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Molecular Analysis of Mutations Induced at
the hisD3052 Allele of Salmonella by Single
Chemicals and Complex Mixtures
by David M. DeMarini,1 Douglas A. Bell,1 Jessie G.
Levine,2 Melissa L. Shelton, and Amal Abu-Shakra

More single chemicals and complex environmental mixtures have been evaluated for mutagenicity at the
hisD3052 allele of Salmonella, primarily in strain TA98, than in any other mutation assay. The development of
colony probe hybridization procedures and the application of the polymerase chain reaction and direct DNA
sequencing has permitted rapid molecular access to this allele. We discuss these techniques and the resulting
mutation spectra that have been induced by a variety of environmental mutagens and complex mixtures. A
common GC or CG deletion within a hot-spot region ofthe sequence dominates most ofthe spectra. In addition
to this two-base deletion, we have recovered about 200 other types of mutations within the 72-base target for
reversion of the hisD3052 allele. These include a variety of deletions (as large as 35 bases), duplications (as
large as 46 bases), and complex mutations involving base substitutions. The quasipalindromic nature of the
target sequence and its potential to form DNA secondary structures and slippage mismatches appear to be an
important basis for the mutability of this allele.

Environmental Mutagens and
Complex Mixtures
As the National Research Council of the National Acad-

emy of Sciences has pointed out, people are seldom
exposed to single chemicals. Instead, most substances to
which people are exposed are mixtures of chemicals (1).
Thus, people encounter potentially harmful agents pri-
marily through exposure to the air, water, soil, and food.
Mutagens present in these media are environmental muta-
gens of most immediate relevance to human health (2).
Although people are exposed primarily to mixtures of
mutagens, most mutagenicity studies have been per-
formed on single chemicals rather than on complex
environmental mixtures.
The first experimental demonstration of the carcino-

genicity of a complex mixture (coal tar) was performed in
1915 by Yamagawa and Ichikawa in Japan [reviewed in
Nesnow (3)]. This has been followed by nearly a century of
distinguished research into the carcinogenicity of a vari-
ety of complex mixtures such as urban air, diesel engine
exhaust, and cigarette smoke. Although a few cytogenetic
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studies were performed in the late 1950s and 1960s on
mammalian cells exposed in culture to cigarette smoke (4),
the study of the genotoxicity of complex environmental
mixtures can be said to have truly begun in 1974 with the
report by Kier et al. (5) that cigarette smoke condensate
(CSC) was mutagenic in Salmonella.

This seminal paper showed that the Salmonella (Ames)
mutagenicity assay could be used to screen complex
environmental mixtures for mutagenicity. For the first
time, a simple and sensitive mutagenicity assay, which had
already been evaluated with more chemicals than any
other mutagenicity assay, was now available for screening
complex mixtures. Perhaps even more importantly, Kier et
al. (5), following the precedent set in the field of complex
mixture carcinogenicity, showed that chemical fractions of
a complex mixture could be evaluated for mutagenicity.
Just as with the previous carcinogenicity studies, such an
evaluation provided insight into which chemical classes
were responsible for the mutagenicity of the mixture.

Within just a few years, almost every type of environ-
mental complex mixture imaginable had been evaluated in
the Salmonella assay. Organic extracts of air, soil, water,
food, etc., were evaluated as well as chemical fractions of
these extracts (2). It was the use of the Salmonella assay to
evaluate these environmental media in the mid- and late
1970s that first alerted us to the presence of mutagens
throughout our environment- the extent of which had
simply not been known and/or poorly documented and
appreciated until that time. During the past 10 years, a
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large and detailed literature on the mutagenicity of com-
plex mixtures has been produced (6,7), providing the basis
for mechanistic studies (8) and improved risk assessment
(9,10).
Although other genotoxicity tests in addition to the

Salmonella assay have been used to evaluate complex
mixtures (6,7), the vast majority of the literature on the
genotoxicity of complex mixtures has been generated
using the Salmonella assay (2,6,7,11,12). Recent develop-
ments in genome analysis now provide the means by which
mutations can be examined at the molecular level (13).
Thus, we have begun to apply some of these molecular
techniques to the analysis of mutations induced in Salmo-
nella by a variety of environmental rnutagens and complex
mixtures. This paper presents a brief overview of the
methods used, the samples evaluated, and some of the
major observations and conclusions from our studies ofthe
genotoxicity of complex environmental mixtures.

Molecular Methods
The Salmonella plate-incorporation mutagenicity assay

(14) is particularly suited for molecular analysis because of
the exquisite selection system and the limited target size
(because it is a reverse-mutation assay). In addition, rever-
tants resulting from the plate-incorporation assay are
independent in origin and are not sibling revertants
because each arises from a single cell that is immobilized
and physically isolated from other cells within the top agar.
Thus, a mutation spectrum constructed from the mutant
sequences of a set of revertants from a single plate can be
assumed to be composed of mutations that are indepen-
dent in origin.
Of all the tester strains, those containing the hisD3052

allele (especially strains TA1538 and TA98) have been
shown to be the most useful in mutagenesis screening
programs (15) and have been used more than any of the
other strains for evaluating complex mixtures (2,11). Thus,
nearly all of our initial work has focused on the analysis of
mutations that revert this allele.
The hisD3052 allele contains a -1 deletion that was

induced by the acridine nitrogen mustard ICR-364-OH
(16,17). The types of analyses that have been used to
characterize revertants of this allele have included a)
deduction of DNA-base changes based on the amino acid
sequence of the histidinol dehydrogenase polypeptide
coded by revertants of the hisD3052 allele (18), b) cloning
and DNA sequencing of revertants (19,20), c) deduction of
DNA-base changes based on colony hybridization of rever-
tants (21,22), and d) amplification of revertants by the
polymerase chain reaction (PCR) and direct DNA
sequencing of the amplified fragment (22,23).
The use of colony hybridization to identify mutational

hot spots, coupled with PCR and direct DNA sequencing
to identify the remaining revertants, is the most efficient
and rapid method bywhich to determine the mutations in a
large number of hisD3052 revertants (21,22). The greater
the number of induced revertants per plate relative to the
control value, the greater the probability that the rever-
tants were actually induced by the test agent and are not

spontaneous. In the present study, most of the induced
revertants that we have analyzed came from plates that
had revertant counts that were 7- to 23-fold above the
control levels. In addition, we have analyzed spontaneous
revertants to compare to the induced spectra.
To purify the revertant clone and to assure that no

nonrevertant cells from the background lawn were pre-
sent, each revertant picked for analysis was first streaked
onto minimal medium supplemented with biotin and incu-
bated for 2 days at 37°C. The purified revertants were then
subjected to colony probe hybridization to identify a hot
spot that consists of a deletion of CG or GC within the
sequence CGCGCGCG (21,22). Briefly, purified revertants
were inoculated into nutrient broth in a 96-well microtiter
plate, grown overnight, and replica plated onto brain-heart
infusion agar (Difco). After overnight growth, the colonies
were transferred to Whatman 541 paper filters and were
processed as described (21,22). The filters containing the
lysed revertants were then placed in plastic petri dishes
containing 10 mL of hybridization solution, unlabeled
TC-13 probe (added to enhance the hybridization reaction),
and 32P-labeled TC-5 probe (21,22). Filters were incubated
at 600C for 2 hr, washed two times for 20 min each in 3 x
SSC (0.15 M sodium chloride and 0.015 M sodium sodium
citrate, pH 7.0), and dried. The filters were then exposed to
Kodak XAR-2 film, and the films were read after over-
night exposure.
Because of the common occurrence of the CG or GC

deletion (-40-50% spontaneously and even higher among
induced revertants), we have routinely screened 400 rever-
tants of TA98 per dose of mutagenic agent, which usually
provides for some non-GC or unique revertants that
require additional analysis. These were then amplified by
PCR and sequenced according to our recently developed
method (23). Briefly, a single, purified revertant colony
was boiled for 10 min in 200 FL ofTE buffer (10mM Tris, 1
mM EDTA, pH 8.0), centrifuged for 10 min, and 5 p1L of
the resulting supernatant was used to provide the Salmo-
nella genomic DNA in an asymmetric PCR. The two
amplification primers span a 328-bp segment that contains
the hisD3052 mutation approximately in the center.
Single-stranded DNA was generated by asymmetric PCR
using a 1:100 ratio of the primers and 40 cycles of heating
and cooling. We have shown recently that excessive cycling
beyond 40 converts the amplified fragment into random-
length higher molecular weight fragments, resulting in a
dramatic loss of the desired PCR product (24).
Excess amplification primers and deoxynucleotides

were removed from the PCR mixtures by ultrafiltration
using two 2-mL ddH2O washes in a Centricon-30 micro-
concentrator (Amicon, Beverly, MA). The amplified DNA
was then dried by vacuum centrifugation, resuspended in
10 FL of dH20, and sequenced in a microtiter plate using
dITP termination mixes as described (23). Because of the
high (60%) GC content of Salmonella DNA and the pres-
ence of repeating runs of G or GC, compression of the
bands on the sequencing gel may occur with standard
dNTPs. Thus, dITP termination mixes were used to elimi-
nate this problem.
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Spontaneous Mutation Spectrum
The most surprising observation regarding the spon-

taneous mutation spectrum at the hisD3052 allele in strain
TA98 (or in TA1538 and TA1978) is the size of the target.
Frameshift reversion is generally thought to occur by one

of three general mechanisms: a) the original sequence is
restored exactly to wild type (producing a true revertant),
b) a second mutation within the gene (intragenic) and near

the original mutation occurs to correct the reading frame,
or c) a second mutation within a suppressor (extragenic)
gene (most likely a tRNA gene) occurs that results in the
insertion of an amino acid that restores function to the
gene product [in this case, histidinol dehydrogenase (25)].

Quite unexpectedly, less than 1% of the spontaneous
revertants of strain TA98 are true revertants, and the size
of the target is at least 72 bases, with the original 1-base
deletion approximately in the center (26,27). In addition, no
extragenic suppressor mutations have been identified.
Thus, of the three general mechanisms, 99% of the spon-

taneous revertants revert by the second mechanism, i.e.,
intragenic suppressor mutation. Consequently, 99% of the
spontaneous revertants of the hisD3052 allele are not
genotypically wild type; instead, they are double mutants
at the hisD gene.
The likely reason for such a low frequency of true

reversion may be due to the large number of alternative
reversion pathways that are available within the hisD3052
target. We have identified about 200 different mutations
among revertants of this allele, with at least 50% of these
recovered among spontaneous revertants (26; DeMarini et
al., unpublished observations). Duplications as large as 46
bases and deletions as large as 35 bases have been
recovered (27). Complex mutations, i.e., those that contain
deletions, insertions, and/or base substitutions at or near
the same site in a single mutant, occur spontaneously
about 3% of the time in TA98, but not at all in TA1538 and
TA1978 (27). Thus, these mutations appear to result from
the error-prone DNA repair system provided by the
pKM101 plasmid in TA98. Although deletions occur more

frequently spontaneously than duplications in strains
TA98 and TA1538, duplications are more dominant in the
repair-proficient strain TA1978.
As discussed further in "Mutational Mechanisms," the

hisD3052 allele contains a reversion hot spot that has been
recognized by a number of researchers (18-23). The rever-

sion event consists of the deletion of a GC or CG within the
sequence CGCGCGCG. Thus, seven such mutations can be
accommodated within this region. The percentage of spon-
taneous revertants (+ S9) that contain this GC or CG
deletion at the hot spot is 47% for TA98, 51% for TA1538,
and 15% for TA1978 (Table 1). As shown below, the occur-
rence of this mutation is frequently increased after muta-
gen treatment.

Mutation Spectra Produced by Single
Chemicals
The mutations induced by only a relatively small number

(- 20) of single chemicals have been evaluated at the

Table 1. Frequency of hot spot deletions at the
hisD3052 allele in TA98.

Chemicals/mixtures S9 Frequency, %
Spontaneous + 47

_ 49
3-Chloro-4-(dichloromethyl)-5-

hydroxy-2-(5H)-furanone (MX) - 40
4-Aminobiphenyl + 83
Ellipticine + 86
1-Nitropyrene - 94
Glu-P-1 + 98
Mainstream cigarette smoke condensate + 91
Sidestream cigarette smoke condensate + 89
Urban air particles

Unfractionated + 89
Base/neutral fraction + 90

Municipal waste incinerator particles
Unfractionated 88
Base/neutral fraction 98

molecular level at the hisD3052 allele in Salmonella.
Fuscoe et al. (19) have reported on revertants induced by
the food mutagens PhIP, IQ, and MeIQ, as well as by
aflatoxin B1 and benzo[a]pyrene. Cebula and Koch (21)
have presented preliminary reports on revertants induced
by adriamycin, daunomycin, aflatoxin B1, benzo[a]pyrene,
and 2-acetylaminofluorene. Recently, Kupchella and
Cebula (22) have analyzed at the DNA level the revertants
of Isono and Yourno (18); these include revertants induced
by ICR191, ICR3640H, 2-nitrosofluorene, hycanthone,
4-nitroquinoline-N-oxide, and N-methyl-N'nitro-N'nitro-
soguanidine. O'Hara and Marnett (20) have presented
results for 3-methoxyacrolein, and we have analyzed
revertants induced by 1-nitropyrene (23), ellipticine (28),
the drinking water mutagen 3-chloro-4-(dichloro-
methyl)-5-hydroxy-2-(5H)-furanone [MX (29)], and 4-ami-
nobiphenyl (4AB), and the food mutagen Glu-P-1 (30,31).

It is beyond the purpose and scope of this paper to
analyze the results in detail. However, some general obser-
vations can be made regarding these studies. Nearly all of
these mutagens increase the frequency of the GC or CG
deletion hot spot, with the exception of the drinking water
mutagen MX (Table 1). Agents that form DNA adducts,
such as 4AB and Glu-P-1, produce a number of complex
mutations in strain TA98, but not in TA1538 or TA1978
(30,31). Thus, it appears that the error-prone DNA repair
system conferred by the pKM101 plasmid is necessary to
convert these DNA adducts into complex mutations.
Although the hot spot deletion dominates the mutation
spectra induced by these chemicals, most of the remaining
mutations are either complex (in strain TA98) or are
similar to the deletions and duplications found in the
spontaneous spectrum.

Ellipticine is particularly interesting because, in addi-
tion to the hot spot, it also induced two warm spots on
either side of the hot spot that were 30 bases apart from
each other. When a secondary structure of this region is
constructed that contains 66% internal hydrogen bonding,
the two warm spots reside opposite each other in looped-
out (nonhydrogen-bonded) regions of the hairpin (28).
Such mutational specificity has not been observed among
the other agents we have studied thus far. The drinking
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water mutagen MX also may produce an interesting spec-
trum because only 40% of the MX-induced revertants
contain the deletion hot spot, which contrasts with the 83-
98% hot spot mutations produced by the other agents we
have evaluated (Table 1).

Mutation Spectra Produced by
Complex Mixtures
As discussed previously, many different complex mix-

tures have been studied for mutagenicity. Of all environ-
mental mutagens, cigarette smoke is perhaps the most
important because of its known association with lung
cancer and other diseases. Seventeen years after Kier et
al. (5) showed that CSC was mutagenic in Salmonella, we
have identified some of the mutations induced by both
mainstream and sidestream CSC (30). As with most single
chemical mutagens evaluated thus far, about 90% of the
CSC-induced revertants of TA98 contain the GC or CG
deletion hot spot (Table 1). Although complex mutations
make up only 3% of the spontaneous spectrum of TA98,
they make up 5 and 8% of the mainstream and sidestream
CSC revertants (30).
The finding that many of the non-hot spot mutations are

complex suggests that they are the result of the error-
prone DNA repair system acting on bulky DNA adducts.
Such a result is consistent with the types of mutations
found in K- or N-ras genes from lung tumors of mice
exposed to polycyclic aromatic hydrocarbons (PAHs) or
from lung tumors ofhuman cigarette smokers (32,33). The
mutations were similar among mouse and human tumors,
suggesting that bulky hydrophobic DNA adducts may be
responsible for the majority of the mutations observed in
the activated human K-ras genes from cigarette smokers.

Furthermore, about 50% of the mutations in human
K-ras and p53 genes of lung tumors from smokers were G
to T transversions, with some others being C to T transi-
tions (33,34). Our results with CSC-induced revertants of
Salmonella strain TA98 are supportive of these human
data in that about 50% of the CSC-induced complex muta-
tions contain G to T base substitutions, and about 50%
contain C to T substitutions. This observation is all the
more interesting because TA98 is a frameshift mutant that
was not designed to detect or necessarily permit the
recovery of base substitutions. The recovery of a substan-
tial fraction ofbase substitutions (all, of course, associated
with a frameshift mutation) among the CSC-induced
revertants of TA98 suggests that CSC has a strong pro-
pensity to induce these base substitutions.
Urban air is another complex mixture that is known to

be mutagenic and to which millions of people are exposed
(35). Thus, we have begun to examine the types of muta-
tions induced by organic extracts of urban air and by
chemical fractions ofthese extracts. Air particles collected
during the winter in Boise, Idaho (36), were fractionated
and evaluated for mutagenicity (37) and carcinogenicity
(38). The results showed that the neutrail/base fraction
contained 36% of the mass but 81% of the mutagenicity
( + S9) of the whole, unfractionated mixture (37).

Thus, we generated a mutation spectrum for both the
unfractionated mixture and the neutraVbase fraction of
the air sample. The results showed that about 90% of the
revertants in both spectra contained the hot spot deletion
(39) (Table 1). In addition, about 50% of the remaining
mutations were complex, suggesting that large, aromatic
compounds in the mixtures formed DNA adducts that
were then processed into complex mutations by the error-
prone DNA repair system in TA98. The two spectra were
similar, which is expected based on the fact that the base/
neutral fraction contained 81%o ofthe mutagenic activity of
the whole mixture.
We have recently performed a similar study on the

unfractionated and base/neutral fraction of the organic
extract of particles emitted from a municipal waste incin-
erator. One major difference between this study and that
using urban air is that S9 was used with the urban air
samples, but the incinerator samples exhibited potent
direct-acting mutagenic activity. Thus, the mutation spec-
tra for the incinerator samples were generated in the
absence of S9.
The particles were collected and fractionated as

described (37,40), and mutation spectra were constructed.
The base/neutral fraction of the incinerator particle
extract contained 68% of the mass and 79% of the muta-
genic activity (37). The molecular results were similar to
those found for the urban air sample in that about 90% of
the revertants ofboth the unfractionated and base/neutral
fraction contained the hot spot mutation (Table 1). Most of
the remaining mutations were complex mutations.
To see if particular classes of chemicals were respons-

ible for certain mutations in the spectra, the base/neutral
fractions of both the Boise air sample and of the municipal
waste incinerator sample were fractionated further by
HPLC as described (41). Each of the 60 HPLC fractions
per HPLC run were evaluated for mutagenic activity in
strain TA98 by means of a microsuspension assay (41).
Several HPLC fractions in each of the mutagenicity pro-
files (mutagrams) exhibited elevated mutagenic activity,
and the revertants produced by these HPLC fractions are
currently being analyzed by probe hybridization and PCR/
sequencing.

Mutational Mechanisms
The hot spot deletion dominates both the spontaneous

and induced mutation spectra of revertants of the
hisD3052 allele, and it is best explained by the primary
DNA sequence at this site. The CGCGCGCG sequence
provides more opportunity than does any other sequence
at any other site within the target for the occurrence of
slipped mispairing within an iterated sequence during
replication, resulting in deletions and/or duplications as
first described by Streisinger et al. (42). Such slipped
mispairing is likely to be stabilized by agents that can
intercalate and/or form covalent DNA adducts. In addi-
tion, the CGCGCGCG region may assume a Z-DNA con-
formation, which could promote deletion mutations. These
mechanisms have been discussed extensively by us and
others (19-23,28).
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The formation ofmany ofthe complex mutations in TA98
are compatible with mutation models that involve the
misinsertion of a base opposite a DNA adduct followed by
slipped mispairing (28). Perhaps the most important fea-
ture ofthe hisD3052 target is the quasipalindromic nature
of its sequence, i.e., the fact that it contains many direct
and inverted repeated sequences. The ample opportunity
for the formation ofDNA secondary structures and inter-
nal (intrastrand) complementary hydrogen bonding may
be the main reason for the high mutability ofthe hisD3052
allele by a variety of agents.
As discussed by Ripley (43), such structures permit

slippage mismatches that can result in frameshifts, and
they permit the formation of template-directed mutations.
DNA secondary structures and these mechanisms appear
to account for a great majority of the mutations recovered
among revertants of the hisD3052 allele (19-23,28). Simi-
lar mechanisms also explain mutations recovered from a
variety of other organisms, including humans (43). The
recovery of mutations in Salmonella that are similar or
identical to those found in other organisms, as well as the
apparent similarity in mutational mechanisms across spe-
cies, offers support for the use of model systems, such as
the hisD3052 allele of Salmonella, for mutation research
studies.
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