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Abstract

Population-based human in vitro models offer exceptional opportunities for evaluating the 

potential hazard and mode of action of chemicals, as well as variability in responses to toxic 

insults among individuals. This study was designed to test the hypothesis that comparative 

population genomics with efficient in vitro experimental design can be used for evaluation of the 

potential for hazard, mode of action, and the extent of population variability in responses to 

chemical mixtures. We selected 146 lymphoblast cell lines from 4 ancestrally and geographically 

diverse human populations based on the availability of genome sequence and basal RNA-seq data. 

Cells were exposed to two pesticide mixtures – an environmental surface water sample comprised 

primarily of organochlorine pesticides and a laboratory-prepared mixture of 36 currently used 

pesticides – in concentration response and evaluated for cytotoxicity. On average, the two 

mixtures exhibited a similar range of in vitro cytotoxicity and showed considerable inter-

individual variability across screened cell lines. However, when in vitroto-in vivo extrapolation 

(IVIVE) coupled with reverse dosimetry was employed to convert the in vitro cytotoxic 

concentrations to oral equivalent doses and compared to the upper bound of predicted human 

exposure, we found that a nominally more cytotoxic chlorinated pesticide mixture is expected to 

have greater margin of safety (more than 5 orders of magnitude) as compared to the current use 

pesticide mixture (less than 2 orders of magnitude) due primarily to differences in exposure 

predictions. Multivariate genome-wide association mapping revealed an association between the 
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toxicity of current use pesticide mixture and a polymorphism in rs1947825 in C17orf54. We 

conclude that a combination of in vitro human population-based cytotoxicity screening followed 

by dosimetric adjustment and comparative population genomics analyses enables quantitative 

evaluation of human health hazard from complex environmental mixtures. Additionally, such an 

approach yields testable hypotheses regarding potential toxicity mechanisms.
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1. Introduction

Pesticides are chemicals that are used to kill, repel, or control certain forms of plant or 

animal life that are considered to be pests (Krieger, 2010). Adverse health effects of 

pesticides can range from mild skin and mucous membrane irritation to more severe 

outcomes such as neurotoxicity and cancer (Bassil et al., 2007; Rother, 2014; Sanborn et al., 

2007). Moreover, potential for adverse effects following exposure may be higher among 

vulnerable individuals, life stages or sub-populations (Jurewicz and Hanke, 2008; Perry et 

al., 2014). There are several challenges in the evaluation of the human health hazard of 

pesticides. First, pesticides have variable modes of action (MOA) dependent on use and 

activity, and are meant to be harmful and toxic to pests, but not humans. Second, because 

they are widely used in agricultural and household settings, people are frequently exposed to 

pesticide residues. Third, humans are typically exposed to mixtures of pesticides, creating 

challenges in hazard evaluation (Feron et al., 1998; Manikkam et al., 2012).

While safety testing of the individual pesticides is conducted according to established 

regulatory guidelines (Babut et al., 2013), evaluation of the toxicity of mixtures is less 

structured (U.S. EPA, 2002). The cumulative risk assessment is conducted for mixtures of 

chemicals with common mechanisms of toxicity, even though data are usually available only 

for individual chemicals. Indeed, current toxicity testing paradigms have been questioned for 

their failure to consider commonly occurring co-exposures and the magnitude of human 

population variability in response to chemicals (National Research Council, 2009).

Whole animal testing is difficult to employ for evaluating the hazards of chemical mixtures. 

In contrast, in vitro testing allows greater flexibility, as chemicals can be grouped according 

to their effects on key biologic pathways or tested over a broad range of concentrations to 

capture varied exposure scenarios in a rapid and inexpensive manner (Andersen and 

Krewski, 2009). The resulting data could enable an informed and focused approach to the 

problem of assessing hazard in risk-relevant manner in human populations that are exposed 

to mixtures. Furthermore, with an experimental in vitro design that represents a human 

population, we are able to explore not only the hazard, but also its intrinsic variability across 

different concentration ranges (Lock et al., 2012; O'Shea et al., 2011). Such information 

would be valuable to inform regulatory decisions that could more fully protect public health 

and sensitive subpopulations (Abdo et al., 2015).
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In this study, we addressed the hypothesis that comparative population genomics with 

efficient in vitro experimental design can be used for evaluation of the potential for hazard, 

mode of action, and the extent of population variability in responses to chemical mixtures. 

Specifically, we aimed to address two important issues, mixtures toxicology and exploration 

of genetically-based inter-individual variation using in vitro cytotoxicity study design. While 

the emphasis was on genetic variability, the use of the two mixtures as testing agents 

allowed for a greater exploration of the genetic space because, for example, polymorphisms 

in different pathways may be the determinants of the variability for different chemicals. The 

overall study design is depicted in Supplemental Fig. 1. We screened 146 lymphoblast cell 

lines (LCLs) from four ancestrally and geographically diverse populations with publicly 

available genotypes and sequencing data from the 1000 Genomes Project (1000 Genomes 

Project Consortium, 2010). Cells were exposed to two pesticide mixtures (an environmental 

sample, comprised primarily of a mixture of organochlorines extracted from a passive 

surface water sampling device, and a mixture of 36 currently used pesticides) at 8 

concentrations. Cytotoxic response was assessed using an effective concentration threshold 

of 10% (EC10), designed to be relevant to the dose– response evaluation commonly used in 

quantitative risk assessment practice and to meaningfully capture ranges of variation in 

response across individuals. Genome-wide association mapping was performed to evaluate 

the genetic determinants of susceptibility. Furthermore, in vitro-to-in-vivo extrapolation 

with reverse dosimetry was utilized to translate the in vitro concentrations to oral 

equivalents, which were then compared to predicted human cumulative exposures.

2. Materials and methods

2.1. Experimental design

2.1.1. Cell lines—A set of 146 immortalized LCLs was acquired from Coriell Cell 

Repositories (Camden, NJ). The 146 cell lines represent 4 ancestrally and geographically 

diverse populations (Table 1): Utah residents with Northern & European ancestry (CEU); 

Tuscan in Italy (TSI); Yoruban in Ibadan, Nigeria (YRI); and British from England & 

Scotland (GBR). Cell lines were chosen based on the availability of dense genotyping 

information (1000 Genomes Project Consortium et al., 2012). Screening was conducted in 

two batches, and cell lines were randomly divided into batches without regard to family 

structure, but with equal representation of population and gender. Cells were cultured in 

RPMI 1640 media (Gibco, Carlsbad, CA) supplemented with 15% fetal bovine serum 

(HyClone, South Logan, UT) and 1% penicillin-streptomycin (Gibco) and cultured at 37 °C 

with 5% CO2. Media was changed every 3 days. Cell count and viability were assessed once 

a day for five days for all cell lines using Cellometer Auto T4 Plus (Nexcelom Bioscience, 

Lawrence, MA). Cells were grown to a concentration of up to 106 cells/ml, volume of at 

least 100 ml, and viability of >85% before exposures. After centrifugation, the cells were re-

suspended in fresh media. Cells (100 μl containing 104 cells) were aliquoted to each well in 

a 96-well treatment plate (following the addition of the chemicals) and mixed using the 

Biomek 3000 robot. Plates were incubated for 24 h after treatment at 37 °C and 0.5% CO2. 

To increase the robustness of the data and to evaluate reproducibility, each cell line was 

seeded in at least two plates so that each compound would be screened in each cell line on 2 

or more plates.
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2.1.2. Chemical mixtures—Cells were exposed to two environmental chemical mixtures. 

First mixture, referred to as “chlorinated pesticide mixture” throughout the manuscript, is an 

environmental sample obtained from a universal passive sampling device deployed for 30 

days in surface water next to a chlorinated pesticide storage facility. In this extract, 10 

pesticides were present in detectable quantities in the post-collection laboratory analysis (see 

Table 2 for a complete list of pesticide chemicals identified by mass spectrometry). The 

second mixture, referred to as “current use pesticide mixture”, was a laboratory-generated 

mixture of 36 currently used pesticides with relative concentrations selected to mimic 

fractional composition of the pesticide exposures in Eastern North Carolina (Table 3). Stock 

solutions of each mixture were further diluted with dimethyl sulfoxide (DMSO) 8-fold in ½-

log step-wise manner. Final cumulative concentrations ranged from 0.032 to 370.4 μM for 

the current use pesticide mixture and from 0.022 to 65.7 μM for the chlorinated pesticide 

mixture in 0.5% (vol/vol) DMSO. The mixtures were aliquoted to 96-well plate format using 

Biomek 3000 robot (Beckman Coulter, Inc., Brea CA). The negative control was DMSO at 

0.5%; the positive control was tetra-octyl ammonium bromide at 46 μM.

2.1.3. Cytotoxicity profiling—The CellTiter-Glo Luminescent Cell Viability (Promega, 

Madison, WI) assay was used to assess intracellular ATP concentration, a marker for 

cytotoxicity, 40 h post treatment. Time points were selected based on previous experiments 

at the National Institutes of Health Chemical Genomics Center (Xia et al., 2008). A 

ViewLux plate reader (PerkinElmer, Shelton, CT) was used to detect luminescent intensity.

2.2. Data processing

2.2.1. Cytotoxicity EC10 estimation and outlier detection—Cytotoxicity data were 

normalized relative to positive/negative controls as described elsewhere (Abdo et al., 2015). 

We derived an effective concentration 10th percentile (EC10) to provide a single cytotoxicity 

dose summary per chemical and cell line. The derivation of EC10 was based on the logit 

model:

with y=η+ε,ε~N(0,σ2), where y is the observed normalized signal representing proportion of 

surviving cells (which we term the “cytotoxicity value”), d is the log(concentration) for each 

chemical, and θmax is the limiting mean cytotoxicity value for the zero concentration. θmin 

was set to zero, to avoid difficulties in estimating the minimum cytotoxicity value for 

chemicals with low cytotoxicity. An exception was made for chemicals in which the 

cytotoxicity value at the highest concentration was higher than 0.4, as a very few number of 

plates/chemicals did not reliably reach maximum cytotoxicity. In those instances θmin was 

set at the observed cytotoxicity at the maximum concentration. Inspection of these data 

revealed good fits in such instances. Although in principle θmax should have been 1.0, a 

number of plates exhibited a drift from this value, and thus the parameter was estimated 

from the data.
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Fitting for the parameters [β0,β1,σ2,θmax] proceeded by maximum likelihood using 

numerical optimization in R v2.15. An automatic outlier detection algorithm was devised by 

considering the impact of dropping each concentration value in succession, and removing 

those values for which the maximum likelihood improved by a factor of 10 or more and 

refitting the model using the non-outlying observations.

2.2.2. Normalizing for batch effects—Batch effects were evaluated by running 

principal component analysis. EC10 values were adjusted for batch effect using the ComBat 

method (Johnson et al., 2007).

2.2.3. Concentration response for populations and individuals—For each 

pesticide mixture, the three-parameter logistic regression described above in EC10 

estimation was fit to concentration–response data for each cell line. The variation in the 

EC10 estimates was used as illustrative of population variation in true EC10 values, although 

additional sampling variation underlies each EC10 estimate. An overall logistic 

concentration–response curve was fit to the aggregated data across all individuals (Fig. 1).

2.2.4. Reproducibility and correlation between mixtures—Pearson and Spearman 

correlation coefficients (r) between pairs of replicate plates were used to assess experimental 

reproducibility and the correlation between the two mixtures. For this analysis, the two 

replicate plates were selected for each mixture and cell line pair.

2.2.5. Chemical/mixture specific toxicodynamic variability factor (VFd)—
Variability in response for each mixture across the 146 cell lines was derived as the longest 

tail of the variability distribution (in our case the ratio of the 50th percentile to the 5th 

percentile was greater than the ratio of the 95th to the 50th percentile) using the World 

Health Organization guidance (World Health Organization, 2005).

2.2.6. Chemical descriptors—Chemical descriptors were calculated using Dragon 

version 5.5 (Mauri et al., 2006). Constant and near constant descriptors as well as highly 

correlated descriptors were excluded and descriptor values were normalized on a scale from 

0 to 1.

2.2.7. Differences in cytotoxicity across different populations—Analysis of 

Variance (ANOVA) was performed to assess population differences in cytotoxicity between 

the four screened populations for each mixture.

2.2.8. Genotypes—The primary source of genotypes was obtained as described in Abdo 

et al. (2015). SNPs with a call rate below 99%, minor allele frequency (MAF) < 0.05, or 

Hardy–Weinberg equilibrium p-value < 1 × 10−3 were excluded.

2.2.9. Multivariate association analysis (MAGWAS)—The MAGWAS analysis of 

covariance model (Brown et al., 2012) was used for association mapping. The approach 

allows for use of the full concentration–response profile, as opposed to a univariate 

summary (such as EC10) as a single response, with the advantage of robustness and power 
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under a wide variety of association patterns. The model used for association for the jth 

individual and genotype i for the chemical/SNP was:

where Yij is the vector of responses (across the eight concentrations) for the jth individual 

having genotype i, Xij is the design matrix of covariates, including sex, indicator variables 

for laboratory batch, and the first ten genotype principal components, and μi is the eight-

vector of parameters modeling the effects of genotype i on the response. The model assumes 

that the error terms are multivariate normally distributed, with mean vector 0 and variance-

covariance matrix Σ, allowing for dependencies in the observations. p-Values were obtained 

using Pillai's trace (Pillai, 1955). Because this method makes use of asymptotic theory, 

markers with fewer than 20 individuals representing any genotype were removed, leaving 

692,013 SNPs for analysis.

2.2.10. Estimation of Css using in vitro in vivo extrapolation (IVIVE) and Monte 
Carlo simulation—Key determinants of steady-state pharmacokinetics were 

experimentally measured for chemicals and published previously (Wetmore et al., 2012, 

Wetmore et al., in press). Briefly, plasma protein binding was measured using rapid 

equilibrium dialysis (Wetmore et al., 2012) and the rate of hepatic metabolism of the parent 

compound was determined using the substrate depletion approach (Rotroff et al., 2010; 

Wetmore et al., 2012). See flow chart for these analyses in Supplemental Fig. 2.

These data were then used to calculate chemical steady-state blood concentrations (Css) as 

previously described, with modification (Wetmore et al., 2012, Wetmore et al., in press). 

The base equation used to calculate static Css is based on constant uptake of a daily oral dose 

and factors in blood binding, hepatic clearance and non-metabolic renal clearance. The daily 

oral dose was set to 1 μg/kg/day to reflect ambient environmental exposures. A correlated 

Monte Carlo approach was employed (Jamei et al., 2009) using Simcyp (Simcyp v.1.3; 

Certara, Sheffield, UK) to simulate variability across a population of 10,000 individuals 

equally comprised of males and females, 20– 50 years of age. A coefficient of variation of 

30% was used for intrinsic and renal clearance. The median, upper and lower fifth 

percentiles for the Css were obtained as output.

2.2.11. Calculation of oral equivalent dose values—In conventional use, 

pharmacokinetic models are used to relate exposure concentrations to a blood or tissue 

concentration. This is typically referred to as “forward dosimetry”. In contrast, the models 

can also be reversed to relate blood or tissue concentrations to an exposure concentration, 

which is referred to as “reverse dosimetry” (Tan et al., 2007). Based on the principal of 

reverse dosimetry, the median, upper and lower 5th percentiles for the Css were used as 

conversion factors to generate oral equivalent doses according to the following formula:
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In the equation above, the oral equivalent dose value is lin μ early related to the in vitro 

EC10 and inversely related to Css. This equation is valid only for first-order metabolism that 

is expected at ambient exposure levels. An oral equivalent value was generated for each 

chemical-cell line combination and summed to provide a cumulative oral equivalent value 

for each cell line.

2.2.12. Predicted exposure limits—Pesticide specific predicted exposures were 

obtained as previously detailed in (Wambaugh et al., 2013). The pesticide specific exposure 

limit was available for 35 out of the 36 pesticides in the current-use pesticide mixture and 

for 6 out of 10 pesticides in the chlorinated pesticide mixture. Missing values were replaced 

by the highest exposure within each mixture. Then, a cumulative exposure was computed for 

each mixture from the upper 95th percentile (see flow chart in Supplemental Fig. 3).

3. Results

3.1. Cytotoxicity of pesticide mixtures in vitro

Screening was conducted in a 96-well plate format using a robotic system to facilitate 

reproducibility and throughput. The 146 cell lines were randomly assigned to two batches 

with blocking to achieve balancing by sex and population. Each cell line was plated on two 

plates to evaluate technical reproducibility and pesticide mixtures were added at 8 different 

concentrations ranging from 0.032 to 370.4 μM for current use pesticide mixture, and from 

0.022 to 65.7 μM for chlorinated pesticide mixture. Positive and negative controls for 

cytotoxicity, as assessed by intracellular ATP concentrations, were included on each plate. 

Normalization to the control for each plate was performed as described in the Materials and 

Methods section separately for each cell line. EC10s were derived, batch-corrected and 

averaged across replicate plates for each cell line.

To visualize “individual” vs. “population” response to each pesticide mixture, we fitted a 3-

parametric logistic regression to each cell line's concentration–response, as well a single 

concentration–response curve for the entire population, as illustrated in Fig. 1. Population 

variability in cytotoxicity of each mixture is shown as a histogram of EC10 values. Both 

mixtures demonstrated considerable inter-individual variability in cytotoxicity. To evaluate 

the reproducibility of the EC10 values, pair-wise correlations among duplicate plate pairs 

were calculated for each mixture. Highly significant correlations were observed for both 

mixtures (p < 0.0001). For current pesticides mixtures r[Pearson's] = 0.62 and ρ[Spearman] 

= 0.55. For chlorinated pesticides mixture, r [Pearson's] = 0.65 and ρ[Spearman] = 0.56. 

Overall reproducibility for both mixtures was also significant (p < 0.0001) with r[Pearson's] 

= 0.62 and ρ[Spearman] = 0.54.

We found that both mean and median EC10 values for in vitro cytotoxicity, as well as the 

range among cell lines tested, were not significantly different between the two mixtures 
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(Fig. 2). Using these data, the extent of population variation in in vitro cytotoxicity may be 

derived to serve as a surrogate for cellular variation in the toxicodynamic relationship 

between systemically available concentrations and toxic responses (Zeise et al., 2013). We 

calculated a toxicodynamic variability factor (VFd) for these human cell lines as 10, 

analogous to a chemical-specific toxicodynamic uncertainty factor for inter-individual 

variability (World Health Organization, 2005), and found it to be around 3-fold for either 

mixture (Table 4).

Next, we evaluated the extent of the similarity of cytotoxic responses to the mixtures across 

cell lines. Strong (significant even after removal of the three outlier cell lines) correlation 

(r[Pearson] = 0.53, p < 0.0001; ρ[Spearman] = 0.25, p < 0.01) was observed between the 

mixtures, illustrating appreciable degree of concordance in individual cell line responses 

(Fig. 3a). There were no suggestive patterns of population clustering in the correlation 

between the mixtures and neither mixture exhibited significant differences among the 

populations tested (Supplemental Fig. 4). It is of note, however, that GBR cell lines were the 

most sensitive, while YRI cell lines the least sensitive to in vitro cytotoxicity of these 

mixtures. Moreover, within-population variability was greater for the current use pesticide 

mixture as compared to the chlorinated pesticide mixture, especially when considering the 

range of the upper quartile to the lower quartiles.

The finding of the significant concordance in responses to both mixtures is of interest 

because there is no individual chemical overlap (Tables 2 and 3). These results may suggest 

potential shared mechanisms for cytotoxicity. To further explore chemical similarity among 

compounds in each mixture, we performed principal components analysis using chemical 

descriptors. We found that two mixtures overlap in their chemical descriptor space (Fig. 3b), 

which may partially explain the correlation between two mixtures. While some of the 

individual components in both mixtures are closely related isomers, no clustering of 

compounds based on the known pesticidal mode of action (http://www.irac-online.org/

documents/moa-classification/?ext=pdf) was observed.

We also compared the strength of the correlation between two mixtures to that of a pair-wise 

comparison between any pair of compounds in another study that evaluated cytotoxicity of 

179 diverse environmental compounds and drugs in a population of lymphoblast cell lines 

(Abdo et al., 2015). The correlation between two mixtures tested in this study (ρ[Spearman] 

= 0.25) was comparable to the median correlation of a randomly chosen pair from 15,931 

possible combinations in the previous cytotoxicity experiment (Fig. 3c).

3.2. In vitro-to-in vivo extrapolation of cytotoxicity of pesticide mixtures in a population-
based model to oral human equivalents and predicted human exposure levels

To conduct a comparative analysis of in vitro cytotoxicity measures of pesticide mixtures 

with potential human exposures, we computed oral equivalent doses for both mixtures using 

the reverse dosimetry approach (Wetmore, 2015). In vitro pharmacokinetic data (Wetmore 

et al., 2012; Wetmore et al., in press) were available for 31 of the 36 chemicals present in 

the current use pesticide mixture, and for 4 of the 10 chemicals in the chlorinated pesticide 

mixture. In comparison to 180 ToxCast Phase II chemicals similarly assessed for in vitro 

pharmacokinetics, the Css values for the 31 current use pesticides had a similar distribution 
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(a median Css < 1 μM and 95th percentile ≈ 200 μM). Only two of the chemicals in the 

current use pesticide mixture had very high Css values, ethalfluralin (350 μM) and 

flumetralin (277 μM), the rest were below 8 μM. The distribution of the values for 4 

compounds in the chlorinated pesticide mixture was different, the maximum Css value was 

58.5 μM.

Because there is no standard approach for evaluation of pharmacokinetics of mixtures, for 

the purposes of pharmacokinetic modeling in this study we assumed that pharmacokinetics 

of each chemical will not be significantly affected by the presence of other chemicals in the 

mixture. Given that cytotoxicity was measured across 146 individual cell lines, separate oral 

equivalents were calculated for each individual based on the percentage of a given chemical 

in the mixture (Tables 2 and 3). Furthermore, because some chemicals in each mixture were 

without in vitro pharmacokinetic parameters, oral equivalent doses were computed based on 

four different scenarios (see Supplemental Fig. 2 for the workflow). We substituted missing 

Css values with either median or largest (based on the most conservative simulation 

assuming no hepatic clearance, high blood binding and only renal clearance, referred to as a 

“worst-case-scenario”) Css value of other chemicals in the mixture. In addition, oral 

equivalents were calculated with and without weighting of the EC10 by the percentage of 

chemical in the mixture.

The Css values were derived using the Simcyp software with Monte Carlo simulations to 

account for the population variability in pharmacokinetics in healthy individuals (Northern 

European, 20–50 years of age, equally mixed sex). To be reasonably conservative, the upper 

95th percentile values from a series 10 simulation (1000 individuals each for estimating 

pharmacokinetics variability) per trial were used to determine the oral equivalents. This 

analysis showed that highly significant differences (p < 0.01 or greater) arise when oral 

equivalents are computed from in vitro EC10 values (Fig. 4). The chlorinated pesticide 

mixture was predicted as about an order of magnitude more toxic than the current use 

pesticide mixture, regardless of the methodology that was utilized to account for missing 

values in calculating Css (see Supplemental Fig. 2).

To further interpret the outcome of these experiments in the context of human health risk, 

we examined the relationship of the calculated oral dose equivalent with estimated human 

exposures to these mixtures. First, we computed a cumulative exposure value for each 

mixture based on the exposure estimates for each individual chemical obtained from 

ExpoCast (Wambaugh et al., 2013), a framework that estimated human exposure potential 

for 1936 chemicals. Predicted estimates of exposure were available for 35 of the 36 

chemicals present in the current use pesticides mixture, and 6 of the 10 chemicals in the 

chlorinated pesticide mixture. To remain conservative, missing values were substituted with 

the highest predicted exposure from ExpoCast data for a chemical in the respective mixture 

(see Supplemental Fig. 3). Next, cumulative exposure for each mixture was computed as the 

upper 95th percentile and compared to oral equivalent doses for in vitro cytotoxicity (Fig. 

4). While human exposure estimates were lower than oral dose equivalent in vitro cytotoxic 

doses for both mixtures, a much greater margin of safety is evident for the chlorinated 

pesticide mixture than for the current use pesticide (5-fold or greater vs less than 2-fold, 
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respectively). This indicates a wider margin of safety for the chlorinated pesticide mixture 

than the current-use pesticide mixture.

3.3. Relationships between cytotoxicity of pesticide mixtures and genotype

Because the cell lines used in this study are densely genotyped (1000 Genomes Project 

Consortium et al., 2012), association analysis was performed between the quantitative 

estimates of cytotoxicity and genetic variability among 146 individuals included in 

screening. Genotyping data was processed as detailed in Methods. Sex, experimental batch 

and date, population, and the first ten genotype principal components were included as 

covariates in multivariate ANCOVA genome-wide association analysis (Brown et al., 2012), 

a sensitive method designed for evaluating a pattern of variation of cytotoxicity 

measurements due to genotype. Despite a relatively small population of 146 cell lines, a 

highly suggestive (p < 6.5 × 10−08) association was observed between cytotoxicity of the 

current use pesticide mixture and a locus on Chr17 (Fig. 5a) [near the Bonferroni threshold, 

and genome-wide significant by the criterion of (Dudbridge and Gusnanto, 2008)]. The most 

highly associated SNP (rs1947825) is located in an open reading frame C17orf54 (Fig. 5b). 

When the cytotoxicity concentration–response patterns for cells with each of three 

genotypes for rs1947825 were examined (Fig. 5c), we found that the major allele (AA) 

confers greater sensitivity, with the heterozygous genotype (AT) falling consistently in the 

middle across all concentrations.

4. Discussion

Following the advice from the U.S. National Academies on developing a long-range 

strategic plan to update and advance the way environmental agents are tested for toxicity 

(Krewski et al., 2011), substantial advancements in high-throughput approaches to 

characterize the biological activity that may be indicative of potential human health hazard 

of environmental chemicals in vitro have been implemented (Collins et al., 2008). 

Nonetheless, difficulties are many in conducting human health risk assessments from in 

vitro endpoints (Crump et al., 2010; Judson et al., 2011). A major challenge in human health 

assessments is developing a comprehensive understanding of population variability in 

susceptibility to chemical toxicity (Zeise et al., 2013). Regulatory risk assessment 

incorporates multiple uncertainty factors that are based on default assumptions and only 

recently experimental approaches have become available to provide scientific data to replace 

defaults in inter-individual variability in toxicokinetics (Wetmore et al., 2014) and 

toxicodynamics (Abdo et al., 2015).

Furthermore, no clear framework has been set to evaluate potential toxicity of chemical 

mixtures in non-animal alternative models. Few environmental chemical mixtures have been 

evaluated, especially at environmentally relevant concentrations (Carvalho et al., 2014), 

with regulatory decisions primarily based on a single compound evaluation. However, 

potentiation and synergistic interactions of chemicals in mixtures is of great concern 

(Cedergreen, 2014). It has been shown that exposure to chemical mixtures, including 

pesticides, often occurs with each chemical in the mixture present at respective safety limit 

concentrations (Carvalho et al., 2014). Moreover, evaluation of chemical mixtures with 
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similar modes of action, without consideration of realistic exposure in the environment, 

might underestimate the toxicological risk associated with their exposure (Hadrup, 2014).

To address the challenges of assessment of potential hazard of complex mixtures while 

accounting for potential inter-individual variability, we aimed to provide quantitative 

measures for population-based in vitro toxicity of pesticide mixtures. We also used a reverse 

dosimetry approach to translate in vitro cytotoxicity estimates to oral equivalent doses and 

compared those to estimates of human exposure (Wetmore et al., 2012). Although 

investigation of population variability in toxicity of hundreds of individual chemicals is 

ongoing (Abdo et al., 2015; Lock et al., 2012), to our knowledge this study is first to 

examine inter-individual variability in response to mixtures.

This screening approach showed that both pesticide mixtures that were tested exhibited 

appreciable inter-individual variation in cytotoxicity. Interestingly, the toxicodynamic 

uncertainty factor for both pesticide mixtures (3.0 and 3.05) derived from the population 

variability in our present study was similar to the median inter-individual variability for the 

179 individual chemicals previously tested. This finding is consistent with the default 

uncertainty factor for toxicodynamic difference among humans (100.5) that is used in risk 

assessments when no chemical-specific data are available (World Health Organization, 

2005). On average, there was no significant difference between the in vitro cytotoxicity 

concentrations (i.e., EC10) of the current use pesticide mixture and the chlorinated pesticide 

mixture. However, incorporation of dosimetry with the in vitro data and conversion to an 

oral equivalent dose for each mixture revealed that a significantly lower dose of a 

chlorinated pesticide mixture would lead to an internal concentration equal to the 

cytotoxicity-eliciting EC10. Conversion of the in vitro data in this manner allows a risk-

relevant ranking of the mixtures that considers chemical pharmacokinetic behavior along 

with additional exposure data to adjust the potencies. Incorporation of human dosimetry and 

predicted human exposure is necessary for greater confidence in the “presumed hazard” 

from in vitro high throughput screening alone (Gangwal et al., 2012).

It is not surprising that the cumulative human predicted exposure limit is much higher for 

the current-use pesticide mixture compared to the chlorinated pesticide mixture, which 

mostly consisted of pesticides withdrawn from the market. The current-use pesticide mixture 

included 36 currently used pesticides and mimicked real exposure levels in Eastern North 

Carolina, with atrazine pesticides being the most abundant. Atrazine is among the highest 

used (64–80 million pounds annually in the United States) agricultural pesticides (Barr et al., 

2007). Therefore, the predicted exposure limit for the current-use pesticide mixture was 

expected to be high, and in our case it was very close to the calculated cytotoxic oral 

equivalent dose.

In addition to demonstrating how an in vitro human population-based model system may be 

used to evaluate potential hazard of complex mixtures, we also took advantage of the 

availability of genetic information on the cells to evaluate genotype-phenotype associations. 

Recognizing the genetic underpinning of cytotoxicity may offer valuable insights into the 

underlying casual physiological variation and biologically-associated pathways. The 

significant locus (C17orf54) identified in this study is in a presumably non-coding genomic 
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region, consistent with 90% of the significant findings from human GWAS studies to date 

(Fraser, 2013). The long intergenic non-protein coding RNA 469 resides in the region. A 

critical role of non-coding RNAs in response to carcinogen and toxicant exposure is an 

emerging area of investigation in toxicology (Marrone et al., 2014), and a potential 

relationship between cytotoxicity of the current use pesticide mixture and the long non-

coding RNA remains to be explored.

In vitro cytotoxicity assays, while nonspecific measures of adverse effect of test chemicals, 

are widely considered to be informative of the potential in vivo health hazards (National 

Research Council, 2015). Since it was suggested that evaluation of the cytotoxic potential of 

chemicals with cell-based assays could provide an indication of their potential in vivo 

toxicity, several studies demonstrated correlation between in vivo acute toxicity and in vitro 

cytotoxicity (Ekwall et al., 1998; Kinsner-Ovaskainen et al., 2013). Thus, cytotoxicity assay-

derived data have demonstrated success in predictive toxicology, both alone and in 

combination with the information on chemical structure (Lessigiarska et al., 2006; Zhu et al., 

2008; Sedykh et al., 2011). In vitro cytotoxicity tests are also amenable to high-throughput 

screening (Xia et al., 2008) and have been recommended as an adjunct to animal tests to 

improve initial dose selection and reduce the number of animals used.

A key limitation of cytotoxicity assays is that they do not provide data on some of the most 

important toxic mechanisms, specifically ones that involve organ-specific or cell type-

specific physiology. However, the choice of the cell type is largely irrelevant as cell lines 

derived from various tissues have relatively equal value in assessing general cytotoxicity 

and specific organ toxicity cannot be accurately predicted using in vitro cytotoxicity assays 

(Lin & Will, 2012). There are a number of additional limitations to extrapolating from in 

vitro cytotoxicity pro-filing using lymphoblasts to humans, including severe limitations in 

metabolic capacity of these cells, acute nature of exposure, and no opportunity to consider 

other important variables such as age, lifestyle factors and diet. It is also yet to be 

established how chemicals may interact with one another in mixtures, both in terms of 

pharmacokinetics and in terms of toxicity; the assumptions made in our work with regards to 

reverse dosimetry and treatment of missing values may constrain the interpretation of the 

data presented in this work. There remains a pressing need to screen individual pesticides, in 

addition to their mixtures, in order to test these assumptions. These limitations 

notwithstanding, our work highlights the value of a population-based in vitro cytotoxicity 

survey combined with assessment of oral equivalents and human exposures for pesticides 

and other chemicals. These experiments also advance our understanding of the genetic 

underpinnings of susceptibility-related regulatory networks in response to toxicants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Inter-individual and population variability and reproducibility of the cytotoxicity of 

pesticide-containing mixtures in human lymphoblast cell lines. (a) A population 

concentration response was modeled using in vitro cytotoxicity of the chlorinated pesticide 

mixture (top) and the current use pesticide mixture (bottom). Logistic dose–response 

modeling was applied to each individual cell line, with individual data shown by thin gray 

lines. Bars represent a histogram of the individual EC10 values, and the dashed curve 

represents the fit of the logistic model to the pooled data. A histogram in each graph depicts 

a frequency distribution (y-axis) for the cell lines with a corresponding EC10 (x-axis is 

identical to that already displayed). (b) Intra-experimental reproducibility of EC10 values for 

within-batch replicate plates for cell lines for the chlorinated pesticide mixture (top) and the 

current use pesticide mixture (bottom). Spearman and Pearson's correlation coefficients are 

shown.
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Fig. 2. 
Distribution of EC10s across 146 cell lines for each mixture. (a) A density plot for the 

distribution and mean of EC10 of each pesticide mixture (red: chlorinated pesticide mixture, 

blue: current use pesticide mixture) across 146 cell lines. (b) Box plots (box represents first 

and third quartiles; vertical line inside the box, the median; whiskers are the 1.5 inter-

quantile range; circles are outliers with >1.5 IQR above minimum or maximum). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 3. 
Comparative analysis of the mixtures. (a) Scatter plot comparison of EC10 values of each 

cell line between pesticide mixtures. Symbols represent populations as shown in the inset. 

Pearson and Spearman correlations are also shown. (b) Scatter plot of 1st and 2nd principal 

components of the molecular descriptors of the individual chemicals in each pesticide 

mixture. (c) Frequency histogram of 15,931 pair-wise correlation values (Spearman) among 

179 chemicals screened in (Abdo et al., 2015). The green dashed line represents a median ρ 

value for all correlations, and the red dashed line represents pairwise correlation of pesticide 
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mixtures. Blue shading represents non-significant correlations after correction for false 

discoveries. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 4. 
In vitro-to-in vivo extrapolation of cytotoxicity EC10 values. Box plots (box represents first 

and third quartiles; horizontal line inside the box is the median; whiskers are the 1.5 inter-

quantile range; circles are outliers with >1.5 IQR above minimum or maximum) of the 

cumulative oral doses for each pesticide mixture (red: chlorinated pesticide mixture, blue: 

current use pesticide mixture) across 146 cell lines in four different scenarios for handling 

missing data, weighted by chemical percentage in the mixture or not (“equi-weighted”), and 

assuming the “worst case scenario” (WCS) vs median for missing values. Red and blue 

dotted horizontal lines indicate the estimated cumulative human oral exposure levels to each 

pesticide mixture. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 5. 
Genome-wide association analysis of population variability in cytotoxicity of the current use 

pesticide mixture. (a) Manhattan plot of MAGWAS −log10(p) vs. genomic position for 

association of genotype and cytotoxicity to current use pesticide mixture. The dashed blue 

line indicates suggestive association (expected once per genome scan). A LocusZoom plot 

of the most significant (p = 6.5 × 10−8) region at SNP rs1947825. (b) Average 

concentration–response profiles of cytotoxicity of current use pesticide mixture plotted 

separately for each genotype at rs1947825. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Table 1

Human populations from which lymphoblast cell lines were selected for this study.

Population # of cell lines screened % of total N males N females

CEU: Utah residents with Northern & Western European ancestry 47 32.2 24 23

YRI: Yoruban in Ibadan, Nigeria 40 27.4 19 21

TSI: Tuscan in Italy 32 21.9 16 16

GBR: British from England & Scotland 27 18.5 14 13

Total 146 100 73 73
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Table 2

Chemicals contained in the chlorinated pesticide mixture.

Constituent name MW Constituent CAS# μg in 1 ml μM %

α-Benzene hexachloride (BHC) 290.8 319-84-6 107 0.368 5.60

β-Benzene hexachloride (BHC) 290.8 319-85-7 55 0.189 2.88

γ-Benzene hexachloride (Lindane) 290.8 58-899/55963-79-6 151 0.519 7.90

δ-Benzene hexachloride (BHC) 290.8 319-86-8 41 0.141 2.15

cis-Chlordane 409.8 5103-71-9 18 0.044 0.67

trans-Chlordane 409.8 5103-74-2 15 0.037 0.56

4,4′-DDD (Dichlorodiphenyldichloro ethane) 320.1 72-54-8 293 0.915 13.94

4,4′-DDE (Dichlorodiphenyldichloro ethylene) 318.0 72-55-9 1193 3.75 57.11

4,4′-DDT (dichlorodiphenyltrichloro ethane) 354.5 50-29-3 176 0.496 7.56

Dieldrin 380.9 60-57-1 41 0.108 1.64

Cumulative value 2090 6.57 100
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Table 3

Chemicals contained in the current use pesticide mixture.

Constituent name MW Constituent CAS# μg in 1 ml μM %

Metolachlor 283.8 94449-58-8/51218-45-2 115 0.405 22.77

2,6-Diethylaniline 149.2 579-66-8 1259 8.44 19.76

Molinate 187.3 2212-67-1 139 0.742 19.45

Tebuthiuron 228.3 34014-18-1 65 0.285 14.74

Trifluralin 335.5 1582-09-8/75635-23-3 78 0.232 2.40

Chlorothalonil 265.9 1897-45-6 29 0.109 2.00

Prometon 225.3 1610-18-0 74 0.328 1.42

Butylate 217.4 2008-41-5 193 0.888 1.35

Benfluralin 335.3 1861-40-1 76 0.227 1.31

Alachlor 269.8 15972-60-8 37 0.137 1.23

Ethoprop 242.3 13194-48-4 45 0.186 1.09

Desisopropyl atrazine 173.6 1007-28-9 1,271 7.32 1.04

Metribuzin 214.3 21087-64-9 98 0.457 0.89

Diazinon 304.4 333-41-5 89 0.292 0.79

Disulfoton 274.4 298-04-4 26 0.095 0.77

Aldicarb 190.3 116-06-3 92 0.484 0.74

Methyl parathion 263.2 298-00-0 36 0.137 0.66

Ethalfluralin 333.3 55283-68-6 82 0.246 0.63

Pebulate (Tilliam) 203.4 1114-71-2 56 0.275 0.61

Cyanazine 240.7 21725-46-2/11096-88-1 31 0.129 0.55

Permethrin 391.3 52645-53-1 39 0.1 0.52

Carbofuran 221.3 1563-66-2 85 0.384 0.50

Chlorpyrifos (Dursban) 350.6 2921-88-2 71 0.202 0.48

Prometryne 241.4 7287-19-6/83653-07-0 42 0.174 0.47

Carbaryl 201.2 63-25-2 106 0.527 0.39

Desethyl atrazine 187.6 6190-65-4 1,352 7.21 0.37

Flumetralin 421.7 62924-70-3 81 0.192 0.37

Dacthal 332 65862-98-8/1861-32-1 15 0.045 0.37

Atrazine 215.7 1912-24-9 1178 5.46 0.35

Simazine 201.7 122-34-9 101 0.501 0.35

Terbufos 288.4 13071-79-9 42 0.146 0.35

Fonofos (Dyfonate) 246.3 944-22-9 32 0.13 0.32

Pendimethalin 281.3 40487-42-1 33 0.117 0.29

Fenamiphos 303.4 22224-92-6 54 0.178 0.27

Tribufos (DEF 6) 314.5 78-48-8 41 0.13 0.26

Napropamide 271.4 15299-99-7 37 0.136 0.12

Cumulative value 7200 37.0 100

Environ Int. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Abdo et al. Page 25

Table 4

Summary statistics for the range in EC10 values for each mixture.

Pesticide mixture Mean
a

STD
b Range Median Q05

c
Q95

d
VFd

e

Chlorinated pesticides 11.6 1.96 (0.180-40.6) 13.1 4.36 21.7 3.00

Current use pesticides 11.1 1.85 (0.649-39.9) 11.9 3.89 24.7 3.05

a
All values (except for VFd column) are in μM.

b
The standard deviation of the mean EC10.

c
The value corresponding to the 5th percentile of EC10 across 146 averaged values for each mixture.

d
The value corresponding the 95th percentile of EC10 across 146 averaged values for each mixture.

e
The range of inter-individual variability [10(q95 – q50)] for each mixture.
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