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The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of
fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell
death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known
signal transduction pathways that regulate cell cycle progression and the mechanisms cells
employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on
mammialian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell
cycle following exposure to genotoxic agents, and the gene products that act in checkpoint
function signal transduction cascades. Key transitions in the cell cycle are regulated by the
activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase
(Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of
early events and cellular integrity before initiation of subsequent events in cell cycle progression
are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell
more time to repair damage before progressing to the next phase of the cycle. A variety of
cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities.
These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and
the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1,
S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia
telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to
alter DNA stability have been found to have defects in checkpoint surveillance pathways.
Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing
radiation, UV radiation, and the genotoxic compound benzolalpyrene, elicit cell cycle checkpoint
responses that show both similarities and differences in their molecular signaling. — Environ
Health Perspect 107(Suppl 1):5-24 (1999). http://ehpnet1.niehs.nih.gov/docs/1999/Suppl-1/
5-24shackelford/abstract. html
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Biology of the Cell Cycle

The development of microscopy in the
seventeenth century allowed early micro-
scopists to examine a large number of proto-
z0a, bacteria, molds, animal cells, and other
“animalcules” for the first time (7,2). With
the development of cell theory, and
improvements in microscopy and sample
preparation in the nineteenth century, the
study of cell division became possible. Early
examinations of cell division were limited to
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the observation that cells increased in size
from the completion of one cell division or
mitosis (M phase) to the initiation of the
next. The period between mitoses was
termed interphase (3). Later, DNA replica-
tion was found to occur at a discrete time
during interphase, termed DNA synthesis
phase or S phase (4,5). The period between
mitosis and the subsequent S phase was
termed Gap 1 (G;), while the period
between S phase and the following mitosis
was termed Gap 2 (G,). Thus the cell cycle
was divided into four major phases (3,6,7).
Cells in a metabolically active state but not
progressing to, or through DNA synthesis
or cell division, were said to be quiescent or
resting (Gy). In the typical dividing eukary-
otic cell, G, phase lasts approximately 12 hr,
S phase 6 to 8 hr, G, phase 3 to 6 hr, and
mitosis about 30 min, although the exact
length of each phase varies with cell type
and growth conditions (Figure 1) (6,8).
The description of the cell cycle being
divided into four phases led to many ques-
tions about the regulatory mechanisms
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cells employ to ensure an ordered and
sequential progression from G; to M
phase, as well as the mechanisms ensuring
DNA stability. Some of these questions
were summarized as the “completion” and
“alternation” problems (8,9). In the com-
pletion problem, the question is raised as
to how cells ensure that specific events are
completed before subsequent events are
initiated. For example, cells must ensure
that once DNA is condensed for segrega-
tion during cytokinesis, it remains con-
densed throughout M phase and does not
prematurely decondense. In the alternation
problem, the question is raised as to how
cells ensure that once an event is com-
pleted, it is not inappropriately repeated.
For example, cells must ensure that once
DNA replication in S phase is completed,
it is followed by DNA condensation and
not by another round of replication.
Insight into the completion and alterna-
tion problems came from cell fusion experi-
ments carried out by Rao and Johnson
(10,11). When S phase cells were fused to
G, or G, cells, the Gy cells began prema-
ture DNA replication, but the G, cells did
not re-replicate their DNA. Also when S
phase cells were fused with G, cells, the
resulting cell fusion did not enter M phase
until the G| nuclei had completed DNA
replication. These results indicated that )
S phase cells contain an S phase-promoting
factor (SPF) activity that is zrans-dominant
acting on G; cells but not on G; cells, ) G,
cells contain a block that prevents SPF from
initiating DNA replication in G; cells, and
¢) S phase cells contain a feedback control
factor that prevents the initiation of M
phase until DNA replication is complete. In
other experiments, fusion of M phase cells
with Gy, S, or G, cells resulted in interphase
nuclear membrane breakdown and in chro-
mosome condensation, demonstrating that
M phase cells carried a trans-dominant M
phase-promoting factor (MPF) activity.
Another important question in under-
standing cell cycle biology deals with the
ability of cells to pause transiently during
the cell cycle in response to agents that
cause damage, particularly to DNA.
Surveillance control mechanisms that check
to ensure proper completion of early events
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Figure 1. Schematic representation of Cyc/Cdk protein
complexes and the cell cycle.

and cellular integrity before initiation of
subsequent events in cell cycle progression
are referred to as cell cycle checkpoints and
can cause a transient delay that has been
suggested to allow the cell more time to
repair damage before progressing to the
next phase of the cycle [for reviews, see
(12,13)]. Alternatively, if the damage is too
severe to be adequately repaired, the cell may
undergo apoptosis or enter an irreversible
senescencelike state (13).

Molecular Biology
of the Cell Cycle

The experiments by Rao and Johnson
(10,11), although important, did not pro-
vide molecular information abourt the
nature of SPF, MPF, or cell cycle check-
point mechanisms. Since those initial
observations, studies in budding and fis-
sion yeast, and frog and marine inverte-
brate oocytes and embryos, Drosophila
embryos, and mammalian cells have led to
the molecular characterization of SPF, and
MPF, as well as a greater understanding of
the molecular events that govern the cell
cycle, the alternation/completion prob-
lems, and checkpoint function (8). SPF
and MPF have now been characterized as
protein complexes whose key components
consist of a regulatory protein subunit,
referred to as a cyclin, and a protein kinase,
called a cyclin-dependent kinase (Cdk).
Different cyclin/Cdk complexes are
expressed in different phases of the cell
cycle, with each cyclin having a specific
time of appearance and kinase activity [for
reviews, see (8,/4—16)]. In this review we
discuss the known cyclin/Cdk activities
that characterize each phase of the cell
cycle, the cellular signal transduction
pathways of cell cycle checkpoints, and sev-
eral genotoxic insults that can initiate
checkpoint function.

Cell Cycle Control
The G, Restriction Point

In early G|, a series of molecular events
occur that eventually commit the cell to
progression through the cell cycle and divi-
sion. Early events in the commitment to
division include the induction of the D-
type cyclins in response to growth factors
and subsequent retinoblastoma protein
(pRb) phosphorylation by G, cyclin/Cdk
protein kinase complexes. This later event
is necessary for progression through G,
phase, as described below. In early to mid
G, the withdrawal of external growth fac-
tors can result in a rapid lowering of cyclin
D levels and exit of proliferation into a G,
state (/7). However, as cells proceed
through Gy, a point is reached where the
withdrawal of growth factors no longer
halts cell cycle progression (6). This point
is called the restriction point and is
thought to coincide with pRb phosphory-
lation (Figure 1) (18,19). The G, restric-
tion point has been found to be lost in
many human tumors (20).

G, Cyclins

In mammalian cells, cyclins D and E form
active protein kinase complexes with Cdk
proteins, which are required for progres-
sion of cells through G into S phase.
There also is evidence suggesting that
cyclin A/Cdk2 complexes may have a role
in G;—S§ progression, although this is less
clear. Cyclin D kinase activity is maximal
in early to mid-G; (21). In Gy cells, cyclin
D levels are low but may be induced by
mitogenic stimuli, whereas in continually
cycling cell populations, cyclin D protein
levels do not significantly oscillate through-
out the cell cycle, although there is gener-
ally more cyclin D protein in late G,
(8,17,21-23). Cyclin D has a relatively
short half-life (~ 20 min) and rapidly disap-
pears with the removal of mitogenic stim-
uli or the addition of antiproliferative
agents (17,24,25). The requirement for
cyclin D in regulating the G,—$ transition
was demonstrated by the microinjection of
antibodies to cyclin D1 and by microinjec-
tion of cyclin D1 antisense plasmid into
G, fibroblasts, both of which resulted in a
block of progression into S phase. The
same procedures failed to block S phase
entry in fibroblasts near the G;/S border
(26,27). Overexpression/deregulation of
cyclin D has been found in a variety of
human tumors, implying that cyclin D can
function as a positive growth regulator
(28-30). In fact, overexpression of cyclin

D was found to accelerate G, phase in
rodent fibroblasts and decrease their depen-
dency on mitogens (27,31). However, in
cells that constitutively express cyclin
D/Cdk4, the assembly of the active kinase
complex depends on growth factors (21).
On the basis of these data, cyclin D is
thought to move cells from G;—S and par-
ticipate in the transduction of external
mitogenic/antiproliferative signals to other
components of G;/S transition cell cycle
machinery, thus moving Gy cells into G,
and early G, cells into the G,/S transition
[(17,21-25); for reviews, see (8,32)].

Three mammalian isoforms of cyclin D
occur (types D1, D2, and D3 ) and each is
differently expressed in different cell types
(22,23,28,33,34). The D cyclins show
some functional redundancy, as cyclin D1
nullizygous mice are viable, although they
are smaller than heterozygous or wild-type
littermates and exhibit problems in retina
and mammary gland development (35).
Cyclin D2 nullizygous mice are also viable
(36). However, cyclin D2-deficient females
are sterile because of abnormalities in ovar-
ian development, whereas cyclin D2-defi-
cient males display hypoplastic testes.
Interestingly, this observation led Sicinski
et al. (36) to examine human testicular and
ovarian tumors for abnormal cyclin D2
expression. Unusually high cyclin D2
mRNA expression was found in some of
these tumors. Other differences between
the three D-type cyclins have been docu-
mented. For example, although cyclin D1
is dysregulated in many tumors, there is lit-
tle evidence implicating similar dysregula-
tion of cyclins D2 and D3 in tumorigenesis
[for review, see (37)]. Also, most cell types
express cyclin D2 and either D1 or D3,
suggesting that cyclins D2 and D1/D3 are
not functionally equivalent (32).

The D-type cyclins normally associate
with Cdk4 and Cdké6 (Figure 1) (23,38,39).
Like the D-type cyclins, Cdk4 and Cdk6
show some degree of tissue-specific expres-
sion and have been found to be amplified-
loverexpressed in human tumors and tumor
cell lines (38-44). The cyclin D/Cdk4-
Cdk6 complexes appear to function, at least
in part, by phosphorylating the pRb protein
(38,39). Support for this comes from the
observations that in pRb-deficient cells,
cyclin D activity is dispensable for passage
through the cell cycle (45). The pRb and
the pRb-related proteins act to suppress pro-
gression from G;—S by sequestering and
thereby inactivating a number of regulatory
factors [for review, see (46)]. Of these
factors, the E2F-DP1 transcription factor
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families are the best characterized [for
reviews, see (32,47)]. In G and early G,
cells, E2F is bound to hypophosphorylated
pRb and is inactive. With progression into
G, the cyclin D/Cdk protein kinase com-
plexes phosphorylate pRb, releasing E2F
from pRb. E2F proteins can then form
complexes with members of the DP-1 fam-
ily of proteins and these complexes can act
as transcriptional activators for several genes
required for S phase. Included among these
genes are dihydrofolate reductase, thymidine
kinase, histone H2A, DNA polymerase o,
proliferating cell nuclear antigen, as well as
cyclin E, cyclin A, Cdc2, and E2F1 itself
(45,48-61). The induction and activation
of cyclin D is summarized in Figure 2.
Another cyclin/Cdk complex that plays
a crucial role in the G,/S phase transition is
cyclin E/Cdk2. The expression and activity
of cyclin E follows that of cyclin D, with
increases in cyclin E expression occurring
in the nucleus in early G;, peaking at the
G,/S border (where cyclin E-associated
protein kinase activity is maximal), and
declining thereafter (Figure 1) (62-64).
Cyclin E associates with a single Cdk,
Cdk2 (63,65). Unlike the cyclin D/Cdk4
and cyclin D/Cdk6 complexes that show
apparent limited substrate specificity for
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pRb and related proteins, cyclin E/Cdk2
protein complexes show in vitro protein
kinase activity toward a number of exoge-
nous protein substrates including pRb and
histone H1 (63,65). As seen with cyclin D,
microinjection of anticyclin E antibody
blocks progression of G; cells into S, but
fails to block cells at the border of G;/S
from proceeding into S phase. Cyclin E
differs from cyclin D in that it is required
for S phase progression in cells that lack
pRb function, demonstrating that it has a
function different from that of D-type
cyclins (66). Similarly, Cdk2 expression
has been found to be required for S phase
entry, although it was not clear whether
this was due to its association with cyclin E
and/or cyclin A (67,68). Cyclin E dysregu-
lation has been found in human cancers,
with amplification of the cyclin E gene
common in gastric and colorectal cancers
[for review, see (69)]. Like cyclin D, over-
expression of cyclin E shortens the time
cells spend in G (31,66).

Lundberg and Weinberg (70) have
recently demonstrated that cyclin D and E
act cooperatively. When either Cdk4/6 or
Cdk2 was selectively inhibited, cyclin
D/Cdk4-6 complexes where unable to phos-
phorylate pRb completely. Furthermore, the
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Figure 2. Schematic representation of cyclin D/Cdk and cyclin E/Cdk protein kinase complexes regulation in the

Gy /G, transition into S phase.
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cyclin E/Cdk2 complex was found to be
incapable of phosphorylating pRb unless
pRb had previously been partially phospho-
rylated by a cyclin D/Cdk4-6 complex.
Together these observations indicate that
pRb inactivation and E2F transcriptional
activity require the combined action of at
least two distinct cyclin/Cdk complexes.
Although cyclin A is believed to function
mainly in S and G; phase, there is evidence
that it can influence G, progression as well,
since ectopic expression of cyclin A in G,
cells can cause them to advance prematurely

into S phase (71).
S Phase Cycdlins

DNA replication occurs in a discrete
portion of the cell cycle referred to as S
phase (3,6). Expressed at low levels in Gy,
cyclin A protein levels steadily increase
from S phase through G,, with degrada-
tion occurring during M phase (72,73).
Cyclin A activity is thought to contribute
to the G,/S transition, S phase progression,
and G,—M transition. Support for this
comes from the observations that microin-
jection of cyclin A antibody resulted in a
failure to replicate DNA in fibroblasts, and
that cyclin A null Drosophila embryos can-
not enter mitosis (74,75). In extracts of
Xenopus eggs, ablation of cyclin A mRNA
resulted in the dysregulation of S phase
progression and M phase entry (76).
Cyclin A associates with two Cdks,
Cdk2 and Cdc2 (or Cdkl) (73,77). It has
been hypothesized that cyclin A/Cdk2
activity is required for S phase progression,
whereas cyclin A/Cdc2 activity is required
for G,—>M progression. Support for this
hypothesis comes from the observation
that mouse cells with temperature-sensitive
Cdc2 mutations arrest only in G,, whereas
in Xenopus cell-free extracts Cdk2 is essen-
tial for DNA synthesis (78,79). Also,
although cyclin A/Cdk2 activity is present
in both S and G; phase, cyclin A/Cdc2
activity is present only in G, (80). The
endogenous targets of these protein kinases
are not known. However, in vitro protein
substrates for cyclin A/Cdk2 include his-
tone H1 and pRb, and for cyclin A/Cdc2
complexes include histone H1 protein
(72,73,81). Recently, Knudsen and col-
leagues (82) found that a phosphorylation-
site-mutated pRb was capable of blocking
progression through S phase, suggesting
that the continued hyperphosphorylation
of pRb may be a necessary part of cell cycle
progression. It is interesting to note that
pRb represses both cyclin A and Cdc2
expression, putting these gene products
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under G, cyclin control (83,84). It appears
that this repression involves binding of
pRb—E2F complexes to and actively
repressing transcription from E2F pro-
moters, thus in fact inhibiting gene expres-
sion [for review, see (61)]. Like cyclins D
and E, there is evidence that cyclin A is
dysregulated in some human cancers (85).

G,/M Cyclins

G,—M progression and entry into M
phase is regulated by MPF, an activity that
is due principally to the protein kinase
activity of cyclin B/Cdc2 protein complexes
(86-92). Cyclin B levels oscillate through
the cell cycle, with cyclin B first appearing
in S phase, increasing through G, and
being abruptly degraded at anaphase
(Figure 1) (93). Cyclin B-associated activity
peaks at the G,/M border and remains
until cyclin B degradation (93). Three
major mammalian cyclin B isoforms have
been characterized, cyclin B1, B2, and B3.
During interphase, cyclins B1 and B2 are
cytoplasmic, whereas cyclin B3 appears to
be nuclear (94-97). At the G,/M transi-
tion, the cytoplasmic B cyclins translocate
to the nucleus prior to nuclear envelope
breakdown (94, 95,98—-100). This nuclear
translocation appears to be necessary for
normal cyclin B activity and is regulated at
least in part by phosphorylation (700).
Cyclin B3 is unusual in that it is nuclear
throughout interphase, associates in vivo
with Cdc2 and Cdk2, and has structural
features that resemble cyclin A (97). In
vitro, cyclin B/Cdc2 protein complexes
have kinase activity toward a variety of
exogenous protein substrates including
histone H1 (92,101).

Mice have been developed that are
nullizygous for either cyclin B1 or B2 (102).
Mice nullizygous for cyclin B2 developed
normally. In contrast, no cyclin B1 homozy-
gous null pups were born, demonstrating
that cyclin B1 is an essential gene.

Regulation of Cyclin/Cdk Protein
Kinase Activity

Regulation of cyclin/Cdk protein kinase
activity during cell cycle progression
involves not only regulation of the timing
of cyclin protein accumulation and degra-
dation, but also the binding of Cdk
inhibitory polypeptides, and phosphoryla-
tions and dephosphorylations of both the
cyclin proteins and the Cdk’s (for reviews,
see (15,103—-106)]. The regulatory conse-
quences of cyclin phosphorylation are not
totally clear. Phosphorylation of B-type
cyclins appears to influence subcellular

localization and activation (100). More is
known about the regulatory consequences
of Cdk phosphorylation. Once complexed
with their cyclin subunit, Cdk2 and Cdc2
must be phosphorylated on a regulatory
threonine residue (Thr-160 and Thr-161
in humans, respectively) to become active.
This activating phosphorylation is accom-
plished by an activity known as the Cdk-
activating kinase, or CAK, which is
composed of Cdk7, cyclin H, and a
RING-finger protein MAT1 (107,108).
Cdc2 molecules are phosphorylated on
threonine 14 and tyrosine 15 amino acid
residues in late S phase and G,, as they
associate with cyclin B molecules. These
phosphorylations inhibit the activity of
cyclin B/Cdc2 complexes (109-111).
Thus, these inhibitory phosphorylations
appear to be one important mechanism
employed by cells to prevent premature
activation of cyclin B/Cdc2 complexes
before entry into mitosis. Phosphorylations
of Cdc2 on Thr-14 and Tyr-15 can be
accomplished through the actions of
several dual-specificity protein kinases,
including Weel, Mikl, and Mytl
(112-114). Thr-14 and Tyr-15 are posi-
tioned within the Cdc2 ATP-binding cleft
and phosphorylations of these residues are
thought to inhibit kinase activity by
disrupting the orientation of ATP mole-
cules bound in this cleft (109,115). Acti-
vation of the cyclin B/Cdc2 complex
occurs through dephosphorylation of Thr-
14 and Tyr-15 on Cdc2 by the duel-speci-
ficity phosphatase Cdc25C (116-118).
The extremely rapid activation of cyclin
B/Cdc2 at the G,/M border is thought to
be brought about by an autocatalytic
positive feedback loop involving cyclin
B/Cdc2 and Cde25C (119). This occurs
when Cdc25C binds to cyclin B/Cdc2,
dephosphorylating Cdc2 and activating the
protein kinase complex. Cyclin B/Cdc2 in
turn phosphorylates Cdc25C, which
increases its phosphatase activity, resulting
in the activation of more cyclin B/Cdc2
complexes, and in turn resulting in a rapid
activation of both the Cdc25C phos-
phatase and cyclin B/Cdc2. Support for
this model comes from the observations
that hyperphosphorylation of Cdc25C
correlates with increased phosphatase
activity (119,120).

Regulation of Cell Cycle
Checkpoint Function

Under normal circumstances the cell cycle
proceeds without interruptions. However,
when damage occurs, most normal cells

have the capacity to arrest proliferation in
Gy, S, and G, and then resume prolifer-
ation after the damage is repaired. Alter-
natively, cells may undergo apoptosis with
or without growth arrest or enter an irre-
versible G-like state. Cells are acutely
sensitive to broken DNA. Even a single
double-strand DNA break appears to be
sufficient to bring about cell cycle arrest in
normal human fibroblasts (721). Cellular
surveillance pathways that monitor suc-
cessful completion of early cell cycle events
and the integrity of the cell and generate
delays in cell cycle progression in response
to DNA damage and other events have
been given the term checkpoints (12,13,
122). Cells exposed to a genotoxic agent
while in early G, may arrest at a point in
mid G, phase, whereas those in late G, or
phase will slow the initiation of DNA
synthesis. Similarly, those exposed to a
damaging agent in early to mid G, may
delay in mid G,, whereas those in late G,
or early M phase may delay in mirtosis.
Thus, checkpoints appear to operate in all
phases of the cell cycle. Checkpoint func-
tion often involves a delay in activation or
inactivation of a particular cyclin/Cdk
complex (122,123).

The G; Checkpoint

Cells exposed to genotoxic agents in early
to mid G, may delay proliferation in G; at
the G, checkpoint (124). G, cell cycle
arrest in response to DNA damage has been
found to depend heavily on the action of
the p53 gene product (/25). p53 has been
characterized as a tumor suppressor gene
product and is known to be murtated in
more than 50% of human cancers (20).
p53 is normally a short-lived protein, but is
induced through posttranscriptional stabi-
lization in response to DNA damage
(125,126). Agents such as ionizing radia-
tion, radiomimetic chemicals, and UV can
all induce p53 (125-128). The dependence
of the G| checkpoint function upon p53
function is demonstrated by the observa-
tion that cells containing wild-type p53
alleles undergo a dose-dependent G arrest
in response to y-radiation. However, cells
lacking functional p53 alleles enter S phase
regardless of dose of y-radiation (729).
Similarly, cells from individuals with Azaxia
telangiectasia (AT) induce p53 poorly in
response to ionizing radiation. Not surpris-
ingly, they also exhibit a severely attenuated
G| checkpoint response after exposure to
ionizing radiation (/30).

Once induced, p53 can function as a
transcription regulatory factor, binding to
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the regulatory sequences and #rans-activating
a number of genes, including p21, Mdm2,
and GADD45 (131-134). p53 can also act
as a transcriptional repressor by interfering
with the binding of basal transcription
factors to the TATA motif (135). This
observation may account for some of the
ability of p53 to interfere with neoplastic
processes (135). p21, also known as Cipl
/Wafl, binds directly to cyclin/Cdk com-
plexes and acts as a Cdk inhibitor, or Cki
(136,137). p21 can inhibit the kinase activ-
ity of cyclin E/Cdk2, cyclin D1/Cdk4,
cyclin A/Cdk2, and to lesser extent, cyclin
B/Cdc2 (134,138-140). Overexpression of
p21 can result in Gy arrest, while p21-defi-
cient murine fibroblasts exhibit a defective
G, arrest following y-irradiation (139,141).
It is important to note however, that p21-
deficient fibroblasts exhibit an attenuated
G; checkpoint, not an ablated one, indicat-
ing that other events are required in the G,
checkpoint (/41). Interestingly, basal p21
expression is not p53 dependent. Further-
more, p21 expression can be induced in a
p53-independent manner under certain
conditions such as during cellular differ-
entiation and following serum stimulation
and exposure to carbon tetrachloride (142
145). Also, p21 is normally associated with
active cyclin/Cdk complexes (146). It
appears that two or more p21 molecules are
required per cyclin/Cdk complex to inhibit
kinase activity (147). p21 is also associated
with proliferating nuclear antigen and has
been suggested to directly inhibit DNA
replication (148). However, p21 is not
required for inhibition of DNA replication
in response to DNA damage in normal
human fibroblasts (/49). The N-terminal
half of p21 shares homology with the Cdk
inhibitor proteins p27 and p57, and these
inhibitors also interact with Cdks in
response to other signals (150,151).
Another important regulator of the G,/S
cyclin/Cdk complexes is the association of
members of the INK4 family of proteins,
especially p16, although the role, if any, of
the INK4 proteins in cell cycle checkpoint
function is not clear. p16 is known to
inhibit cyclin D/Cdk4-6 complexes and
therefore probably acts as an inhibitor of
pRb phosphorylation (152). Support for
this view comes from the observation that
p16 overexpression leads to arrest in G; in
pRb+/+ cells, but not in pRb—/— cells (153).
p16-deficient mice develop normally, but
show an elevated cancer rate in the presence
of carcinogens (154). Both somatic and
germline p16 mutations have been found in
human cancers/familial cancers syndromes,
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as well as inactivating hypermethylation of
the p16 gene in human tumors, demon-
strating the importance of p16 as a tumor-
suppressor gene [(155-157); for review, see
(158)]. The gene locus encoding p16,
INK4a, has recently been found to encode
another protein, p19ARF, which is produced
through splicing of an alternative first exon
into an alternative reading frame of the
shared second exon. Many p16 mutations
arise in the second exon and therefore are
also shared mutations in p19ARF. Although
pL19ARF Joss has not yet been associated with
human tumors, p19ARF null/p16 wild-type
mice develop spontaneous tumors at a high
rate, indicating that p19ARF functions as a
tumor suppressor (159). p19ARF has been
shown to interact with the MDM2 protein,
neutralizing MDM2’s inhibitory regulation
of p53, resulting in an activation of p53
and, following transient p19ARF expression,
may induce a p53-mediated cell cycle arrest
in rodent fibroblasts (160,161).

Another factor in the G; checkpoint is
the inhibitory phosphorylation of Cdk pro-
teins on threonine and tyrosine residues, as
described above. Phosphorylations and
dephosphorylations of G; Cdk’s are nor-
mal components of regulation of G,
cyclins/Cdk complexes. Specifically, Cdk2
is phosphorylated on Thr-14 and Tyr-15
during the cell cycle (162,163). Treatment
of cyclin E/Cdk2 and cyclin A/Cdk2
immunoprecipitates with a bacterially
expressed Cdc25M2 (the murine homolog
of huCDC25 phosphatase) increased the
histone H1 kinase activity of these com-
plexes 5- to 10-fold (163). Similarly, Cdk4
is phosphorylated on Tyr-17 in response to
ultraviolet (UV) treatment and transfection
of cells with a mutant Cdk4 that could not
be phosphorylated on Tyr-17 resulted in a
loss of the UV-induced G, checkpoint
(164). Furthermore, treatment of Daudi
Burkitt’s lymphoma cells with interferon-o
resulted in a Go-like arrest and rapid elimi-
nation of the phosphatase (Cdc25A)
required for removal of Cdk2 tyrosine
phosphorylation (165). Inhibition of the
Cdc25A phosphatase by antibody microin-
jection also resulted in G, arrest (166).
Together these results implicate the regula-
tion of Cdk tyrosine phosphorylation as an
important component of regulation of G;
cyclin/Cdk activity in the G; checkpoint
response to genotoxic agents.

The S Phase Checkpoint

Less is known about the S phase check-
point function than the G; and G; check-
point functions. Upon exposure to
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DNA-damaging agents, such as ionizing
radiation, mammalian cells exhibit a dose-
dependent reduction in DNA synthesis
within a few minutes (167-170). The sup-
pression is biphasic, with a strong initial
suppression at low doses of radiation and
less additional suppression at higher
dosages. The biphasic response has been
attributed to a suppression of radiation-
sensitive new replicon initiation followed
by the suppression of initiated replicons,
the latter being less radiation sensitive
(169,171). The suppression of replicon
initiation is mediated by a frans-acting fac-
tor, as ionizing radiation inhibits both
chromosomal replication and the replica-
tion of a resident autonomously replicating
plasmid, even when the radiation dosage is
not sufficient to damage the autonomously
replicating plasmid (772). S phase cyclin
A/Cdk2 activity, which is thought to be
necessary for S phase progression (see pre-
vious discussion), is suppressed by treating
cells with ionizing radiation. Interestingly,
neither the inhibition of DNA synthesis
nor the inhibition of cyclin A/Cdk2 activ-
ity is seen in cells from patients with AT
(173). Thus, the AT gene product appears
to be required for appropriate S phase
checkpoint response to DNA damage.

The G, Checkpoint

Ionizing radiation and other agents that
trigger the G, checkpoint response sup-
press cyclin B/Cdc2 kinase activation at the
G,/M border (174,175). Treatment of
mammalian cells with genotoxic agents
results in accumulation of p34°4<2 mole-
cules that are phosphorylated on amino
acid residues Thr-14 and Tyr-15, resulting
in inhibition of cyclin B/Cdc2 protein
kinase activity (174—177). When HeLa
cells were transfected with a tetracycline-
repressible Cdc2 mutant that could not be
phosphorylated on Thr-14/Tyr-15, the G,
checkpoint was partially ablated, indicating
that these phosphorylations are an impor-
tant inhibitory component of the G,
checkpoint (178). As mentioned previ-
ously, activation of the cyclin B/Cdc2
complex occurs through Cdc2 dephospho-
rylation on Thr-14/Tyr-15 by the duel-
specificity protein phosphatase Cdc25C
(116-118). Hyperphosphorylation of
Cdc25C correlates with increased Cdc25
protein phosphatase activity (119,120),
and in DNA-damaged cells, Cdc25C does
not reach its hyperphosphorylated state
(179). In addition, although cyclin
B/Cdc2-Cdc25C association normally
occurs at the G,/M border, this interaction
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does not occur in cells arrested in G, by
DNA damage (179).

This interaction might be prevented
through the action of the Chk1 kinase.
This kinase phosphorylates Cdc25C on
Ser216, leading to its binding by 14-3-3
proteins and apparent sequestration from
its physiologic substrate, the cyclin B/Cdc2
protein complex (180,181). When a
nonphosphorylatable Cdc25C mutant
(Ser216—Ala216) was expressed in Hela
cells, the cells escaped radiation-induced
G, checkpoint delay [(180); for review, see
(182)]. As with their G; and S phase
checkpoint function, cells from individuals
with AT have defective G, checkpoint
function (173,176,183—186). It has been
speculated that the AT gene product may
function as an upstream regulator of Chk1
(Figure 3) (182).

An additional component that likely
contributes to the G, checkpoint is regu-
lation of the subcellular localization of
cyclin B/Cdc2 protein complexes. Cyclin
B/Cdc2 complexes accumulate in the cyto-
plasm in S/G; phase and then as cells
progress from G2—M, cyclin B/Cdc2
complexes move into the nucleus (94,95).
Cyclin B complexes are retained in the
cytoplasm in response to ionizing radiation
treatment, suggesting that differential local-
ization might also account for some aspects
of the G, checkpoint function (187-189).

Another mechanism of suppression of
cyclin B/Cdc2 protein kinase activity may

involve the regulation of cyclin B levels. In
S phase-irradiated cells, cyclin B mRNA
and protein levels have been reported to be
inhibited, whereas in G,-irradiated cells,
cyclin B mRNA stability and promoter
activity are suppressed (190-192). It is
important to note, however, that cyclin B
downregulation has not been observed in
other studies (176,193-197), and the
importance of this level of regulation
remains unclear.

The Cdk inhibitor p21 has been
shown to associate with the cyclin B/Cdc2
complex. Cells in which the function of
p53 has been disrupted either by expres-
sion of SV40 T-antigen or expression of
the human papilloma virus type 16 E6
gene product (both of which bind and -
functionally inactivate p53, and hence pre-
vent p53-dependent induction of p21
expression) have been found to have an
accelerated G; entry and higher cyclin A/B
kinase activity (140,198-202). In fact, it
has been suggested that p21 plays a role in
the G,/M transition by inhibiting the act-
ivation of cyclin A/Cdk2 kinase com-
plexes, thus delaying the activation of
cyclin B/Cdc2 complexes in G; and that
this delay could contribute to G; check-
point function (/40). However, normal
human fibroblasts expressing the E6 pro-
tein for only a few population doublings
show a normal initial G, checkpoint
response to ionizing radiation, suggesting
that p21 is not required for the immediate
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Figure 3. A schematic representation of the known or suggested interactions of proteins in the G, checkpoint sig-

nal transduction response to double-strand DNA breaks.
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G, checkpoint in response to ionizing
radiation (203). Thus the role of p21
appears to be ancillary for the immediate
early G, checkpoint delay.

The Spindle Checkpoint

Most cells contain a spindle checkpoint
that arrests cells in mitosis until all chro-
mosomes are attached properly to the
spindle [for reviews, see (204-206)].
Much of our understanding of the genes
and the gene products that make up the
spindle checkpoint pathway comes from
studies with budding yeast and frog eggs,
in addition to studies with mammalian
systems. The critical transition from
metaphase to anaphase and the separation
of sister chromatids is monitored by the
spindle checkpoint gene products that
include the Mad (mitotic arrest defective)
proteins, Mad1-3p, the Bub (budding
uninhibited by benomyl) proteins, Bub1-
3p, and Mps1 (206). To progress through
this transition, cells must proteolytically
degrade a number of proteins that are
required earlier for entry into mitosis and
this is accomplished by the activation of
the proteasome, a component of the large
multiprotein complex referred to as the
anaphase-promoting complex or APC
(207-209). Ubiquitin conjugation and
proteolysis by APC results in the degrada-
tion of cyclin B proteins and the inactiva-
tion of MPF that is necessary for exit from
mitosis (210,211) as well as the degrada-
tion of proteins involved in sister chro-
matid cohesion such as Pdslp (212,213)
and proteins involved in cross-linking spin-
dle microtubules such as Aselp (214).
Agents such as nocodazole and colcemid
arrest cells in a prometaphase state because
of disruption of microtubule reorganiza-
tion and spindle apparatus formation
(215,216). Anaphase will not begin until
all the kinetochores receive bipolar spindle
apparatus attachments (217). Li and
Nicklas (218) showed that an M phase
block induced by an unattached chromo-
some in insect cells was relieved through
the application of tension to the unat-
tached chromosome. It was hypothesized
that tension resulted in a change in kineto-
chore chemistry, relieving the M phase
arrest. Furthermore DNA-damaging
agents, in addition to spindle-damaging
agents, can activate the spindle checkpoint
surveillance mechanism and this signaling
pathway seems to involve Cdc20 proteins
that interact with the Mad proteins
(219,220), Mecl proteins, which signal
through Psd1p (213), the Polo-like kinase
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(Plk) proteins (221-224), and perhaps pro-
tein kinase A (PK A), which can regulate
the activity of APC (225). As with the
other checkpoint functions, the spindle
checkpoint is disrupted in tumor cells, with
both a reduction in the levels of hsMAD2
observed in breast cancer cells (226) and
mutationally inactive BUBI found in
tumor cells displaying chromosomal
instability (227).

p53 and pRb were implicated as having
roles in the spindle checkpoint response on
the basis of the observation that cells lack-
ing either function when cultured in the
presence of spindle-damaging agents
inappropriately initiate DNA synthesis
without undergoing cytokinesis (228,229).
However, recent evidence indicates that
p53 and pRb probably do not function in
this checkpoint (230,231). In fact,cells
that were either wild type or deficient for
either p53 or pRb all transiently arrested in
M phase in response to nocodazole treat-
ment. After roughly 24 hr all four cell
types entered a G-like state with an inter-
phase nuclear structure but with a 4N
DNA content (a process referred to as
adaptation or restitution). However, the
p53- and pRb-deficient cells went on to
rereplicate their DNA, becoming 8N and
higher. These results were interpreted to
indicate that cells undergoing the adapta-
tion or restitution process in the continued
presence of nocodazole suffered genomic
damage that was recognized by the p53-
dependent and pRb-dependent G, check-
point surveillance system that monitors
genomic integrity and regulates entry into
the DNA replicative cycle.

Checkpoint Signaling, Caffeine,

and DNA Repair

Checkpoint signaling has been hypothe-
sized to give the cell time to repair broken
DNA, or alternatively, to induce a program
of either replicative senescence or apoptosis
(8,12,13,121). On the basis of this hypoth-
esis, suppression of the checkpoint response
should result in decreased cell viability.
Certain drugs such as the methylxanthines,
e.g., caffeine and pentoxifylline, are capable
of relieving the Gy, S, and G, checkpoint
delay periods (232-238). When cells are
treated simultaneously with these drugs and
DNA-damaging agents such as ionizing
radiation or alkylating agents, the lethality
of the DNA-damaging agent is potentiated
(239-243). For example, when baby
hamster kidney cells synchronized at G,/S
were treated with 0.5 pM nitrogen
mustard, 90% survived. However, in the
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presence of 2 mM caffeine, the same treat-
ment resulted in 5- to 10-fold greater
lethality (244). The molecular mechanism
of caffeine’s action remains unclear, but one
of the consequences of the abrogation of
the induction of the G| delay following
DNA damage is a failure to induce p53,
and hence p21 (125). More recently caf-
feine has been found to inhibit the G,
checkpoint function by increasing Thr-
14/Tyr-15 dephosphorylation on Cdc2
(197). The finding that overriding the G,
and G, checkpoints results in lowered cell
viability after damage supports the theory
that one function of these checkpoints is to
allow cells time to stop to repair damage
before continuing the cell cycle.

Heritable Human Cancer
Syndromes and the Cell Cycle

The molecular defects present in a number
of heritable human cancer-prone syndromes
have been characterized. Not surprisingly,
these defects often compromise the ability of
the cell to checkpoint delay in response to
DNA damage and/or the ability to repair
damaged DNA. Next, we briefly discuss the
molecular defects in several heritable human
cancer-prone syndromes and their effect on
human health.

Ataxia telangiectasia and pATM
Ataxia telangiectasia is an autosomal
recessive disease characterized by premature
aging, sensitivity to ionizing radiation,
sterility, immune dysfunction, acute cancer
predisposition, telangiectasias, and progres-
sive ataxia and neuronal degeneration,
particularly of the Purkinje cells of the
cerebellum (245-247). AT heterozygotes
are reported to have elevated cancer risk,
particularly of developing lymphopro-
liferative disease and breast cancer (248-
250). In culture, fibroblasts from patients
with AT exhibit premature senescence,
increased serum requirements, increased
chromosomal instability compared to that
of normal human fibroblasts, abnormally
rapid telomere shortening, and sensitivity
to ionizing radiation and radiomimetic
chemicals (169,251-254). Recently the
gene mutated in AT (AT mutated or
ATM) was identified (255,256). The
ATM gene product (pATM) has been
hypothesized to be a sensor of DNA strand
breaks and to be required in the DNA
damage response signal transduction path-
way that results in the activation of p53 in
response to DNA strand breaks (121,128).
Recently, the protein product of the ATM

gene was demonstrated to have protein
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kinase activity that is activated in response
to IR but not UV exposure and that is
capable of phosphorylating p53 on serine
residue 15 (257,258). In addition, pATM
has been suggested to be a cellular sensor of
oxidative stress, making pATM null cells
abnormally sensitive to oxidative stress from
such sources as ionizing radiation and
H,0, [for review, see (259)].

Cells in culture from individuals with
AT exhibit severely impaired G, S, and
G, checkpoint functions (170,183,186).
The defect in the G; checkpoint in AT
cells has been found to be associated with
a defect in the induction of p53 protein in
response to IR exposures, with an induc-
tion that is only slight and occurs with
delayed kinetics (133,260,261). Inter-
estingly, however, AT cells induce p53 in
response to UV exposures (260,261). AT
cells exposed to IR during S phase show
little inhibition of DNA synthesis (i.e.,
radioresistant DNA synthesis) or inhi-
bition of cyclin A/Cdk2 activity (170,
172,173,262-264). AT cells have been
found to lack a normal G, checkpoint
response to IR exposure (176,183-186).
The exact molecular defect in response to
DNA damage in cells from individuals
with AT remains to be elucidated. AT cells
have shown apparently normal repair of
single-strand DNA (ssDNA) breaks and
show global double-strand DNA (dsDNA)
break repair that appears to have the same
kinetics as normal cells (265-267).
However, evidence supports the interpre-
tation that AT cells are defective in certain
types of dsDNA break repair. Initial indi-
cation of an inability to repair dsDNA
breaks was the observation of increased
chromosomal aberrations, in particular
both chromatid and total breaks, in AT
cells following exposures to DNA-damag-
ing agents and especially exposures in G,
phase (252,268-273). Thus, the mole-
cular defect in AT cells may be an inability
to respond correctly to certain types of
dsDNA breaks, particularly those arising
from reactive oxygen species/oxidative
stress [for review, see (13); (274,275)].
Evidence supporting the involvement of
pATM in sensing oxidative stress comes
from the observations that pATM null
cells resynthesize glutathione unusually
slowly after depletion with diethylmaleate
and are abnormally sensitive to the damag-
ing effects of hydrogen peroxide, superox-
ide, and nitric oxide (267,276-279).
Whatever the exact nature of the defect in
pATM function, the inability of AT cells
to initiate the checkpoint function in
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response to ionizing radiation clearly
demonstrates how the ablation of one gene
product involved in checkpoint function
and maintenance of genomic integrity
results in lowered cellular viability and
greatly enhanced predisposition to cancer.

Retinoblastoma and pRb

Retinoblastoma (Rb) is a childhood retinal
tumor that occurs in approximately 1 in
20,000 births worldwide, which is roughly
3% of all pediatric malignancies. All
bilateral and some unilateral Rb cases
(approximately 40%) are genetically
determined and appear by the age of 15
months. Sporadic Rb (60% of Rb cases) is
mainly unilateral, with diagnosis occurring
later at 2 to 3 years of age. Analysis by
Knudson demonstrated that bilateral
(genetic) Rb resulted from a single somatic
gene mutation. Analysis of most unilateral
Rb cases, however, followed second-order
kinetics, indicating that tumor formation
required two mutational events. (280,281).
Individuals with hereditary Rb who survive
the Rb tumor are at high risk for later
developing a second primary cancer, par-
ticularly osteosarcoma (282). The Rb gene
is altered in a variety of human cancers,
including breast, lung, and bladder cancers
(283-289). Relatives of Rb patients often
have elevated cancer rates (290).

Rb null mice die at day 14 to 16 in
embryogenesis, exhibiting neuronal cell
death and defective erythropoiesis (291).
Heterozygous mice with one defective Rb
allele do not develop retinoblastomas but
develop pituitary adenomas in which the
wild-type Rb gene is lost (292,293). The
Rb gene product appears to play a role in
the maintenance of genomic stability
(294,295). Both White et al. (294) and
Reznikoff et al. (296) introduced human
papilloma virus type 16 E6 proteins
(which inactivate p53) and E7 proteins
(which inactivate pRb) into isogenic
human cells and, after extensive passaging,
found that although the E6-transformed
cells showed significant chromosomal
abnormalities, the E7-transformed cells
had minimal alterations. However, cells
lacking functional pRb were found to
amplify the dihydrofolate reductase gene
when grown in the presence of methotrex-
ate, indicating that loss of pRb function
can contribute in some degree to genetic
instability (294,295). These data, together
with the data on germline Rb mutation,
demonstrate that the Rb gene product
plays a significant role in the maintenance
of genomic integrity.
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Li-Fraumeni Syndrome and p53

Li-Fraumeni syndrome (LFS) is a rare
heritable disease characterized by soft tissue
sarcomas in children and young adults,
carly development of breast cancer in close
relatives, and high rates of leukemia, brain,
and adrenocortical tumors, osteosarcomas,
and a number of other neoplasms (297-
300). LFS shows an autosomal dominant
transmission pattern and involves a germ-
line mutation of p53 (301,302). Interes-
tingly, examinations of all 11 exons, the
splice junctions, and the promoter regions
of the p53 gene in LES families has shown
that roughly 30% of LFS families do not
show p53 coding region mutations (303).
The nature of the molecular defect in these
families remains unknown.

Studies of cells that lack wild-type p53
function have demonstrated that lack of p53
can result in persistent chromatid damage
after exposure to IR, changes in cell cycle
checkpoint delay initiated by IR in G, phase,
dysregulation of apoptosis, increased sponta-
neous immortalization, and chromosomal
instability with long-term growth in culture,
even in the absence of DNA-damaging
agents (1.25,176,201,304-310). Loss of the
wild-type p53 allele in LFS cells results in
abrogation of the G; checkpoint. Reintro-
duction of wild-type p53 can restore the G,
checkpoint and genomic stability (307). p53
null mice develop normally, although 75%
develop tumors by 6 months of age, usually
lymphomas with some sarcomas (311). In
contrast, mice with a single null p53 allele
had a delayed onset of spontaneous tumors,
with osteosarcomas and soft tissue sarcomas
predominating (3/7). These mice were also
more susceptible to the effects of carcino-
gens than p53 wild-type mice (312). p53
null mice were abnormally sensitive to the
effects of IR (313). It is interesting to note
that some p53 mutations have a frans-domi-
nant effect, partially inhibiting the action of
the remaining wild-type p53 protein (305,
314-319). The tendency toward genomic
instability, tumorigenesis, and loss of check-
point function in LFS cells and p53-defi-
clent transgenic mice, is a good example of
how impaired p53 function can have pro-
found effects on cell cycle regulation and
cancer development.

Environmental Sources

of Genotoxic Stress

Humans come into daily contact with an
enormous number of DNA-damaging
agents. Therefore, it is not surprising that
elaborate molecular regulatory systems exist

to maintain cellular genomic integrity.
Genotoxic substances may come from both
endogenous and exogenous sources. Some
of these sources commonly encountered are
discussed below.

Ultraviolet Radiation

Exposure to UV light induces a number of
cellular changes, including the generation of
DNA lesions, the induction of stress pro-
teins (such as p53 and p21), and the initia-
tion of cell cycle checkpoint arrest in cycling
cells (126,127,320-331). UV radiation is
divided into three classes based on wave-
lengths; UV-A (400-320 nm), UV-B
(320-290 nm), and UV-C (290-100 nm).
UV-A and UV-B are more biologically
relevant, as UV-C is mostly absorbed in the
upper atmosphere by ozone (324). The
main direct UV-induced DNA lesion is the
cross-linking of adjacent pyrimidines
through formation of a cyclobutane-like
four-membered ring structure with satura-
tion of the 5,6 double bonds, referred to as a
pyrimidine dimer (320-322,328-330). The
formation of pyrimidine dimers is a UV-
reversible process; however, equilibrium lies
far to the right and favors the formation of

dimers (330):
Py + Py <> Py <> Py

Thymine-thymine dimers are the most
common pyrimidine dimers formed follow-
ing UV exposures, with cytosine—cytosine
and cytosine—thymine dimers also occurring
(330). However, most UV-induced murta-
tions occur at cytosines, suggesting that cells
are able to replicate DNA through thymine
dimer lesions without error (332,333). UV
radiation also produces a number of less
common DNA lesions such as the muta-
genic 6—4 pyrimidine—pyrimidone dimers,
thymine glycols, and protein-DNA cross-
linking (330). UV radiation also generates
DNA damage indirectly via through the
production of reactive oxygen species
(ROS), including superoxide (O,'7), the
hydroxyl radical (*OH), and hydrogen per-
oxide (H,0,), all of which rapidly react
with each other and surrounding biomole-
cules. In addition, exposure to UV radiation
can cause multimerization, clustering, and
activation of cell surface receptor proteins
for growth factors and cytokines, with acti-
vation of receptor-associated tyrosine kinase
activities (334). Lastly, UV exposure elicits
a number of other events that can lead to
DNA damage and the promotion of tumor
growth. Among these events are the induc-
tion of gene expression and/or activity such
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as c-fos and protein kinase C (335,336),
recruitment of inflammatory cells (with the
accompanying release of ROS), the produc-
tion of cytokines, and immunosuppression
[for review, see (337)].

Exposure to UV radiation is associated
with an increased skin cancer risk and pre-
mature aging of the skin, particularly
among fair-skinned individuals with
histories of being sunburned. A strong
positive correlation also exists between
skin cancer and proximity to the equator,
indicating that higher UV doses to human
populations result in higher incidences of
skin cancer [for reviews, see (338-342)].
Enhanced removal of UV-induced pyrimi-
dine dimers lowers skin cancer rates in
mice, indicating that unrepaired dimers
cause cancer in mammalian skin (343).
Individuals with the heritable syndrome
Xeroderma pigmentosum (XP) have
impaired ability to remove DNA lesions
induced by UV and consequentially are
extremely sensitive to UV exposure, which
results in an increased risk of developing
skin cancers (344-357). Generation of
mice deficient in XP genes have confirmed
the important role these gene products
play in protecting against UV-induced
tumorigenesis (358-360). Skin cancer is
the most prevalent malignancy in the
United States, indicating that the genotoxic
effects of UV radiation are a significant

health hazard (342).

Ionizing Radiation

Ionizing radiation was first demonstrated
to be mutagenic by Muller in 1927 (361).
Since that time, IR has been demonstrated
to induce mutations and cause cancer in a
dose-dependent manner (362-368) [for
review, see (369)]. IR damages all compo-
nents of the cell and is known to produce
more than 100 distinct DNA adducts
(365). Data derived from studies on the
survivors of the Hiroshima and Nagasaki
bombings indicate that exposures to IR
resulted in an increased cancer incidence
over that in unexposed populations, with
increases observed in incidences of
leukemia, and breast, stomach, colon, and
lung cancers (370). These studies also
demonstrated that prenatal exposure to IR
can also cause mental retardation and
microcephaly (371,372).

IR damages DNA through direct and
indirect mechanisms. Direct damage to
DNA occurs as a result of the interaction
of radiation energy with DNA. This can
result in the generation of a variety of
lesions, including the generation of abasic

CELL CYCLE CONTROL, CHECKPOINTS, AND GENOTOXIC STRESS

deoxyribose sites in DNA that are
produced as a consequence of destabil-
ization of the N-glycosidic bond, genera-
tion of ssDNA breaks and generation of
dsDNA breaks. Indirect DNA damage
comes from the interaction of DNA with
reactive species formed by IR (367,373-
375). Water is the predominant cellular
constituent and more than 80% of the
energy in IR deposited in cells results in
the ejection of electrons from water
(376,377). Subsequent reactions following
this event can result in the formation of
reactive oxygen species such as superoxide
(O;7), the hydroxyl radical ("OH), e, H",
Hz, and H202.

Exposure to IR is a potent inducer of
cell cycle checkpoint responses, resulting in
p53 protein induction and Thr-14/Tyr-15
phosphorylation of Cdks. Environmental
sources of IR include natural background
radiation, medical procedures such as X-
rays, radon, and in some areas such as
those effected by the Chernobyl accident,
environmental contamination (378-381).

Reactive Oxygen Species

Although oxygen is an absolute requirement
for the survival of most metazoans, it can
damage biologic molecules, including DNA.
Normal cellular metabolism, as well as the
metabolism of a variety of xenobiotics, pro-
duces an array of ROS that are highly reac-
tive and can readily damage DNA: Under
conditions of oxidative stress, cycling cells
will exhibit cell cycle checkpoint responses
(382-384). ROS have been implicated as
important factors in a large number of bio-
logic events including aging, carcinogenesis,
atherosclerosis, strokes, and autoimmune
disorders [for reviews, see (385-390). Ames
and Shigenaga (388) have estimated that
roughly 2 x 104 lesions occur per day per
human genome because of oxidative damage
to DNA. The number of different modifica-
tions resulting from ROS acting on DNA
include both ssDNA and dsDNA breaks,
DNA-protein cross-links, and a wide vari-
ety of base and sugar modifications (391).
The number of ROS from both endogenous
and exogenous sources that have been pro-
posed to damage DNA is large. Here we
focus on several thought to have important
affects on biologic processes.

Hydrogen Peroxide/Hydroxyl Radical.
H,0, is produced by a wide variety of
intracellular events, particularly in normal
oxidative electron transport in the mito-
chondria, and it is normally present in most
cells at a concentration of about 10~ M
(392). H,0, participates in DNA damage
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through a variety of pathways including the
production of *OH through such reactions
as the Fenton reaction (393,394):

Fe?* + H,0, — *OH+ *OH+ Fe3*

*OH is an extremely strong oxidant,
with a redox potential of approximately
+1.35 V, making it capable of degrading
most biologic molecules, including DNA
(367,373,395,396). The number of differ-
ent DNA modifications that *OH is capa-
ble of producing appears to be over 100
(365). *OH has been implicated in the eti-
ology of human cancers such as breast
cancer and leukemia (397,398). In addi-
tion to being produced from endogenous
sources, 'OH can be generated in the
human body after exposures to a variety of
exogenous substances including cigarette
tars, dietary components high in fat and
low in plant fiber, ethyl alcohol, asbestos
fibers, and IR (365,399—402).

Superoxide. Though less reactive than
other ROS such as “OH, O, can damage
biomolecules, including DNA. Approxi-
mately 2% of the oxygen consumed by
human cells is converted to O,7, resulting
in a steady concentration of O,~ within
human cells of 1.0 x 10~1! M, this in turn
resulting in the generation of an estimated
10,000 DNA lesions per genome per day
(403-405). Like H,0,, O, ~-induced
damage is thought to be due mainly to
conversion to *OH by such pathways as the
Haber-Weiss reaction (406):

H202 + 02'_—) ‘OH+OH™+ 02

Like H,0,-induced damage, much of
the O~ found within cells is produced
from the mitochondrial electron transport
chain (407). O, is detoxified by conver-
sion to HyO, through the action of super-
oxide dismutase, which in turn is converted
into H,O + O, by the action of catalyze
(404). The toxicity of Oy~ is illustrated by
the neurodegeneration seen in Lou Gehrig’s
disease (in which superoxide dismutase lev-
els are low) and by the recent observation
that overexpression of human superoxide
dismutase in the motor neurons of
Drosophila resulted in a 40% increase in
lifespan (404,408).

Nitric Oxide. 'NO is an important
proinflammatory mediator produced con-
stitutively by vascular endothelial cells,
some neuronal cell types, and activated
macrophages (409). "NO appears to dam-
age DNA by combining with O,"~ and
forming the peroxynitrite radical. The
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peroxynitrite radical is a similar to *OH and
can readily damage biomolecules (410).
*NO and cigarette tar synergistically induce
DNA breakage, suggesting that ‘NO might
react with many exogenous compounds to
produce genotoxic substances (4/1).

Genotoxic Chemicals

Within the environment are an enormous
number of both natural and man-made
substances that have genotoxic properties.
Most of these substances are chemical com-
pounds that have the capacity to covalently
modify DNA molecules. Within this cate-
gory are such compounds as cisplatin and
nitrogen mustard, which have been shown
to generate strong cell cycle checkpoint
responses to DNA damage generated fol-
lowing exposures (179,412-416). Also in
this class are compounds such as methyl
methanesulfonate (MMS) and N-methyl-
N’-nitro- N-nitrosoguanidine (MNNG)
that transfer methyl or ethyl groups to
DNA bases. Exposure to methylating
agents has been reported to result in cell
cycle checkpoint delays, particularly in cells
defective in certain aspects of DNA repair
(417-419). Polycyclic aromatic hydrocar-
bons (PAHs) comprise a family of com-
pounds that modify DNA with bulky
lesions and, because of their prevalence in
the environment, pose a significant human
health hazard. Here we will focus on one of
the better characterized members of this
class of compounds, benzo[4]pyrene B[4]P.
B[4]P is produced along with other PAHs
during the combustion of many organic
substances including coal, cigarettes, and
gasoline, and for this reason exposures to
PAHs in the environment are relatively
prevalent (420). The carcinogenic effects of
PAHs in coal tar was first noticed in 1775
by Percival Pott, who observed a correlation
between scrotal cancer and the occupation
of chimney sweeping (421). B[4]D is a rela-
tively unreactive 5-ring polycyclic planer
hydrocarbon (Structure 1) (422):

Structure 1

However, B[«]P, like many other
PAHs, is metabolized by components of the
NADPH-dependent, cytochrome P450-
containing monooxygenase microsomal
enzymes through epoxidation to reactive

electrophiles that can bind to such cellular
nucleophiles as DNA, RNA, and proteins
(423,424). The ultimate carcinogenic form
is thought to be the 7B,8a-diol-90.,100-
epoxy-7,8,9,10-tetrahydrobenzo[ 4] pyrene
(BPDE I) metabolite (422,425-427).
BPDE I can covalently attach to DNA and
form a variety of adducts, with the major
adduct formed through linkage between the
exocyclic 2-amino group of guanine and
the C-10 position of BPDE I (422,428). It
has also been reported that the process of
metabolizing B[4]P to its reactive metabo-
lites through the generation of radical
cations results in the generation DNA
adducts that undergo rapid depurination
and contribute significantly to the carcino-
genic properties of B[4]P (429,430).
Exposure to B[4]P and other PAH carcino-
gens, which generate bulky DNA adducts
and apurinic sites that can be further
degraded to DNA strand breaks, has been
shown to result in inhibition of DNA syn-
thesis and induction of S phase cell cycle
arrest (431-437). It is likely that the persis-
tence of BPDE [-DNA adducts and other
unrepaired lesions generated after exposure
to B[4]P during the process of DNA repli-
cation can result in generation of base-
substitution mutations and chromosomal
aberrations (332,437—441).

It is important to note that there are
many other classes of environmental agents
known to modify DNA and to be potent
carcinogens. Included among these agents
are aflatoxin and the aromatic and heterocy-
clic amines. Aflatoxin is a potent hepatocar-
cinogen produced by fungal contamination
of foods and readily forms DNA adducts
(442). The heterocyclic and aromatic
amines also readily form DNA adducts and
have widespread industrial uses and occur in
foodstuffs, cooked meat, and tobacco smoke
(443,444). Although the effects of these
and other important environmental muta-
genic toxins upon cell cycle checkpoint
function are as yet poorly understood, their
ability to induce mutations in critical cell
cycle regulatory genes, as has been demon-
strated in the case of aflatoxin-induced
mutations of p53 (445), could seriously
compromise checkpoint function.

DNA Repair Ability and Cancer Risk

The importance of DNA repair in main-
taining genomic integrity and protecting
against development of cancers has been
shown in studies involving cancer patients
and cancer-prone individuals as well as in
studies involving genetically altered mice
that exhibit deficiencies in DNA repair.

The connection between DNA repair
defects and human cancer predisposition
was first recognized by Cleaver (344,345)
in studying cells from individuals with
Xeroderma pigmentosum. These cells were
defective in the nucleotide excision repair
pathway required to remove UV-induced
DNA lesions. Studies of phytohemagglu-
tinin-stimulated blood lymphocyte cultures
from individuals with breast cancer and
from individuals from familial breast cancer
families showed that these cells were
deficient in their DNA repair capacity
compared with lymphocytes from control
individuals, as measured indirectly by
quantifying the generation of chromatid
abnormalities following DNA damage
(446,447). The BRCAI and BRCA2 gene
products, which when mutated predispose
individuals to development of breast cancer,
have been reported to play a role of in
DNA repair and cell cycle checkpoint func-
tion (448—457). Defects in DNA repair,
specifically in mismatch repair pathways,
are important in the development of a
variety of human cancers including cervix—
uterine cancer, lung cancer, head and neck
cancers, colorectal cancer, and basal cell
carcinoma (458-473). The postreplication
DNA mismatch repair system recognizes
and removes inappropriately paired
nucleotides that may have been generated
by DNA replication errors, errors generated
in DNA recombination events, or base
damage following exposures to genotoxic
agents (465,474,475). Mutations in DNA
mismatch repair pathways have been
reported to affect cell cycle checkpoint
function, with the best evidence to date
demonstrating an important role of the
MLH]1 gene product in a p53-independent
G, checkpoint response to DNA damage
generated by 6-thioguanine, MNNG, and
IR exposures (227,419,476,477). Further-
more, mice deficient in DNA mismatch
repair have increased susceptibility to
development of neoplasia (475-481).

Summary

Neoplastic progression has been demon-
strated to involve increasing genetic
instability (201,470,482-488). The info-
rmation gained from studies of the molecu-
lar mechanisms governing cell cycle control,
DNA repair, and cell cycle checkpoint
signaling in normal individuals and in indi-
viduals with heritable cancer syndromes,
together with the effects of genotoxic
substances on these biochemical pathways,
demonstrates the importance of these
molecular pathways in the maintenance of
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genomic integrity. Loss of any aspect of
these systems dramatically lessens DNA
stability and cell viability and increases
cancer susceptibility.

In particular, attenuation or ablation of
cell cycle checkpoint signaling pathways
results in a dramatic lessening of DNA
stability in the face of genomic stress as well
as lowered cellular viability and increased
cancer susceptibility. These effects are par-
ticularly clear in studies involving caffeine-
induced “checkpoint function over-ride”
after DNA damage [for example (244)].
Similarly, the near-complete ablation of the
Gy, S, and G, phase checkpoint functions in
cells from individuals with AT and the loss
of the G; checkpoint function in p53
mutant cells (accompanied by an attenuation
of the G; checkpoint function and increased
genomic instability) supports the view that
cell cycle checkpoint responses function to
allow the damaged cell time to repair dam-
age, or alternatively to undergo apoptosis or
enter into a permanent Gy-like state.

One important and interesting area for
future study is the impact of nongenotoxic
chemicals on cell cycle checkpoint function.
A number of chemicals found in the envi-
ronment, compounds such as benzene and
1,4-dioxane, fail to show mutagenic proper-
ties as measured in Salmonella mutagenesis
assays, yet have the ability to induce tumors
in rodents (489). The mechanism of induc-
tion of neoplasia by these environmental
chemicals and their effects on cell cycle
checkpoint function are not yet clearly
understood. However, the study of these
agents may give insight into both check-
point signal transduction pathways and
mechanisms of carcinogenesis. It is possible
for example, that a nongenotoxic environ-
mental carcinogen may function by ablating
some aspects of cell cycle checkpoint func-
tion, perhaps leading to genetic instability or
heritable alterations of the genome. Inter-
estingly, caffeine, which has been found to
have a significant impact on cell cycle check-
point function (see above), is nonmutagenic
in Salmonella mutagenesis assays (4£90).

The current model of the cell cycle
checkpoint signaling in response to cellular
damage and the generation of DNA strand
breaks thar result in both the G; and G,
checkpoint delays involves activation of the
ATM protein, which leads to both p53 and
Chk! activation. p53 initiates p21 trans-
cription and the inhibition of cyclin/Cdk
activity. Chk1 activation results presumably
in altered CDC25 phosphatase localization,
and hence lack of activation of cyclin/Cdk
protein kinase complexes. Although less is

CELL CYCLE CONTROL, CHECKPOINTS, AND GENOTOXIC STRESS

known about the S phase checkpoint func-
tion, signaling through this pathway is
known to be ATM-dependent and involves
cyclin/Cdk inhibition and the suppression
of DNA synthesis.

Together the above data indicate that
cell cycle checkpoint responses 4) are active
signaling pathways dependent upon a num-
ber of different gene products, 4) play a vital
role in maintaining genomic stability,
¢) generate a transient delay in the progres-
sion through the cell cycle, 4) may be either
wholly or partially ablated by the loss/muta-
tion of a single gene such as ATM or p53,
and ¢) may be initiated by a wide variety of
genotoxic agents that may exert very differ-
ent effects on the cell. Our increasing
understanding of cell cycle checkpoint sig-
naling pathways may help in the design of
more efficacious therapeutic strategies for
treatment of cancers and other diseases that
develop as a consequence of exposures to
environmental genotoxins. Furthermore,
understanding the role of cell cycle check-
point responses to environmental exposures
promises to aid in the development of more
efficacious approaches to disease prevention.
Such insight will provide us with a better
understanding of the risks associated with
exposures for the general population. More-
over, such data may allow more accurate
assessment of risk for specific subpopula-
tions of individuals predisposed to develop-
ment of certain diseases because of genetic
susceptibilities. Appropriate measures then
can be designed to minimize those exposures
associated with significant risks.
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