransferase; nAChR, nicotinic acetylcholine receptor.



is demonstrated to be relevant to humans
(Cohen et al. 2004; Meek et al. 2003; Sonich-
Mullin et al. 2001). Second, these models
often provide insight into research needs by
identifying data gaps and research needs. For
pyrethroids, much of the future research needs
can be described in the context of the type of
data that would be useful in constructing a
BBDR for this class of compounds, or for
individual compounds within this class. A cor-
nerstone of a BBDR model is a physiologically
based pharmacokinetic (PBPK) model that
describes the relationship between exposure
and target tissue dose (Andersen and Dennison
2001). Additional pharmacokinetic informa-
tion in animal models as well as additional
pharmacokinetic and exposure information in
humans is needed. For pyrethroids, this will
involve defining the relationship between
maternal and fetal compartments, and the
involvement of oral (including lactation),
inhalation, and dermal exposures to the new-
born. Current data indicate that some exposure
does occur to pregnant mothers, infants, and
children, resulting in low internal doses
(Berkowitz et al. 2003; Heudorf et al. 2004;
Schettgen et al. 2002). However, insufficient
information is available to adequately evaluate
the range of internal doses of pyrethroids in
humans. These data will be valuable in quanti-
tative extrapolations of exposure from animals
to humans (Andersen and Dennison 2001).
Pharmacokinetic information is available com-
paring acute high-dose exposures in neonatal
versus adult animals (Cantalamessa 1993;
Sheets et al. 1994). However, only a limited
number of compounds have been examined to
date, and no information is available for ages
before PND11.

Another component of a BBDR model is
a physiologically based pharmacodynamic
(PBPD) model (Andersen et al. 1992; Conolly
2002). PBPD models are quantitative models
that describe the mode of action of a chemical.
A benefit of PBPD models is identification of
research gaps that are critical to link key events
in the mode of action to adverse outcomes.
Currently available studies of pyrethroid
developmental neurotoxicity have examined a
wide variety of end points but have not sought
to link target tissue events (e.g., receptor acti-
vation, changes in ion channel function) to
consequent biochemical, physiologic, or
behavioral outcomes. Future studies need to
target the large data gap between the target site

(e.g., VSSCs) and adverse outcomes. For
example, can the sequence of biochemical
processes be described that, when perturbed
by pyrethroids, result in changes in end points
such as motor activity or mAChR binding? If
changes in sodium currents alter neuronal fir-
ing rate, how does this then lead to alterations
in neurodevelopment? Considerable informa-
tion supports involvement of VSSCs in the
mode of action of acute pyrethroid neuro-
toxicity, yet the potential role of VSSCs in
developmental neurotoxicity of pyrethroids has
not been examined. Future research on the
developmental neurotoxicity of pyrethroids
should endeavor to fill these research gaps.
These studies must be designed and conducted
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Table 5. Summary of effects on mAChR and motor activity after developmental exposure to pyrethroids.

MAChR expressiona Motor activity
Compoundb Preweaning Adult Preweaning Adult Reference

d-Allethrin ↑ CTX 0 CTX ↑ HB 0 Ivens et al., unpublished data
d-Allethrin 0 0 ND 0 Tsuji et al. 2002
Bioallethrin 0 CTX ↑ CTXc ND ↑ MA, ↓ HB Muhammad and Ray, unpublished data
Bioallethrin ND 0 CTX ND ↑ MA, ↓ HB Talts et al. 1998
Bioallethrin/bioallethrin ND ↑  CTX ND ↑ MA, ↓ HB
Bioallethrin ND ↓ CTX; 0 HP, STR 0 MA, 0 HB ↑ MA, ↓ HB Eriksson and Fredriksson 1991
Bioallethrin ↑ CTX ↓ CTX ND ↑ MA, ↓ HB Ahlbom et al. 1994
Bioallethrin ↑ CTX ND ND ND Eriksson and Nordberg 1990
S-Bioallethrin ↑ CTX ND ND ND Pauluhn and Schmuck 2003
Cyfluthrin ND 0 CTX ND In females,↑ MA, ↓ HB Jekat et al., unpublished data
Cypermethin ↓ STR (gestation experiment), ND ND ND Malaviya et al. 1993

↑ STR (lactation experiment)
Deltamethrin ND ↓ HP ND ND Aziz et al. 2001
Deltamethrin ↑ CTX ↑ CTX ND ↓ HB Muhammad and Ray, unpublished data
Deltamethrin ND 0 CTX, HP, STR 0 MA, 0 HB ↑ MA, ↓ HB Eriksson and Fredriksson 1991
Deltamethrin ↓ HP ND ND ND Eriksson and Nordberg 1990
Deltamethrin 0 CTX ND ND ND Pauluhn and Schmuck 2003
Fenvalerate 0 STR (gestation experiment), ND ND ND Malaviya et al. 1993

↑ STR (lactation experiment)

Abbreviations: 0, end point was examined and was not affected by treatment; CTX, cortex; HB, habituation; HP, hippocampus; MA, motor activity; ND, not determined; STR, striatum. 
aAs measured by QNB binding. bCompounds are arranged in alphabetical order. cAn increase in QNB binding was observed in one “cohort” but was not consistently observed in all
“cohorts” in studies by this group. See Table 3 for complete details.

Exposure Absorbed
dose

Target
tissue dose

Altered
VSSCs

Adverse
effects?Altered

excitability

? ? Adverse
effects

Molecular
target

Acute neurotoxicity in adults

Developmental neurotoxicity
Data needs

Pharmacokinetics in pregnant dams
Blood/brain levels in dams/pups
Pharmacokinetics in young vs. adults

Data needs

Additional carefully designed/conducted
studies to characterize adverse effects

Studies designed to examine potential links
between molecular targets and adverse
effects following developmental exposure

Figure 4. Major elements in a proposed BBDR model for pyrethroid neurotoxicity and research needs for
the PBPK and PBPD components. Boxes with question marks indicate that the sequence of events
between changes in the target and adverse effects has not been completely elucidated.



so as to avoid the limitations mentioned in the
preceding section. Such studies of the develop-
mental neurotoxicity of these compounds can
strengthen the scientific basis for risk deci-
sions. The most efficient use of scientific
resources will be to design those additional
studies to fit into a BBDR scheme.
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