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Abstract
Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore,

targeted inhibition of glutamine metabolism may have anti-tumorigenic implications.

In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer

cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for

glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress,

and glucose/glutamine metabolism. Our results revealed that administration of glutamine

increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner.

Depletion of glutamine induced reactive oxygen species and expression of endoplasmic

reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS)

and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways.

Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited

GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation.

These studies suggest that targeting glutamine metabolism may be a promising

therapeutic strategy in the treatment of ovarian cancer.
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Introduction
Ovarian cancer is the eighth most common cancer in

women worldwide, with an estimated 21 980 new cases

diagnosed and 14 270 deaths in the USA in 2014 (Siegel

et al. 2014). Ovarian cancer is the most lethal of all the

gynecologic malignancies in part due to the fact that

patients are often diagnosed with advanced stage disease

because of the absence of specific symptoms and the lack

of adequate screening tests (Mirandola et al. 2011). There

are no recognized preventative measures and no effective

screening tools for ovarian cancer (Rooth 2013).
The majority of primary ovarian malignancies are derived

from epithelial cells, while w5% of ovarian carcinomas

arise from other ovarian cell types (Sung et al. 2014). The

standard of care for patients with advanced epithelial

ovarian carcinoma involves an attempt at optimal

cytoreductive surgery followed by chemotherapy with a

platinum based regimen in combination with paclitaxel.

However, although most ovarian tumors are very sensitive

to this chemotherapy regimen, the large majority of

patients develop a recurrence as well as drug resistance
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(Kajiyama et al. 2012, Rauh-Hain et al. 2013). Therefore,

new cytotoxic treatment strategies are urgently needed to

improve outcomes in patients with ovarian cancer.

Cancer cells have unique metabolism characteristics

such as elevated energetic and biosynthetic demands of

rapid cell growth and proliferation. The most well-known

characteristic of cancer cell metabolism is the Warburg

effect, in which cancer cells consume large amounts of

glucose through the glycolysis pathway to produce ATP and

lactate in the presence of oxygen (Bayley & Devilee 2012,

Kee & Cheong 2014). Although cancer cells exhibit high

rates of glycolysis, their mitochondrial oxidative

phosphorylation (OXPHOS) remains intact and becomes

progressively more dependent on glutamine metabolism

(Hammoudi et al. 2011). Glucose and glutamine are the two

major nutrient inputs for cancer cells as they provide

bioenergetics and intermediates for macromolecular

synthesis in proliferating cancer cells. The rate of conversion

of glutamine to lactate is higher in cancer cells than in

normal cells, which represents an alternative metabolic

pathway to glucose consumption in a glucose-limiting

environment (Helmlinger et al. 2002). The activity of

glutaminase (GLS), the first enzyme in glutaminolysis, and

glutamine level in the medium correlate with cancer cell

proliferation. Serum glutamate levels are associated with

tumor aggressiveness (Koochekpour et al. 2012). The

function of glutamine to promote cell growth is likely

dependent on their genetic and epigenetic background

(Simpson et al. 2012, Phang et al. 2013). The restriction of

glutamine induces apoptosis in melanoma and prostate

cancer cells and the inhibition of glutaminolysis by acivicin

has been shown to be very effective in the treatment of

animal models of cancer (Fu et al. 2004, 2010, Roy & Maity

2005). Inaddition, a recent studyshowedthat the inhibition

of glutamine uptake is a promising new therapeutic strategy

for treating acute myeloid leukemia (Willems et al. 2013).

However, the impact of glutamine deprivation on ovarian

cancer cell proliferation is less well characterized.

Given that glutamine metabolism is up-regulated in

cancer cells, this study aimed to investigate the effects of

glutamine on cell proliferation in ovarian cancer cells, and

determine its underlying molecular mechanisms. We

observed that depletion of glutamine inhibited cell

growth, induced significant apoptosis, caused cell cycle

G1 arrest, and induced reactive oxygen species (ROS)

production in ovarian cancer cells. Moreover, glutamine

increased cellular glycolytic activity and stimulated cell

proliferation by modulating the mTOR/S6 pathway. These

results indicate that targeting glutamine metabolism is a

promising therapeutic strategy for ovarian cancer.
http://erc.endocrinology-journals.org
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Materials and methods

Cell culture and reagents

The human ovarian cancer cell lines HEY, SKOV3, and

IGROV-1 were used. The HEY cells were kindly provided by

Dr McAsey of Department of Obstetrics and Gynecology

at Southern Illinois University School of Medicine. The

SKOV3 and IGROV-1 cell lines were provided by Dr Jazaeri

from the Department of Obstetrics and Gynecology,

University of Virginia. All three cell lines have been

authenticated to be ovarian cancer cell lines (Yoshioka

et al. 2012, Jazaeri et al. 2013, Xie et al. 2013, Ayyagari &

Brard 2014). The cell lines used in this study were passaged

for fewer than 6 months after resuscitation and the passage

numbers were 5–20. The HEY and IGROV-1 cell lines were

maintained in RPMI-1640 medium supplemented with 5

and 10% fetal bovine serum (FBS) respectively. The SKOV3

cell line was maintained in DMED/F12 medium supple-

mented with 10% FBS. For glutamine studies, the cells were

cultured in RPMI-1640 medium or DMED/F12 medium

without glutamine (cat #21870-076 and 12634-010, Gibco)

containing 5% dialyzed FBS and supplied with various

concentrations of glutamine. All media were supplemented

with 100 U/ml of penicillin and 100 mg/ml of streptomycin.

The cells were cultured in a humidified 5% CO2 at 37 8C.

L-glutamine was purchased from Corning Cellgro

(Manassas, VA, USA). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide (MTT), RNase A, bromo-

pyrvic acid (3-BP), 20,70-dichlorofluorescin diacetate (DCFH-

DA), and rapamycin were purchased from Sigma–Aldrich.

The L-Lactate Assay Kit was bought from Eton Bioscience

(SanDiego,CA,USA).2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)

amino]-2-deoxy-D-glucose (2-NBDG) and ATP assay kit

were bought from AAT Bioquest (Sunnyvale, CA, USA). The

glutamate dehydrogenase (GDH) assay kit was bought

from BioVision (Milpitas, CA, USA). The RPS6 siRNA was pur-

chased from Ambion Life Technologies. The HiperFect Trans-

fection Reagent was bought from Qiagen. Annexin-V FITC Kit

was purchased from Biolegend (San Diego, CA, USA). The

anti-GLS antibody was purchased from Abcam (Cambridge,

MA, USA), and all the other antibodies were obtained from

Cell Signaling (Danvers, MA, USA). ECL detection reagents

were purchased from GE Health care (Piscataway, NJ, USA).

All other chemicals were purchased from Sigma.
Cell proliferation assay

The ovarian cancer cells, HEY, SKOV3, and IGROV-1, were

seeded at 3000 cells/well in 96-well plates in their culture
Published by Bioscientifica Ltd.
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media. After 24 h, cells were cultured in media with

different concentrations of glutamine for 48 h. Cell

proliferation was measured by adding 5 ml of MTT solution

(5 mg/ml) per well for an additional incubation of 1 h. The

MTT reaction was terminated through the replacement of

the media by 100 ml of DMSO. Viable cell densities were

determined by measuring absorbance of metabolic

conversion of the colorimetric dye at 570 nm. Each

experiment was performed in triplicate and repeated

three times to assess for consistency of results.
Cell cycle analysis

Theeffectofglutamineoncell cycleprogressionwasassessed

byusing Cellometer (Wang etal. 2014; Nexcelom,Lawrence,

MA, USA). Cells were plated at a density of 1.5!105

cells/well in six-well plates overnight, and then treated

with various concentrations of glutamine for 48 h. Cells

were collected by 0.05% Trypsin (Gibco), washed with PBS

solution, fixed in a 90% methanol solution and then stored

at K20 8C until cell cycle analysiswasperformed.Onthe day

of analysis, the cells were washed with PBS and centrifuged,

resuspended in 50 ml RNase A solution (250 mg/ml) with

10 mM EDTA, followed by incubation for 30 min at 37 8C.

After incubation, 50 ml of propidium iodide (PI) staining

solution (2 mg/ml PI, 0.1 mg/ml azide, and 0.05% Triton

X-100) was added to each tube and incubated for 10 min in

the dark. The cell cycle was detected by Cellometer. The cell

cycle progression was analyzed by the FCS4 Express Software

(Molecular Devices, Sunnyvale, CA, USA).
Annexin-V assay

The effect of glutamine on cell apoptosis was detected by

using Annexin-V FITC Kit. Briefly, 1.7!105 cells/well were

seeded into six-well plates overnight, and then the cells

were cultured in the media with various concentrations of

glutamine for 24 h. The cells were collected by 0.25%

Trypsin without EDTA. After PBS washing, the cells were

resuspended in 100 ml of Annexin-V and PI dual-stain

solution (0.1 mg of Annexin-V FITC and 1 mg of PI) for

15 min in the dark and detected by Cellometer. The results

were analyzed by the FCS4 Express Software. Each

experiment was repeated at least twice for consistency of

response.
Glucose uptake assay

Glucose uptake assay was performed using 2-NBDG. In

brief, after cells were seeded in 96-well plates at 3000
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-15-0192
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cells/well in their culture media overnight, the cells were

treated in various concentrations of glutamine (0, 0.5, 2.0,

and 5.0 mM) for 24 h and then the cells were cultured with

2-NBDG (100 mg/ml) in glucose-free media with matching

concentrations of glutamine for 40 min. The 2-NBDG

uptake reaction was stopped by removing the media and

washing the cells twice with 200 ml HBSS. Fluorescence

(excitation/emissionZ485/535) was measured using a

plate reader (Tecan, Morrisville, NC, USA). Data were

normalized based on the viable cell counts measured by

the MTT assays. All the experiments were performed in

triplicate and repeated twice.
L-lactate assay

L-lactate in the medium was detected by using the

L-Lactate Assay Kit. Briefly, after we treated cells with

different concentrations of glutamine for 24 h, 10 ml of the

culture medium was transferred into a new 96-well plate

and 40 ml of distilled water was added to each well.

Another 50 ml of lactate assay solution was also then

added to each well and the plates were incubated for

30 min at 37 8C without CO2. The lactate level was

measured at wavelength of 490 nm using a plate reader

from Tecan. The experiments were performed in triplicate

and repeated twice to assure consistency.
ATP assay

Cellular ATP production was assessed by using Lumino-

metric ATP Assay Kit. In short, after we treated cells with

glutamine for 24 h, 90 ml/well of the ATP reaction mix was

added into the sample and mixed gently, and then

incubated for 10–20 min in the dark at room temperature.

The luminescence intensity was monitored with a plate

reader from Tecan. The ATP levels were normalized based

on the viable cell counts measured by the MTT assays.

Each experiment was performed in triplicate and repeated

twice to assess for consistency of results.
ROS assay

Intracellular ROS production was detected using

DCFH-DA (Wang et al. 2014). DCFH-DA can diffuse into

cells and be deacetylated by cellular esterases to non-

fluorescent DCFH, which cannot get through membranes

freely and be rapidly oxidized to highly fluorescent DCFH

by ROS. After we finished the treatment of the cells, 10 ml

of 200 mM of DCFH-DA was added into the media and

mixed gently. The fluorescence intensity was measured at
Published by Bioscientifica Ltd.
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an excitation wavelength of 485 nm and an emission

wavelength of 530 nm using a plate reader from Tecan.

Data were normalized based on the viable cell counts

measured by the MTT assays. Each experiment was

repeated at least twice for consistency of response.
GDH activity assay

Intracellular GDH activity was measured by using the

GDH assay kit. Cells were seeded into six-well plates at

1.5!105 cells/well overnight, and then the cells were

cultured in media with various concentrations of gluta-

mine for 24 h. Cell lysates were prepared in cold GDH

assay buffer. After 10–20 ml of cell lysates were transferred

into a new 96-well plate, then the GDH assay buffer was

added until the total volume was 50 ml. Composed of 82 ml

of GDH assay buffer, 8 ml of GDH developer and 10 ml of

glutameate, and 100 ml of reaction mix was added to each

well. The concentration of GDH was measured at a

wavelength of 450 nm in a plate reader after incubating

for 3 min at 37 8C. The results were normalized on the

basis of the total protein concentration of each sample.

The experiments were performed in triplicate and repeated

twice to assess for consistency of results.
siRNA transfection

Transfection of siRNA was performed using Ambion RPS6

siRNA and Qiagen HiperFect Transfection Reagent. In

brief, HEY cells were plated at a density of 1!105 cells/well

in 12-well plates or 5!103 cells/well in 96-well plates. The

transfection complexes containing 137.5 ng of RPS6

siRNA and 6 ml HiperFect Transfection Reagent for

12-well plate cells or 25 ng of RPS6 siRNA and 1 ml of

HiperFect Transfection Reagent for 96-well plate cells were

added into the media. A scramble siRNA was used as the

negative control. The impact of siRNA transfection on cell

proliferation was evaluated by MTT assay. The experi-

ments were repeated twice.
Western blot analysis

Total protein was extracted from ovarian cancer cells using

RIPA buffer and the protein was quantified with the BCA

Assay Kit (Thermo Scientific, Rockford, IL, USA). Protein

samples with equal loading (30 mg/well) were separated by

10–12% SDS–PAGE and transferred onto PVDF membranes.

The membranes were blocked with 5% nonfat milk and then

incubated with a 1:1000 dilution of primary antibodies

overnight at 4 8C. The membranes were washed and
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-15-0192
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incubated with a secondary peroxidase-conjugeted antibody

for1 hat roomtemperature.Themembranesweredeveloped

using an enhanced ECL at Alpha Innotech Imaging System

(Protein Simple, Santa Clara, CA, USA). After developing, the

membranes were re-probed using antibody against a-tubulin

to confirm equal loading. Each experiment was repeated

at least twice for consistency of results.
Statistical analysis

Data is expressed as meanGS.E.M. Data was compared using

two-tailed Student’s t-test, and P!0.05 was considered

significant.
Results

Glutamine promotes cell growth in ovarian cancer cells

Glucose and glutamine are essential energy and nutrient

sources for the growth and survival of cancer cells. To verify

the effect of glutamine on the growth of ovarian cancer

cells, three ovarian cancer cell lines, HEY, SKOV3, and

IGROV-1, were treated in glutamine-free media with

various concentrations of glutamine (0, 0.5, 2.0, 5.0, and

10.0 mM) for 48 h. Cell proliferation was assessed by MTT

assay. The results showed that treatment of cells with

glutamine in the media for 48 h increased cell proliferation

by 20–50% in a dose-dependent manner. To further

validate the energy source of cell growth in ovarian cancer

cells, the three cell lines were treated with the same

concentration of glutamine in the absence of glucose in

the culture media. The results showed that increasing

concentrations of glutamine slightly increased cell prolifer-

ation in 48 h in all three cell lines (Fig. 1A, B and C). Thus,

these results confirm that glucose is a critical nutrient for

ovarian cancer cells and that glutamine promotes optimal

cell proliferation in glucose supplying conditions.

GLS catalyzes the hydrolysis of L-glutamine to

L-glutamate, which is involved in oxidation in the

mitochondria. We next investigated the impact of

glutamine on GLS protein expression using different levels

of glutamine in our ovarian cancer cells. The antibody

recognizes two transcript variants of GLS1: KGA and GAC

(Gross et al. 2014). Surprisingly, we found that treatment

of cells with glutamine for 24 h reduced the expression of

GLS in a dose-dependent manner (Fig. 1D). To further

verify the effects of glutamine on GLS expression, IGROV-

1 cells, a glutamine dependent cell line, were cultured

under glutamine starvation for 24, 36, 48, and 72 h, and

then treated cells with 2.0 mM glutamine in regular
Published by Bioscientifica Ltd.
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Figure 1

Glutamine metabolism promotes optimal cell proliferation. Ovarian cancer

cells lines HEY (A), SKOV3 (B), and IGROV-1 (C) were treated in glutamine-

free media supplemented with various concentrations of glutamine (0, 0.5,

2.0, 5.0, and 10.0 mM) for 48 h. Cell proliferation was assessed by MTTassay.

The changes in glutaminase (GLS) expression upon the effects of glutamine

were assessed using western blot. HEY, SKOV3, and IGROV-1 cells were

treated with glutamine for 24 h. Treatment of glutamine reduced the

expression of GLS in a dose-dependent manner (D). GLS changes in IGROV-1

cells after treatment with glutamine and glutamine starvation: glutamine

starvation consistently increased the expression of GLS with the extension

of starvation, and glutamine reduced the expression of GLS with the

presence of glutamine for 48 h after starvation in IGROV-1 cells (E).

GDH activity was assayed using a GDH assay kit in IGROV-1 cells. Glutamine

greatly increased the activity of GDH (F). Data is shown as meanGS.E.M. of

two trials (*P!0.05).
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growth medium for 24 and 48 h. The results of western

blot showed that glutamine starvation consistently

increased the expression of GLS with the extension of

starvation, and treatment of glutamine for 24 h increased

the expression of GLS protein whereas glutamine reduced

the expression of GLS after 48 h treatment at either 24 or

48 h starvation (Fig. 1E). Thus, these results indicate that

the role of GLS in glutamine conversion is a rate-limiting

process, and the activity of GLS controlled the flux of

glutaminolysis (Qie et al. 2014). To help validate these

results, we further assessed the activity of GDH in the

presence or absence of glutamine. GDH converts

glutamate to a-ketoglutarate in glutamine catabolism.

We observed that there is a strong correlation between

increased GDH activity and presence of glutamine after

24 h of treatment (Fig. 1F). These results suggest that

glutamine promotes glutaminolysis, which supports cell

growth in ovarian cancer cells.
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-15-0192
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Glutamine regulates cell cycle and apoptosis in ovarian

cancer cells

To elucidate the mechanisms of glutamine on cell growth,

the effects of glutamine on cell cycle progression were

analyzed. The three ovarian cancer cell lines were cultured

with various concentrations of glutamine (0, 0.5, 2.0, and

5.0 mM) for 48 h, and the cell cycle changes were analyzed

using Cellometer. The results showed that depletion of

glutamine induced cell cycle G1 arrest in the three cell

lines. The S phase gradually increased with increasing

concentrations of glutamine in the three cell lines

(Fig. 2A, B and C). These results indicated that glutamine

promoted cell growth by inducing cell cycle changes.

We further investigated the effects of glutamine on cell

cycle checkpoints. Cyclin D1 activates CDK4 and promotes

the passage of the cell into S phase from G1, and p21 is a key

regulator for the cycle checkpoint of G1/S (Lenz et al. 2012).
Published by Bioscientifica Ltd.
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Figure 2

Glutamine affects cell cycle progression. HEY (A), SKOV3 (B), and IGROV-1

(C) cells were treated in glutamine-free media supplemented with various

concentrations of glutamine (0, 0.5, 2.0, and 5.0 mM) for 48 h. Cell cycle

analysis was performed using Cellometer. Depletion of glutamine induced

cell cycle G1 phase arrest in ovarian cancer cells. The effects of glutamine on

cyclin D1, CDK4, and p21 were examined by western blotting in HEY (D),

SKOV3 (E), and IGROV-1 (F) cells after exposure to glutamine for 24 h at the

indicated concentrations.

E
n

d
o

cr
in

e
-R

e
la

te
d

C
a
n

ce
r

Research L Yuan, X Sheng et al. Glutamine in ovarian cancer 22 :4 582
The results of western blot showed that the expressions of

both cyclin D1 and CDK4 increased, and p21 decreased

with increasing glutamine concentrations for 24 h (Fig. 2D,

E and F). These results suggest that glutamine promotes the

passage of cells into S phase from G1.

Finally, we evaluated the effects of glutamine on cell

apoptosis using Annexin-V assay. Annexin-V binds to

phosphaticylserine externalized on the surface of the cell

membrane, which is a distinct phenomenon of early

apoptosis (Schointuch et al. 2014). The percentage of

apoptotic cells increased distinctly in glutamine-free media

in all three cell lines after 24 h of treatment (Fig. 3A,B and C),

suggesting that depletion of glutamine in regular media

could induce significant apoptosis in ovarian cancer cells.
Glutamine deprivation induces cell stress

Increased ROS is an index of intracellular oxidative stress.

To investigate whether different concentrations of gluta-

mine induced cell stress, we determined the effects of

glutamine on ROS production using DCFH-DA assay.
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The depletion of glutamine greatly increased ROS pro-

duction by 1.5- to 3.6-fold in the three cell lines after 24 h.

The addition of glutamine in the media markedly reduced

ROS production (Fig. 4A). We then analyzed the changes

in proteins related to cell stress, including protein kinase-

like endoplasmic reticulum kinase (PERK), poly (ADP-

ribose) polymerase (PARP), Calnexin, and Bip using

western blotting after the cells were treated with different

concentrations of glutamine for 24 h. The data showed

that depletion of glutamine enhanced the expression of

PERK, PARP, Bip, and Calnexin, but the expression of these

proteins significantly decreased in the presence of gluta-

mine (Fig. 4B, C and D). These results indicate that

glutamine reduces intracellular oxidative stress and ER

stress induced by depletion of glutamine.
Glutamine complements ATP production on the basis

of glycolysis

To investigate the effects of glutamine metabolism on

energy homeostasis in ovarian cancer cells, the cells were
Published by Bioscientifica Ltd.
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Figure 3

Depletion of glutamine induces cell apoptosis. HEY (A), SKOV3 (B), and

IGROV-1 (C) cells were cultured with different concentrations of glutamine

for 24 h. The apoptosis were detected using an Annexin-V FITC Kit.

Depletion of glutamine induced significant cell apoptosis in the three

cell lines. Data is shown as meanGS.E.M. of triplicates (*P!0.05).
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cultured with various concentrations of glutamine for

24 h, and cellular glucose uptake was detected with

2-NBDG fluorescence assay. The results indicated that

glutamine increased glucose uptake in our ovarian cancer

cell lines (Fig. 5A). We then monitored the effect of
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Figure 4

Depletion of glutamine induces cell stress. The three cell lines were treated

with glutamine for 24 h. The production of intracellular reactive oxygen

species (ROS) was detected using DCFH-DA. Depletion of glutamine greatly
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glutamine on energy flux. The levels of cellular ATP were

analyzed using luminometric ATP assay after cells were

treated with various concentrations of glutamine for 24 h.

Our data showed that glutamine increased cellular ATP

production (Fig. 5B). Given that lactate is an important
C D
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increased ROS production (A). The expression of stress proteins in cells was

detected using western blotting. Glutamine reduced the expression of

stress proteins in HEY (B), SKOV3 (C), and IGROV-1 (D). *P!0.05.
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Figure 5

Glutamine complements ATP production. The cells were cultured in media

with various concentrations of glutamine for 24 h. The levels of cellular

glucose uptake (A), cellular ATP production (B), and lactate in the media (C)

were detected. The cells were treated with compound 968 or 3-BP for 24 h

in 2.0 mM glutamine or glutamine-free media respectively. The levels of

ATP (D) and lactate (E) were detected by ELISA assay. The expression of

glycolytic proteins was detected by western blotting in HEY (F), SKOV3 (G),

and IGROV-1 (H) after treatment with glutamine for 24 h. *P!0.05.
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product of glycolysis and the main source of energy for

cancer cells, the effects of glutamine on lactate production

were assessed under the same culture condition as ATP

assay. The results indicated that the lactate in the culture

media slightly increased upon exposure to glutamine

(Fig. 5C). Compound 968, a GLS inhibitor, and 3-BP, a

glycolysis inhibitor, were used to treat cells for 24 h, and

cellular ATP and lactate levels in the media were assayed.

ATP production markedly decreased by the inhibition of

either glutaminolysis or glycolysis, and the inhibition of

glycolysis reduced ATP production more profoundly in

glutamine-free media than that in 2.0 mM glutamine

media in all three cell lines (Fig. 5D). The inhibition of

glutaminolysis or glycolysis slightly reduced lactate

production in the presence or absence of glutamine

(Fig. 5E). These results suggest that glucose and glutamine
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-15-0192
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were major energy sources, and glutamine supported

cellular ATP production in the presence of glycolysis in

ovarian cancer cells.

We also analyzed the expression of key glycolytic

proteins in the presence and absence of glutamine. We

treated cells with different concentrations of glutamine for

24 h. The expression levels of hexokinase 1 (HK1), platelet-

type phosphofructokinase (PFKP), pyruvate kinase M 1/2

(PKM1/2), and pyruvate dehydrogenase (PDH) were

analyzed using Western blotting. The results showed

that HK1 and PFKP either increased or demonstrated

minimal changes in HEY and SKOV3 cells, whereas HK1

increased and PFKP decreased in IGROV-1 cells. PKM1/2

and PDH exhibited different changes after glutamine

treatment for 24 h (Fig. 5F, G and H). These results suggest

that glutamine induces alterations in glycolytic flux, and
Published by Bioscientifica Ltd.
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the changes in the glycolytic proteins are mainly

dependent on different cell types.
Glutamine activates the MAPK and mTOR/S6 pathways

Activation of the MAPK and phosphatidylinositol 3

kinase/Akt/mTOR pathways plays a crucial role in the

control of cell growth and survival in ovarian cancer, and

inhibition of these pathways leads to the inhibition of

ovarian cancer growth. To investigate the mechanisms

underlying the regulation of cell growth by glutamine, we

characterized the effect of glutamine on the MAPK and

mTOR/S6 signaling pathways. Glutamine increased phos-

phorylation of S6 (Ser235/236) and p42/44 (ERK) in a dose-

dependent manner in ovarian cancer cells within 24 h of

exposure (Fig. 6A, B, C, D and E). These results indicate

that the MAPK/ERK and mTOR/S6 pathways were

involved in glutamine metabolism.
Glutamine promotes cell growth via the mTOR/S6

pathway

Given that glutamine strongly increased the expression of

phosphorylation of S6, we investigated the relationship

between the mTOR/S6 pathway and glutamine metab-

olism. First, we treated the three ovarian cancer cell lines

with different concentrations of rapamycin (0, 0.1, 1.0,
Gln

A

D E

B

0

60

40

20

R
el

at
iv

e 
pr

ot
ei

n 
de

ns
ity

0

Gln 0
Gln 0.5
Gln 2.0
Gln 5.0

HEY SKOV3

p-S6

IGROV-1

0.5 2.0 5.0 (mM)

p-p42/44

Pan-42/44

p-S6

Pan-S6

α-tubulin

Gln 0 0.5 2.0

Figure 6
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http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-15-0192

q 2015 The authors
Printed in Great Britain
and 10 nmol/l), an mTOR inhibitor, in regular media for

24 h. The results of Western blotting showed that

rapamycin strongly inhibited the expression of phos-

phorylation-S6 and reduced GLS expression in a dose-

dependent manner (Fig. 7A, B and C). GDH activity assay

also showed that rapamycin inhibited GDH activity after

24 h of treatment (Fig. 7D). We next treated cells with

rapamycin in the presence or absence of glutamine

conditions for 60 h to access cell proliferation. The results

showed that rapamycin significantly inhibited cell

proliferation and blocked the phosphorylation of S6 and

expression of GLS induced by glutamine (Fig. 7E–H).

To further confirm the role of the mTOR/S6 pathway

in glutaminolysis, we transfected S6 siRNA into HEY cells

to knockdown S6 protein expression. After 24 h of

transfection, western blot showed that S6 siRNA effec-

tively inhibited the phosphorylation of S6 (Fig. 8A). We

then treated cells with glutamine for 24 h after siRNA

transfection. The results of western blot showed that

siRNA transfection inhibited the phosphorylation of S6

induced by glutamine (Fig. 8B). We further analyzed the

activity of GDH, and found that siRNA transfection

markedly reduced GDH activity in HEY cells treated with

glutamine (Fig. 8C). Finally, we transfected S6 siRNA into

HEY cells in 96-well plates, and the cells were treated with

glutamine for 48 h. MTT assay showed that S6 siRNA

significantly reduced cell proliferation induced by
C
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Figure 7

Rapamycin inhibits glutaminolysis in ovarian cancer cells. HEY (A), SKOV3

(B), and IGROV-1 (C) cells were treated with various concentrations of

rapamycin as indicated in their regular media for 24 h. Treatment with

rapamycin reduced the expression of GLS and phosphorylation of p-S6.

Rapamycin inhibited GDH activity in HEY cells (D) and blocked the cell

proliferation induced by glutamine in the ovarian cancer cells after

60 h treatment (E). Western blotting showed rapamycin inhibited the

expression of phosphorylation of p-S6 and GLS induced by glutamine in

HEY (F), SKOV3 (G), and IGROV-1 (H) cells after 24 h treatment. *P!0.05.

E
n

d
o

cr
in

e
-R

e
la

te
d

C
a
n

ce
r

Research L Yuan, X Sheng et al. Glutamine in ovarian cancer 22 :4 586
glutamine (Fig. 8D). These data suggest that glutamine

metabolism is dependent on the mTOR/S6 pathway, and

S6 protein is a key component involved in cell prolifer-

ation induced by glutamine in our ovarian cancer cells.
Discussion

Even though glutamine is the most common amino acid

in tissues and plasma and represents a major source of

carbon and energy in cancer cells, no previous reports

focus on glutamine metabolism in ovarian cancer cells

from a therapeutic perspective. In this study, we investi-

gated the potential mechanism of glutamine in modulat-

ing cell growth in human ovarian cancer cells. Our results

showed that compared with glutamine deprivation,
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-15-0192
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administration of glutamine improved cell proliferation

through the mTOR/S6 pathway, inhibited apoptosis and

cell stress subjected to depletion of glutamine, and altered

glycolytic activity, which led to increased ATP and lactate

production. These results are consistent with the view

that targeting glutamine metabolism with molecular

intervention may be used as an effective strategy for

ovarian cancer therapy.

Understanding the effects of Glutamine deprivation

on cell growth is necessary for full appreciation of the

importance of glutamine metabolism to maintain cancer

cell survival. Given that glutamine deprivation has been

shown to decrease cell proliferation, DNA and protein

synthesis in hepatocellular, prostate, breast and cervical

cancer cells in a cell type-specific manner (Fu et al. 2008,
Published by Bioscientifica Ltd.
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Figure 8

Knockdown S6 by siRNA transfection reduces the expression of GLS and

activity of GDH. HEY cells were transfected with RPS6 siRNA for 24 h.

Western blotting showed the expression of phosphorylation of S6 was

inhibited after siRNA transfection (A). HEY cells were treated with 2.0 mM

glutamine for 24 h after siRNA transfection. Both of S6 siRNA and

rapamycin reduced the expression levels of GLS and phosphorylation of S6

(B). S6 siRNA transfection decreased GDH activity induced by glutamine (C).

HEY cells were treated with 2.0 mM glutamine for 48 h after siRNA

transfection. Cell proliferation was determined by MTT assay (D). *P!0.05.
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Dang 2010, Ko et al. 2011), we chose to evaluate the

possible role of glutamine deprivation on triggering of the

cell cycle arrest and apoptosis. The impact of glutamine

deprivation on cancer cell cycle progression and apoptosis

is less well characterized. Recent in vitro studies have

provided evidence that there are differential responses of

cancer cells to glutamine deprivation under different

genetic and epigenetic background (Collins et al. 1998,

Simpson et al. 2012, Hensley et al. 2013, Phang et al. 2013).

Cancer cells and transformed cells with c-Myc over-

expression undergo apoptosis in response to glutamine

limitation by intrinsic and/or extrinsic pathways depend-

ing on the cell type (Yuneva et al. 2007, Qing et al. 2012).

The depletion of glutamine induced G1 phase arrest in

breast and prostate cancer cells, while K-Ras-driven

cancer cells and transformed cells arrested in either S- or

G2/M-phase alone, with the changes triggered by gluta-

mine deprivation (Thornthwaite & Allen 1980, Fu et al.

2003, Saqcena et al. 2013, 2015). In this study, we
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examined changes in the cell cycle and apoptosis in the

three cell lines treated with different concentrations of

glutamine for 24 h. Our results demonstrated that

depletion of glutamine inhibited cell proliferation in the

ovarian cancer cells via increased Annexin-V expression

(Fig. 3A, B and C), and induced cell cycle G1 arrest (Fig. 2A,

B and C). As a result, the expressions of cyclin D and CDK4

were down-regulated, whereas p21 was strongly enhanced

(Fig. 2D, E and F), thus establishing the conditions that

brought cells to a G1 cell cycle arrest. These results indicate

that the anti-proliferative effects exerted by glutamine

deprivation can be attributed to the induction of cell cycle

arrest and apoptosis.

The active cells are constantly exposed to the natural

byproducts of normal metabolism of oxygen, notably

ROS, which activate signaling events that facilitate both

normal and cancer cell proliferation (Weinberg et al.

2010). The elevated ROS productions may cause cell

oxidative stress and result in significant damage to cell
Published by Bioscientifica Ltd.
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structures and functions. Glutamine is involved in

antioxidant defense function in cells by increasing

glutathione (GSH) levels, decreasing ROS levels and

providing a source of NADPH, which in turn protects

cells from oxidative stress (Shanware et al. 2011).

Depletion of Glutamine has been previously found to

increase the generation of ROS and reduce GSH levels in

prostate cancer cells (Fu et al. 2006, Liu et al. 2011).

Administration of Glutamine attenuated oxidative stress

and ER stress in rats with 2,4,6-trinitrobenzene sulfonic

acid induced colitis (Crespo et al. 2012). After treating our

ovarian cancer cells with different concentrations of

glutamine, we first found that glutamine resulted in

decreased ROS levels induced by depletion of glutamine

and was accompanied by decreased expression of ER stress

markers including Calnexin, Bip, PERK, and PARP after

24 h of treatment (Fig. 4A, B, C and D). This suggests that

glutamine has a function in protecting against the cell

stress induced by glutamine restriction or other stress

inducers. It has been reported that knockdown GLS2 (GLS)

by siRNA increased ROS production and oxidative DNA

damage in colon cancer cells and elevated GLS2

expression was necessary for cells to maintain intracellular

levels of glutamate, a-ketoglutarate, GSH, and ROS (Hu

et al. 2010, Suzuki et al. 2010). The complexity of both

oxidative stress and ER stress and the mechanisms by

which depletion of glutamine induced both stresses

provide opportunities for further investigation.

Oxidation of glutamine’s carbon backbone in the

mitochondria is a major metabolic function of glutamine

and a primary source of energy for proliferating cells in

some cancer cells (DeBerardinis & Cheng 2010). Glycolysis

and mitochondrial OXPHOS are two tightly coupled

processes. The point of balance between glycolysis and

OXPHOS fluctuates depending on the changes in their

microenvironment and the genetic make-up of a cancer

cell. Cancer cells maintain a significant level of OXPHOS

capacity to rapidly switch from glycolysis to OXPHOS

during carcinogenesis and cell energy stress (Antico

Arciuch et al. 2013, Billiard et al. 2013). Glutamine

deprivation increased glucose consumption, elevated

PDH activity and decreased cellular ATP production in

prostate cancer cells. Similar results have been obtained in

pancreatic cancer cells and human embryonic kidney cells

(HA1ER) with glutamine stimulating glucose uptake

(Kaadige et al. 2009). Glutamine deprivation likely reduces

the availability of glutamate and a-ketoglutarate in the

TCA cycle, leading to a compensatory increase in the

activity of aerobic glycolysis. In this study, we investigated

the effect of glutamine on glycolysis in ovarian cancer
http://erc.endocrinology-journals.org
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cells. While decreasing both glucose uptake and cellular

ATP, we discovered that depletion of glutamine increased

GLS protein expression in a time dependent manner and

the expressions of glycolytic proteins induced by gluta-

mine was diverse after 24 h of treatment of glutamine in

three ovarian cancer cell lines. These divergent effects may

be a consequence of the different genetic backgrounds in

response to different glutamine concentrations for 24 h in

our cell lines. This raises the possibility that the complex

metabolic coordination between glucose and glutamine

metabolism observed in ovarian cancer cells is the result of

genetic mutations, presumably specific to cell type

(DeBerardinis & Cheng 2010).

Constitutively activated proliferative signaling

pathways via genetic mutations have been recognized as

a major driver for carcinogenesis in ovarian cancer

(hAinmhire et al. 2014). The AKT/mTOR and MAPK

pathways seem to be major pathways involved in the

regulation of cell proliferation, invasion and bioenergetics

by glutamine in some cancers including ovarian cancer

(Yang et al. 2014). Glutamine stimulates the proliferation

of pTr cells and regulates intestinal permeability and

protein synthesis in intestinal epithelial cell through

mTOR /S6 signal transduction pathway (Boukhettala

et al. 2012, Kim et al. 2013). Additional evidence shows

that glutamine flux regulates mTOR activation through

facilitating the uptake of leucine (Nicklin et al. 2009).

Studies on the regulation of cell proliferation by glutamine

in the MAPK pathway are controversial (Nicklin et al.

2009). Previous studies demonstrated inhibition of the

MEK/ERK pathway interfered with glucose metabolism but

not glutamine metabolism (Traves et al. 2012). However,

glutamine promoted growth, migration, and differen-

tiation in HDPCs cells through activated MAPK pathway

(Kim et al. 2014). The connection between mTOR/S6 and

MAPK signal transduction pathways related to glutamine

metabolism is unknown. In order to determine the effects

of glutamine on the mTOR/S6 and MAPK pathways, we

detected changes in the phosphorylation of ribosomal

protein S6, targets of AKT/mTOR, and phosphorylation of

p42/44, a key protein in MAPK pathway. Increased

phosphorylated S6 and phosphorylated p42/44 protein

expressions were observed in the three cell lines after

treatment with glutamine for 24 h (Fig. 6A, B, C, D and E),

indicating the positive effects of mTOR/S6 and MAPK

signaling pathways on cell proliferation in response to

glutamine in ovarian cancer cells. We further demon-

strated that inhibition of mTOR by rapamycin decreased

the expression of GLS protein and activity of GDH and

blocked cell proliferation induced by glutamine in the
Published by Bioscientifica Ltd.
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three cell lines (Fig. 7A, B, C, D, E, F, G and H). Knockdown

of S6 by siRNA showed that S6 is involved in the regulatory

mechanism of glutamine metabolism for cell growth

through GLS and GDH activities (Fig. 8B, C and D). Our

results are consistent with previously published data,

which confirmed that the mTOR pathway regulated

glutamine metabolism by promoting the activity of GDH

that required transcriptional repression of SIRT4 (Csibi

et al. 2013).

In conclusion, the present study provides the first

detailed comprehensive analysis of glutamine on cell

proliferation, glycolysis, cell cycle and apoptosis, cell

stress, energy flux and mTOR/S6 signaling pathways in

ovarian cancer cells. Our results indicate that glutamine

promotes cell growth by activating the mTOR/S6 and

MAPK pathways. Therefore, based on the preliminary data

generated by these studies, we believe that targeting

glutamine metabolism might prove a valuable novel

therapeutic strategy for ovarian cancer therapy.
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