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Abstract
We examined dynamic infant-parent affect coupling using the Face-to-Face/Still-Face (FFSF)
paradigm. The sample included 20 infants whose older siblings had been diagnosed with Autism
Spectrum Disorders (ASD-sibs), and 18 infants with comparison siblings (COMP-sibs). A series
of extended autoregressive models was used to represent the self-regulation and interactive
dynamics of infants and parents during FFSF. Significant bidirectional affective coupling was
found between infants and parents, with the former serving as the “leading members” of the dyads.
Further analysis of within-dyad dynamics revealed ongoing changes in concurrent infant-parent
linkages both within and across different FFSF episodes. The importance of considering both
inter- and intra-dyad differences is discussed.

The study of dyadic interaction can be construed in dynamic terms. Members of a dyad are
intertwined: they act and react to each other’s behaviors and emotions much in manner of a
coupled dynamic system (Boker & Laurenceau, 2006; Newtson, 1993). The cascading
effects of such interactions can often lead to highly unpredictable outcomes, triggered both
by the dynamics inherent to each dyadic member, as well as the interdependencies between
the past histories and the future responses of the two dyad members. Likewise, subtle
between-dyad differences can manifest themselves in whether and how dyad members are
“coupled” to one another over time. Such differences may be obscured if static mean
differences are examined alone (Smith & Thelen, 1993; West, 1985).

Indeed, dynamic systems-based concepts have played a prominent role in contemporary
studies of dyadic relationships (e.g., Boker & Laurenceau, 2006; Felmlee & Greenberg,
1999; Gottman, Murray, Swanson, Tyson & Swanson, 2002; Levenson & Gottman, 1983)
and the study of affect (Bisconti, Bergeman, & Boker, 2004; Chow, Nesselroade, Shifren, &
McArdle, 2004; Fredrickson & Losada, 2005). Larsen’s (2000) homeostatic model of mood
regulation, for instance, conceptualizes mood regulation as an ongoing process during which
an individual attempts to minimize the discrepancies between his/her current mood states
and an individualized set point. Chow, Ram, Boker, Fujita and Clore (2005) formulated this
theoretical model of a “mood thermostat” as a differential equation whose dynamics are
governed by two key parameters: a frequency parameter that dictates how rapidly the system
shows cyclic fluctuations (i.e., affect lability), and a damping parameter that governs how
promptly the system returns to (or diverges from) its set point (i.e., affect adaptivity)
following a perturbation.
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The damped thermostat model provides one possible way of testing dynamic notions of
mood regulation within the context of a differential equation model. With appropriate
parameter constraints, a discrete-time counterpart of this model can be formulated as an
autoregressive (AR) model with two lags (see Harvey, 1993; Harvey & Souza, 1987). The
AR model is a well known model in the time series literature and it includes an alternative
set of parameters indicative of the nature and dynamics of the process of interest (Hamilton,
1994; Shumway & Stoffer, 2000; Wei, 1990). However, the damping and frequency
parameters inherent in the model in Chow et al. (2005) can only be obtained from the AR
model through added parameterization constraints (see Harvey, 1993; Hamilton, 1994).

The AR formulation has some other critical advantages, however. For one, the AR model is
generally more familiar to the broader social sciences community compared with the
damped thermostat model in differential equation form; it is also relatively easy to
implement using standard software packages such as SAS and SPSS. For another, compared
to a strictly cyclic model that is characterized by one fixed frequency, the AR model with
two lags is flexible enough to capture less structured, quasi-cyclic dynamics (Wei, 1990).
This is an important characteristic of parent-infant interaction data because nonperiodic
cycles, as opposed to periodic cycles, are much more prevalent in the behaviors of parents
and infants at early ages (e.g., among infants at 3, 6 and 9 months of age; Cohn & Tronick,
1988). Still, the theoretical meanings of AR parameters and their linkages to affect
regulatory mechanisms are not always clear. We provide some guidelines along this line
using data collected from parent-infant dyads during the Face-to-Face/Still-Face (FFSF)
paradigm.

Bivariate Damped Cyclic Model for Studying Parent-Infant Interactive Dynamics during
FFSF

Under the FFSF protocol, each infant-parent dyad undergoes a Face-to-Face (FF) episode
during which the parent engages in active interactions with the infant, a Still-Face (SF)
episode during which the parent ceases play and holds a still face (Tronick, Adamson, Wise,
& Brazelton, 1978) and a Reunion (RE) episode during which the parent is instructed to
resume playing with the infant. The decline in positive affect and increase in negative affect
during the SF episode—often known as the still-face effect—have been replicated across
several studies (Adamson & Frick, 2003; Tronick & Cohn, 1989; Weinberg & Tronick,
1996; Tronick, Messinger et al., 2005; Yale, Messinger, & Cobo-Lewis, 2003). In particular,
the distress caused by the SF manipulation and the reconciliations during the reunion
episode provide a direct opportunity for assessing between- and within-dyad changes in
affect regulatory dynamics.

In instances involving dyadic data, further complication arises because the affective
equilibrium of the dyad is now defined jointly by the emotional ebbs and flows of the two
dyad members. A bivariate model is thus needed to accommodate both the self-regulation as
well as the interactive dynamics of the dyad members. We use the analogy of two “coupled
thermostats” to describe the bivariate modeling framework undertaken in this article to
represent parent-infant affective dynamics. To provide a more concrete analogy of how
parents and infants might act and react to one another during active interaction in manner of
two coupled thermostats, we ask the reader to consider the scenario of a three-legged race,
with the two dyad members acting as “partners” on a three-legged race. If one party is
making rapid strides (e.g., manifesting rapid emotional fluctuations), the other party may
have to adapt accordingly and adopt a faster pace, or force the partner to slow down his/her
pace. Whether one dyad member adapts to, or actively alters the pace of the other dyad
member depends on who is leading the race. Alternatively, if the two dyad members are in
fact two independent thermostats, they will just fluctuate around their respective equilibrium
points irrespective of the dynamics of one another.
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In studies of parent-child interaction, researchers have been concerned with interactive
influence and with synchrony (Brazelton, Kozlowski, & Main, 1974). Interactive influence
involves the impact of infant-on-parent (parental responsivity) and parent-on-infant (infant
responsivity). Higher levels of parental responsivity are associated with a wide variety of
developmental outcomes, including the development of secure infant attachment to the
parent (Isabella & Belsky, 1991, conscience-based rule-following in the child (Kochanska,
Forman, & Coy, 1999), the infant’s understanding of their developing emotional expressions
(Stern, 1985; Tronick, 1989), as well as linguistic and cognitive development (Feldman &
Greenbaum, 1997; Feldman, Greenbaum, Yirmiya, & Mayes, 1996; Landry, Smith, Miller-
Loncar, & Swank, 1997). Infant-on-parent influences can exist simultaneously with parent-
on-infant influences, producing bi-directional interactions. Bi-directional influence is
thought to be the basis of fundamental social competencies such as turn-taking (Cohn &
Tronick, 1988; Kaye & Fogel, 1980). It has also been implicated, at both high and mid-range
levels, in the development of secure attachments (Jaffe, Beebe, Feldstein, Crown, & Jasnow,
2001)

Despite empirical evidence for the impact of interactive influence on later developmental
outcomes, we know little about the relative importance of each partner in creating these
processes. Even research which has addressed the relative importance of parent and infant in
interaction has typically done so by categorizing individual dyads as to the presence or
predominance of infant-on-parent and parent-on-infant influence (Cohn & Tronick, 1988;
Feldman, et al., 1996; Yirmiya et al., 1996). The FFSF procedure and the modeling
framework undertaken in the present article provide a platform for evaluating the presence
of parent-infant bi-directional influence, as well as the relative predominance of parental
responsivity and infant responsivity.

The advent of more sophisticated modeling techniques in the last two decades has led to
timely solutions for assessing the relative dominance of parental responsivity and infant
responsivity. The approach undertaken in the present article incorporates features of random
effects models (Beebe et al., 2007; Campbell & Kashy, 2002; Kashy & Kenny, 2000;
Newsom, 2002; Raudenbush, Brennan & Barnett, 1995) into a difference equation model,
the bivariate AR model (for other examples see e.g., Ferrer & Nesselroade, 2003). Parallel to
their continuous-time differential equation counterparts (Boker & Laurenceau, 2006;
Felmlee & Greenberg, 1999; Gottman et al., 2002), difference equations are particularly
suited for evaluating the directionality of infant-parent synchrony because the issue of time
precedence is explicitly addressed through the incorporation of lagged (i.e., previous)
influences between dyadic members. The random effects addition allows us to examine
between-dyad differences in parent-infant coupling based on the infants’ gender and risks
for Autism Spectrum Disorders.

Between-Dyad Differences in Affective Dynamics
Autism Spectrum Disorders (ASDs) are genetically linked neurodevelopmental disorders
characterized by a spectrum of impairments in social functioning and communication
(Landa, Holman, & Garret-Mayer, 2007; Mundy & Hogan, 1994). ASDs are highly heritable
and may mark the diagnosable end of a genetically-linked spectrum of difficulties (Szatmari
et al., 2000). Compared to infant siblings of typically developing controls, infant siblings (as
well as other first-degree relatives) of individuals with an ASD are at increased risk for
milder deficits in one or more of the three areas that are impaired in autism: social
responsiveness, communication, and limited interests/stereotyped behavior (Yirmiya et al.,
2006; Merin, Young, Ozonoff, & Rogers, 2007; Cassel et al., 2007; Pickles et al., 2000).

In a study involving 12-month-old ASD-sibs who later showed autistic symptomatology,
ASD-sibs were characterized by deficits in social smiling and decreased manifestations of
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positive emotions (Zwaigenbaum et al., 2005). Infant ASD-sibs smiled for a smaller
proportion of the FFSF than COMP-sibs (Cassel et al., 2007), showed an increased tendency
for neutral affect than comparison siblings and were less upset by the still-face manipulation
(Yirmiya et al., 2006). Merin et al. (2007), however, did not find differences in emotional
expressivity between ASD-sibs and COMP-sibs during a FFSF study with a brief still-face
episode. We seek to further clarify the differences between ASD-sibs and COMP-sibs (and
lack thereof) in establishing and maintaining interactive synchrony with their parents from a
dynamic standpoint. In addition, gender will be included as another predictor of between-
dyad differences in affect coupling due to the higher prevalence of ASDs in males than in
females (Fombonne, 1999; Honda, Shimizu, Imai, & Nitto, 2005; Lingam et al., 2003;
Yeargin-Allsopp et al., 2003).

Within-Dyad Changes in Parent-Infant Synchrony
Several studies in the past decade have established meaningful within-person variability in
constructs that were traditionally construed as relatively stable or “static”, including world
views and perceived control (Eizenman, Nesselroade, Featherman, & Rowe, 1997; Kim,
Nesselroade, & Featherman, 1996). In the study of affect, within–person day-to-day
variations in emotions have been reported to constitute stable between–person differences
that are different from interindividual differences in affect intensity (Chow et al., 2005; Eid
& Diener, 1999; Larsen, 1987; Ong & Allaire, 2005; Zautra, Reich, Davis, Nicolson, &
Potter, 2000). Given that infant and mother interactive behaviors are not deterministic but
rather, encapsulate the stochastic influence of the two dyad members (Cohn and Tronick
1988; Fogel 1988), within-dyad variability in synchrony constitutes an important aspect of
individual differences in regulatory mechanisms.

At a broader level, parent-infant interaction can essentially be construed as a process of
matches and mismatches in affective engagement. This process is made particularly salient
by the FFSF protocol, which may propel infant-parent coupling to fluctuate, rather than
remaining constant over relatively brief intervals—specifically, within each FFSF episode.
In previous studies involving the FFSF protocol, researchers were often interested in
capturing a summary measure of infant-parent dynamics. In doing so, these dynamics were
assumed to be stable over the course of an interaction. In empirical data that span longer
time scales, the assumption of stationarity1 is often violated (see e.g. Lavie, 1977;Tarvainen,
Georgiadis, Ranta-aho & Karjalainen, 2006;Weber, Molenaar & Van der Molen, 1992).
Studies of dyadic interaction in the past have already suggested that interpersonal dynamics
can change in critical ways even during a brief episode of interaction (e.g., due to turn-
taking behavior; Boker, Xu, Rotondo & King, 2002; Newtson, 1993). We pursue evidence
for time-varying changes in interactive associations during the FFSF by combining a
univariate AR model and a stochastic regression model (see Shumway & Stoffer, 2000). The
regression model is “stochastic” because it has a time-varying regression coefficient that is
used to capture whether and in what ways parent-infant synchrony changes within dyads
over the course of each FFSF episode.

Objectives of the Present Article
The objectives of the present article are two-fold. First, we seek to examine between-dyad
differences in the interactive dynamics of parents and infants during the FFSF procedure by
fitting a series of random effects AR models. By representing parent-infant dyads as

1Statistically, strict stationarity refers to the invariance of all statistical properties of a system over time. A weaker form of
nonstationarity is covariance stationaritiy, which is used to describe systems that have finite second moments and show invariance in
their mean and covariance functions over time (for more precise mathematical definitions see Hamilton, 1994; Shumway & Stoffer,
2000).
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“coupled thermostats”, our goal is to identify the relative dominance of parents and infants
in leading the dynamics of the interaction and inter-dyad differences therein. Second, we
seek to evaluate within-dyad variability in parent-infant synchrony and address whether and
in what ways the associations between parents and infants change over time within each of
the FFSF episodes. A stochastic regression model will be combined with an AR model for
this modeling purpose.

Method
Participants

Infant-parent dyads in this study were part of a longitudinal study investigating the social,
emotional, and cognitive development of ASD-sibs and COMP-sibs in the first three years
of life. Cassel et al. (2007) examined mean levels of smiles and cry-faces in a sample that
included 82% (31 out of 38) of the infants who are part of the current mean-free analysis of
rated emotional valence. Outcome data is not yet available for these infants. Infants were
included in this sample if they participated in a six month assessment, were at least 36 weeks
gestation at birth, and had a birthweight above 2500g. The COMP-sibs were infants whose
older sibling(s) had not been diagnosed with an ASD and showed no evidence of heightened
ASD symptomatology. In contrast, ASD-sibs had at least one sibling who was diagnosed
with Autism, Asperger’s Disorder, or Pervasive Developmental Disorder – Not Otherwise
Specified (PDD-NOS). Due to persistent distress, data collection was terminated for one of
the ASD-sibs (male) during the FFSF. Excluding the data from this dyad yielded a final
sample of N = 38 dyads, with 18 COMP-sibs and 20 ASD-sibs.

Descriptive data on the sample are presented in Table 1. The mean age of the 38 infants at
the six month assessment was 6.1 months (SD = .3; range 5.1 to 6.9 months) and did not
differ by group (p > .71). Mean parent age in years at the six-month FFSF assessment was
36.7 (SD= 4.8). A total of 57.9% of the mothers and 42.1% of the fathers reported earning
an advanced or professional degree and another 21.1% of mothers and 31.6% of fathers
reported completed a 4-year college degree. There were no group differences with regard to
parent age, education or family income between the ASD-sibs and the COMP-sibs samples.

Measures
We used Continuous Measurement Software2 (CMS) to obtain continuous ratings for every
frame of the video upon playback of the video file. The CMS was developed to enable the
presentation of video files to human raters in randomized sequence and simultaneous
recording of viewers’ ratings of the video files (Messinger, Cassel, Acosta, Ambadar, &
Cohn, 2008). While watching the video clips, raters were asked to use a joystick to move the
cursor up or down along a graduated color bar adjoining the right margin of the picture
frame where the video was shown.3 A screenshot of the user interface to which the raters
were exposed is shown in Figure 1. The raw ratings generated by the CMS ranged from
−400 (i.e., most negative) to +400 (most positive). We defined emotional valence as a
continuous, unidimensional construct with positive and negative as anchors. This relatively
simple measurement scale was used to facilitate continuous measurements of emotional
valence with minimal rater delays4.

2The CMS is available for download at http://www.psy.miami.edu/faculty/dmessinger/dv/index.html.
3Raters rated the videos without access to audio. This is because the parent and infant videos contained the same audio track and we
wanted to obtain valence ratings for each infant or parent independent of the influences imposed by the presence of the other dyadic
member.
4The use of a unidimensional valence rating scale was reasonable within our modeling context given the apparently bivalent nature of
infant affective valence (Messinger, 2002) and the need to include both infant and parental affective valence in our bivariate model.
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Procedure
In the FFSF protocol (Tronick et al., 1978; Tronick & Cohn, 1989), parents were asked to
play with their baby without toys for three minutes (Face-to-Face episode, FF), stop playing
and maintain a still face with no emotional expression for two minutes (Still-Face, SF), and
resume play for another three minutes (Reunion episode, RE). During all three episodes,
infants were placed in an elevated car seat and their parents were positioned on a small chair
directly opposed to them. Separate video cameras were used to record the face and upper
body of the infant and their parent. The video signals were synchronized with respect to a
common time code and exported to separate digital video files for rating.

Descriptions of Raters
Ratings of the 38 dyads were completed by 160 non-expert student raters at a large urban
university in the Southeast in fulfillment of the research component of an introductory
psychology course. The raters were non-experts in that they had no specialized training in
coding emotion. A given rater rated either infants or parents (not both). Ninety-nine students
rated the infants and 96 rated their parents. The mean age of the 26 male and 66 female
students who rated infants was 19.4 (SD = 1.8). These raters identified themselves as White/
Caucasian (51%). Hispanic (27%), Asian (7%), and Black/Other (15%). The mean age of
the 28 male and 68 female students who rated parents was 19.7 (SD = 3.0). Among students
who rated the parents, 56% identified themselves as White/Caucasian, 20% as Hispanic, 7%
as Asian, and 16% as Black/Other.

Each rater rated a batch group of 6 to 7 infants (or parents) containing separate video clips
for each episode of the FFSF (i.e., FF, SF, & RE). Thus, a batch group of 7 infants (or
parents) contained 21 separate video clips (i.e., 7 persons x 3 episodes). Clips were rated in a
randomized order and raters proceeded from one video clip to the next at their own pace.
Previous Generalizability Theory (GT) analyses reported indicated strong consistency in the
non-expert ratings provided by the student raters. For cross-validation purposes, a randomly
selected subset of the dyads was subjected to further ratings by parents who also participated
in the FFSF. Parent raters are, arguably, more experienced in coding infants’ emotions than
the student raters. Parent ratings were available for 7 of the 33 (i.e., 35%) dyads. The
correlations between these ratings were .76 (FF), .91 (SF) and .91 (RE) for the infants, and .
83 (FF), .84 (SF) and .92 (RE) for the parents. The high correlations between student and
parent ratings provided further support for the use of these non-expert ratings in our
subsequent analyses.

Data Preprocessing
We took several data processing steps prior to model fitting to minimize preexisting
between-rater differences in ratings. First, we discarded the first 10 seconds of ratings from
all raters to minimize the initial delays manifested by some raters as they were “warming
up” to the rating protocol. Second, we removed spurious trends—including linear and
quadratic trends, as well as other gradual (e.g., exponential) upward/downward shifts in
ratings—by first applying a Loess smoother and then retaining the residuals for further
analyses.

Third, for each parent/infant, we derived a time series of mean ratings by first standardizing
each rater’s ratings for that participant (over time) separately and then averaging these
standardized ratings across all raters. The time series of mean ratings for each infant (and
parent) was then restandardized over time. Thus, all dyads and all episodes were
characterized by the same magnitude of within-person standard deviation over time. This
means that any between-dyad or between-episode differences associated with our
subsequent analyses are not due to differences in affective levels or affective variability
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across dyads or episodes. Plots of the detrended, standardized mean ratings for each dyad in
Figure 2 confirmed that there was no systematic difference between dyads in the levels or
variability of ratings over time after the preliminary data treatment.

Model Fitting
Between-dyad differences in interactive dynamics—We used a set of random
effects bivariate AR models to extract between-dyad differences in interactive dynamics. We
examined the existence of reciprocal influences between parents and infants in a bivariate
extension of the AR model expressed as

(1)

(2)

where Infantikt represents the emotional valence of the infant in dyad i in FFSF episode k at
time t, Status is a dummy-coded indicator with 0 = COMP-sib and 1 = ASD-sib, Gender
indicates the gender of the infant (−1 = Male, 1 = Female), SFvsFF/RE and FFvsRE are a
set of contrast codes used to indicate the different FFSF episodes. SFvsFF/RE was
constructed to compare the SF to the FF and RE conditions combined (SFvsFF/RE = 1 for
SF, −1/2 for FF and −1/2 for RE) and FFvsRE was used to compare the FF to the RE
condition (FFvsRE = 0 for SF, 1 for FF and −1 for RE). The parameters φ1,infant and
φ1, parent represent the group-based AR(1) parameter for infants and parents, respectively
whereas φ2,infant and φ2, parent denote the group-based AR(2) parameter for infants and
parents, respectively. The AR parameters capture the lagged effects of a dyad member’s
emotional valence from t−1 and t−2 on the dyad member’s current emotional valence.
φparent–>infant,ik and φinfant–>parent,ik are lag-1 cross-regression parameters that capture the
lagged interactive influences between the dyad members. Specifically, the former represents
the influence of parent i’s emotional valence at the previous time point on infant i’s
emotional valence at the current time point whereas the latter represents the lagged influence
of infant i’s emotional valence at time t−1 on parent i’s current emotional valence.

We allowed for random effects in the cross-regression but not the autoregressive parameters.
5 The parameters b1 – b7 and c1 – c7 are fixed effects parameters used to explain dyad-
specific variability in the parent→infant and infant→parent cross regression parameters,
respectively. These parameters helped reveal the impact of developmental status, episode,
gender and their potential interaction effects on the cross-regression parameters. The
termsuφparent–>infantik and uφinfant–>parentik capture dyad-specific deviations in cross-
regression parameters that could not be accounted for using the covariates in the model, with
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variances,  and , respectively. A path diagram representation of the
bivariate model is plotted in Figure 3. This model was fit using the PROC NLMIXED
option in SAS using the approach described in MacCallum, Kim, Malarkey, and Kiecolt-
Glaser (1997). The corresponding −2 log-likelihood values were used to construct likelihood
ratio tests in a series of nested models.

Within-dyad changes in synchrony—The models in this section were developed with
the aim to examine the nonstationarities in within-dyad dynamics. In particular, we sought
to explore whether the concurrent associations between parents and infants changed
dynamically within and between different FFSP episodes, as opposed to remaining constant.
Such time-varying changes in correlation patterns but one example of the many ways in
which individuals can manifest nonstationarities in the context of dyadic interaction. To
capture potential changes in parent-infant synchrony, we added a stochastic regression
component to a univariate AR model and examined the question of whether and how the
concurrent linkages between parents and infants changed over time within each dyad.

The key model used to accomplish the goal of examining time-varying interaction patterns is
expressed as

(3)

(4)

where we used the state-space formulation (Hamilton, 1994; Shumway & Stoffer, 2000) to
structure our model. Equation (3) is typically denoted as the measurement equation and it
serves to link the manifest indicator, infant i’s valence rating in episode k at time t (i.e.,
Infantikt) to a vector of latent variables. Equation (4) is the dynamic equation and it is used
to express the lagged relationships among the latent variables. Within the linear state-space
framework, the dynamic equation is typically written in a one-step-ahead or difference
equation form. Parentikt is the measured rating of parent i’s emotional rating in episode k at
time t, αikt is a latent variable that represents the latent AR component associated with infant
i’s affective dynamics in episode k at time t, αik,t−1 is its lag-1 counterpart needed to define
the model as an AR(2) model. φ1k and φ2k are AR(1) and AR(2) parameters associated with
episode k and Bikt is a time-varying regression parameter that captures the possibly time-
varying association between the two dyad members. We included the residual for the AR
component, ζα,ikt, in the dynamic, as opposed to the measurement equation, to allow the
impact of external perturbations to persist over time, rather than affecting the measurement
only at one point in time. ζB,ikt is a residual or process noise component associated with Bikt.
When the variance of this process noise component is significantly different from zero, Bikt
is projected to vary over time following a random walk model—a relatively simple but well-

5We acknowledge that failure to include random effects for the autoregressive parameters can potentially inflate the random effects
estimates attributed to the cross-regression parameters. However, a model that included the four random effects components (random
effects for the two autoregressive parameters and two cross-regression parameters) were computationally intensive and did not
converge. Ultimately, the model in Equations 1—2 was chosen to strike a balance between modeling parsimony and theoretical
relevance.
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known model that has been used in the past to represent, for instance, the path of a molecule
as it travels in a liquid or gas, the price of a fluctuating stock, the path of a drunkard and the
financial status of a gambler (Révész, 1990).

The vector of residuals is constrained to conform to a covariance structure of

(5)

where the residual terms were constrained to be uncorrelated.  is the variance of the AR
residual term for COMP-sibs in episode k and d1k captures the deviation in variance for
ASD-sibs relative to the variance of COMP-sibs during episode k. That was to allow the
residual variance of the AR component to differ between the ASD-sibs and COMP-sibs. By

the same token,  represents the process noise variance of the regression parameter for
COMP-sibs over time in episode k and d2k captures the deviation in variance for ASD-sibs
relative to the variance of COMP-sibs during that episode. Including the terms d1k and d2k
allowed us to pose the questions of whether there were statistically reliable deviations
between the COMP-sibs and the ASD-sibs in their magnitudes of emotional fluctuations and
time variations in infant-parent concurrent associations. The model shown in Equations 3—
4 was fit separately to data from each episode. A path diagram representation of the model is
shown in Figure 4.

To summarize, the univariate AR model with stochastic regression expresses that an infant’s
emotional valence at time t can be decomposed into two main components: an AR
component, αikt, and a time-varying regression component, Bikt *Parentit. The former,
represented as a whole as an unobserved latent component (see Figure 4), captures the ways
in which a typical infant’s emotion fluctuates around a baseline. The baseline, rather than
being defined by the absicca at Infantit = 0 as in other earlier models, now varies over time
contingent on the concurrent emotional valence of Parentit. Furthermore, the extent to which
the value of Parentit may shift the baseline of any particular infant’s emotional valence is
allowed to differ over time as well as over infants.

Two features of this model are worth noting. First, the way the parent-infant regression
component is specified in Equations 3—4 differs from other typical linear regression models
seen in the literature in that the regression parameter is allowed to vary, rather than
remaining invariant over time and individuals. Thus, it is typically termed the stochastic
regression model (e.g., Shumway & Stoffer, 2000). To formulate the stochastic regression
model as part of a state-space model, the manifest indicator is included in the “factor loading
matrix” in Equation 3 whereas the regression parameter is expressed as part of the vector of
latent variables. This is also reflected in the path diagram in Figure 4 in which Bikt is
represented as a time-varying latent variable and the path linking this “latent parameter” to
infant’s manifest emotional valence is fixed at the value of the manifest parental emotional
valence at the same time point. In the special case in which the variance of ζB,ikt is equal to
zero, the time-varying regression parameter reduces to a time-invariant regression parameter
and the regression component reduces to a standard linear regression model. The usual Wald
test, when applied to this specific variance term, provides one possible way of testing
whether the regression parameter is time invariant. In the present context, it allowed us to
evaluate whether the infant-parent association showed substantial changes within each of the
three episodes.
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Second, infants’ (as opposed to parents’) emotional valence was used as the dependent
variable in this model but this choice is, to some extent, arbitrary. Rather than working
directly with the bivariate AR model in Equations 1—2, we chose to fit a univariate AR
model in the form of Equations 3—4 to retain the linearity of the model. That is, specifying
the cross-regression parameters in the bivariate AR model (see Equations 1—2) to be time-
varying introduces nonlinearity in the model and added modeling complexities that cannot
be handled by standard linear state-space modeling techniques. In the present context, we
made infants the “dependent variable” of interest because parents, by their assertion of the
SF procedure, can be conceived as an external source of perturbations to the infants. The
ways in which the infants reacted to these external inputs (i.e., parents’ changes in
responsiveness) constitute a central question of interest. Making parent, as opposed to infant,
as the dependent variable does not provide any unique information compared to the model
expressed in Equations 3—5 and was thus not considered separately.

The dynamics associated with Bikt were estimated over time using the Kalman smoother,
specifically, the Fixed Interval smoother (Chow, Ho, Hamaker & Dolan, in press; Dolan, &
Molenaar, 1991, Otter, 1986). The Fixed Interval Smoother is a factor score estimation
procedure that can be used to estimate the values of the latent variables at each time point,
such as the values of the (possibly) time-varying regression parameter, Bikt, over time. In
addition to using the Kalman smoother to estimate the values of all the latent variables (e.g.,
including the time-varying regression parameter), we used a maximum likelihood procedure
known in the state-space modeling literature as the prediction error decomposition function
(Schweppe,1965; Shumway & Stoffer, 2000) to estimate all the time-invariant parameters.
These time-invariant parameters include the AR parameters, the residual variances and the
deviation parameters, d1 and d2. All estimation procedures associated with the stochastic
regression model were implemented using the SsfPack library in the OxMetrics program
(Koopman, Shephard, & Doornik, 1999).

Results
We organized the results from model fitting into two sections to first summarize between-
dyad differences in affect coupling and second, to address within-dyad variability in
concurrent parent-infant synchrony. Correspondence between the results obtained from the
two models will be discussed where appropriate.

Random Effects Bivariate AR(2) Model
Results from fitting the bivariate model indicate that all the infant and parent autoregressive
parameters (including φ1,infant, φ1, parent, φ2,infant and φ2, parent) were significantly different
from zero at both lag 1 and lag 2. The baseline infant→parent and parent→infant cross-
regression parameters, b0 and c0 (see Equation 1) were also significantly different from zero.
The covariate SFvsFF/RE was found to have a significant main effect and an interaction
effect with infant gender on the lag-1 infant→parent cross-regression parameter. A
significant main effect of SFvsFF/RE was also found on the lag-1 parent→infant cross
regression parameter, but no interaction effect with infant gender was found. Other
covariates did not help account for substantial between-dyad differences in the cross-
regression parameters. Parameter estimates obtained from fitting the final bivariate model in
which only the statistically significant parameters were retained are summarized in Table 2.

Overall, we found a significant bidirectional cross-regression relationship from parents to
infants, as well as from infants to parents. During the FF or the RE condition, the parent →
infant and infant → parent cross-regression effects led to increased emotional fluctuations
for both parents and infants. The significant regression effects of SFvsFF/RE on the cross-
regression parameters, in contrast, indicated that the significant parent → infant and infant
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→ parent coupling relations diminished almost completely during the SF condition. The
SFvsFF/RE x Gender interaction effect revealed that compared with the male infants, female
infants continued to have slight positive lagged effect on their parents during the SF
manipulation. In contrast, increased emotional fluctuations in male infants actually drove
their parents to restrain their emotional valence further during the SF condition. In addition,
significant between-dyad differences still existed in the coupling parameters after
accounting for the fixed effects of SFvsFF/RE on the cross-regression parameters (i.e.,

 and  were significantly different from zero). This suggests that even
though overall parent-infant coupling diminished almost completely during the SF
manipulation, some dyads continued to maintain some degree of coupling.

It is generally not meaningful to interpret the auto- and cross-regression parameter values in
isolation from one another because the collective dynamics of the system are determined
jointly by both of these parameters. Instead, to aid interpretation, we derived the model-
implied dynamics at the group level by generating eight hypothetical model-implied
trajectories for parents and infants using the fixed effects parameter estimates from the final
bivariate AR models. We assumed that all of these hypothetical time series were corrupted
by a common time series of process noise with a particularly notable perturbation at t = 1,
which caused a pronounced drop in the participant’s emotional valence at that time point to
−3.0. The trajectories thus represent the predicted “recovery trajectories” of hypothetical
parents or infants in different FFSF scenarios (see Figures 5a–b). Of course, the error
variance estimates associated with the four empirical scenarios were all different so a direct
comparison of the recovery trajectories by varying the auto- and cross-regression parameters
alone is arbitrary. Nevertheless, the predicted trajectories help provide a general idea of the
ways in which parents and infants “self-regulate” their emotional valence toward their
respective means—or “baseline”—in different FFSF scenarios if all other components in the
model are held equal.

Examination of Figures 5a–b reveals that across all episodes, the emotional perturbations
experienced by parents and infants were projected to show sinusoidal decay over time
toward an overall baseline (marked by the horizontal dotted line at y = 0 in Figures 5a–b). In
the current context, this baseline corresponded to each individual’s respective mean in each
FFSF condition. The oscillatory nature of the recovery processes reflects a unique feature of
systems that conform to auto- and cross-regression parameters in this range (namely, the
associated eigenvalues of the matrix of auto- and cross-regression parameters contain
complex numbers; for details see chapter 1 of Hamilton, 1994; Wei, 1990). The decay was
found to unfold at an especially rapid rate in both parents and infants during the SF. That is,
as expected, the lack of active “input” or emotional perturbations from each dyad member
during the SF condition propelled both parents and infants to show more controlled
regulatory dynamics. In particular, female infants continued to have a positive but attenuated
lagged influence on parents during the SF. Increased emotional fluctuations in male infants,
in contrast, actually expedited the damping in parents’ emotional valence during SF even
though the extent of lagged infant→parent influence was greater in these dyads during FF
and RE. No difference was found in the how parents influenced infants’ recovery
trajectories as a function of infant gender.

To assess whether the parent-infant interactions were dominated more by one dyad member
than the other, we constrained each of the two cross-regression parameters to be zero
sequentially and compared the relative reduction in fit. We began by first constraining the
effects of all remaining predictors in the final model to be zero. That is, we first constrained
the effects of SFvsFF/RE, gender and their interaction (i.e., b3, c2, c3 and c6 in Table 2) to be
zero. This led to a substantial reduction in model fit compared with the final model (Δ-2LL =
40 on 4 df, p < .002; -2LL of final model = 47932). Constraining the average infant →
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parent cross-regression parameter,c0, to be zero also led to a substantial reduction in model
fit (Δ-2LL = 48 on 1 df, p < .001). In contrast, whenb0, the average cross-regression
parameter from parent → infant was constrained to be zero, the reduction in model fit was
still statistically significant, but at a much reduced magnitude (Δ-2LL = 25 on 1 df, p < .001).
This reveals the role of the infant as the “dominating member” in an average parent-infant
dyad. The lack of significant main effect of Status or any interaction effects thereof on the
cross-regression parameters suggests that dyads with ASD-sibs did not show differential
coupling patterns compared with dyads composed of COMP-sibs.

In sum, we fit a series of bivariate AR models with random effects to examine the lagged
mutual influence between parents and infants with the goal to identify whether parents or
infants were more likely to “dictate” the dynamics of the dyads as a whole. Infants, as
opposed to parents, were found to play a leading role in determining the dynamics of the
systems. In addition, we also confirmed that more subtle interactive differences between the
FF/RE and the SF conditions were embedded in the dynamics of the data and such
differences could still be extracted even after mean and variability differences between
episodes had been accounted for. In addition, no effects of status were found on lagged
parent-child coupling.

Nonstationarities in Infant-Parent Associations within Episodes
Parameter estimates obtained from fitting the state-space model expressed in Equations (3)–
(4) to data from each of the three episodes are shown in Table 3. During the FF episode, all
parameter estimates, except the deviation terms, d1 and d2, were statistically different from
zero. The group-based AR estimates were in the same range as the group-based AR
estimates obtained earlier from fitting the random effects AR models. The residual variance

associated with the AR component, , was significantly different from zero, indicating that
the infants’ emotional valence continued to show fluctuations around an infant-specific,
parent-dependent (and thus, time-varying) baseline. Whenever discrepancies arise between
an infant’s current emotional valence value and this baseline, all infants were predicted, by
nature of the AR parameter estimates, to return to their respective time-varying baseline
valence in a damped oscillatory fashion. The residual variance for the time-varying
regression parameter was also estimated to be significantly different from zero, thus
suggesting that the infant-parent associations tended to fluctuate within dyads during the FF
episode. Estimates of the dyad-specific, time-varying regression weights derived using the
Kalman smoother are plotted in Figure 6a. Because d1 and d2 were not significantly
different from zero, the ASD-sibs did not exhibit substantially different amounts of average
variability in either the AR component or the regression parameter compared with the
COMP-sibs.

During the SF episode, all parameter estimates except for  and d2 were found to be
significantly different from zero (see Table 3). Thus, unlike the FF episode, the regression
parameters for the dyads were found to be invariant over time. Inspection of the dyad-
specific, smoothed regression estimates for this episode (see Figure 6b) revealed that
consistent with the experimental manipulation, the regression parameters mainly clustered
around zero during the SF episode. The AR dynamics manifested by the infants as a group
were similar to those predicted from the group-based AR parameters in the random effects
model. That is, infants tended to show quicker return to their baseline affective level during
SF than in the FF episode. In addition, the d1 estimate indicates that compared with COMP-
sibs, ASD-sibs tended to show slightly less variability in their AR component over time
during the SF condition. In other words, ASD-sibs were less inclined, on average, to show
emotional perturbations during the SF.
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During the RE episode, the AR parameters for the infants were similar to the AR parameters
obtained from the FF episode. The infants’ regression estimates, which were statistically

validated as showing substantial time-based variability (i.e.,  was estimated to be
significantly different from zero), were found to conform to very different change dynamics
compared with those observed during the FF episode (see Figures 6a and 6c, respectively).
That is, the infant-parent associations were much more volatile and showed greater
fluctuations over the course of the RE episode. As was the case during the SF condition,
ASD-sibs continued to show lower emotional fluctuations around their baseline during the
RE episode than COMP-sibs (i.e., d1 was negative and significantly different from zero).

Overall, we “decomposed” the variability in infants’ emotional valence into two major
components: a stochastic regression model that defines a time-varying baseline for each
infant, and an AR component that describes how the infants showed fluctuations around
their respective baseline levels as a group. The time-varying baseline, in turn, reflects the
(possibly) time-varying nature of parent-infant synchrony. Compared with COMP-sibs, we
found that ASD sibs, on average, showed less emotional perturbations (i.e., less movement
away from the baseline) during the SF as well as the RE. We also found that the concurrent
synchrony (or asynchrony) between parents and infants did vary substantially over time in
some episodes (e.g., FF and RE) but not others (e.g., SF). In addition, by examining the
dyad-specific changes in regression parameter over time, we found that the synchronization
patterns between parents and infants were very different during the FF and the RE
conditions. This suggests that the negative impact of the SF manipulation continued to affect
subsequent infant-parent interactions in more subtle ways than differences suggested by
changes in means alone.

Discussion
In the present article, we first addressed between-dyad differences in affective dynamics
basedon results from fitting a series of random effects autoregressive models. We then
evaluated within-dyad constancy in parent-infant synchrony over time using a stochastic
regression model. We found evidence for between-dyad differences as well as within-dyad
variability in affective changes from a dynamic perspective. Overall, the estimated AR
parameters for the parents and infants were found to be similar in values across all models
tested in the present study (bivariate AR and AR model with stochastic regression for infants
only). The models indicated that the emotional valence of infants and parents was projected
to return to some baseline values in an oscillatory fashion after being pushed away from
them, as opposed to “wandering” away from them (i.e., showing explosive dynamics).
Stated differently, both infants and parents manifested controlled affect regulation in the
form of damped oscillatory return to their baseline values, as opposed to manifesting
explosive fluctuations (e.g., unstable emotional tantrums) over time. We note, however, that
the predicted trajectories described in the Results section pertain only to the trajectories of
the “average dyad” across the three conditions. Substantial between-dyad differences still
existed in the cross-regression parameters for parents and infants, as revealed by the
statistically significant random effects variances.

Several previous studies contrasting ASD and comparison siblings have suggested that ASD
siblings show unique affective characteristics relative to comparison siblings during the
FFSF protocol (Cassel et al., 2007; Yirmiya et al., 2006). Results across the two models
tested in the present article suggest that ASD-sibs and COMP-sibs did not differ per se in
how they regulated their emotion (i.e., no substantial differences in the cross-regression
parameters or the range of time-varying regression parameter, Bit, in the stochastic
regression model). Rather, according to results from the stochastic regression model with
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AR(2) component, COMP-sibs tended to show greater emotional fluctuations during the SF
that persisted into the RE episode. Thus, the residual variance of the AR component was
found to be significantly higher for the COMP-sibs than for the ASD-sibs during the SF and
RE episodes. This finding is consistent with previous evidence suggesting that ASD-sibs
tend to show more neutral affect relative to other COMP-sibs during the FFSF procedure
(e.g., Yirmiya et al., 2006). Here, we provided support for this conjecture from a dynamic
regulatory perspective. It is perhaps even more encouraging that we were able to extract
such subtle differences after information due to mean and variability differences had already
been removed prior to model fitting (via within-person standardization).

Recently, Beebe et al. (2007) used a set of univariate mixed effects AR models to
demonstrate the presence of both parent → infant and infant → parent influence in the
interactions of four-month-olds and their mothers. Here, we incorporated both AR(1) and
AR(2) parameters to capture damped oscillatory dynamics in the participants’ emotion
regulation trajectories (Hamilton, 1994; Harvey, 1993). The modeling work undertaken in
the current study extended the approach adopted by Beebe et al.’s (2007) by allowing for
simultaneous examination of infant-to-parent and parent-to-infant lagged influences (or
interactive contingencies) within one bivariate random effects AR model. Consistent with
findings that infant-parent attachment emerges through ongoing, reciprocal but infant-
dominated exchanges between infants and parents (Feldman, 2006; Jaffe et al., 2001; Stern,
1985), we found a significant bidirectional coupling between the affective dynamics of
parents and infants. Phrased in the context of a three-legged race, the bidirectional ties
between parents and infants helped deter both parties from settling into a stagnant state too
quickly.

Developmental theorists have long postulated that infants show an ongoing tendency to
adapt to changes in their parents’ behavioral and emotional patterns (Ainsworth, Blehar,
Waters, & Walls, 1978; Brazelton et al., 1974; Tronick & Gianino, 1986). Findings in the
developmental literature have further suggested that infant-to-parent interactive influence is
an earlier developmental achievement than parent-to-infant influence (Feldman, 2006;
Moore, Cohn & Campbell, 1997). A difficulty with this literature, however, is a dependence
on categorizing individual dyads according to the direction of influence shown in their
interactions. Using a series of nested models, we verified that this reciprocal coupling
relation was dominated more by the infants than the parents. That is, we sequentially
omitted the parent-to-infant and infant-to-parent cross-regression paths and subsequently
used the resultant changes in model fit to deduce the relative dominance of the role of each
dyad member. Changes in chi-square values serve as a more objective, quantifiable basis for
testing the lead-lag relationships between infants and parents and can supplement
information from indices such as cross-correlations and time lags in the cross-correlations
(as used in e.g., Yirmiya et al., 2006). Using this approach, we confirmed the predominant
role of infant-to-parent influence, as opposed to parent-to-infant influence, in short-term
infant-parent interaction. Contrary to results reported by Yirmiya at al. based on individual
classification of dyads, our group-based approach indicated no evidence for deficits in
parental responsivity to changes in infant emotional engagement among ASD-sib dyads.

One cautionary note pertaining to the interpretation of the auto- and cross-regression
parameters is in order. Higher self-contingencies (i.e., higher AR(1) coefficients) in
mother’s behaviors during face-to-face play with infants have conventionally been regarded
as reflecting greater predictability and a more adaptive interaction style (e.g., Beebe et al.,
2007). Whereas this interpretation may be meaningful in the range of low to moderate
AR(1) values (specifically, values that are positive but substantially less than 1.0 such as
the .5-.7 range in Beebe et al.’s study), the same interpretation may not apply in cases
involving AR(1) values that are close to or above 1.0 (e.g., the ones observed in the present
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study). In the latter cases, increasing “self-contingencies” even further may lead to
increasing emotional fluctuations and consequently, a highly unstable system that shows
explosive affective dynamics. In contrast, comparing a system that shows no continuity over
time (i.e., the associated AR(1) parameter is equal to zero) with a system that shows some
regularity it its dynamics (e.g., AR(1) parameter that is greater than 0 but less than 1.0) may
lead to conclusions that favor the high self-contingency systems as more adaptive systems.

The inclusion of the cross-regression parameters—or interactive contingencies—can further
alter the dynamics of the system. Thus, the proposition put forth by Jaffe et al. (2001), that
midrange interactive contingencies between mothers and infants lead to more secure
attachment than low or high contingencies, may be particularly pertinent in the interpretation
of AR-based models. From a modeling standpoint, mid-range interactive contingencies may
help strengthen the regularity in both parties’ affect without pushing a dyad into an unstable
state. Regardless, the substantive meanings of the AR parameters have to be considered
carefully in regard to the dynamics generated by the modeling parameters as a whole, and
the context within which the notion of “baseline” is defined. In some instances, it may not
be desirable for an individual to show a quick return to baseline. In other instances, an
individual who shows no predictability in his/her emotion may well evidence an adaptive
regulatory style if the individual’s emotion simply shows random fluctuations around a
highly desirable baseline.

Research on infants’ interactive dynamics in the past few decades have been dominated
largely by a “static” notion of development. Recently, there has been a growing consensus
that change, as opposed to stability, captures a fundamentally different facet of children’s
socioemotional development (e.g., Moore et al., 1997). For instance, De Weerth & van
Geert (2002) reported that emotional behaviors in mother-infant dyads showed substantial
variability during the first year of life, both between dyads and between behaviors. The
stochastic regression used in the present study is a formalization of observations of apparent
non-stationarities made with reference to a pair of case studies of dyadic interaction that
relied on automated, computer vision measurements of facial expression (Messinger,
Mahoor, Chow, & Cohn., 2008). Using the stochastic regression model, we found that
parent-infant synchrony could change substantially even within a relatively brief interaction
episode as well as across different FFSF episodes. In particular, the SF procedure did not
eliminate some of the more subtle interactive dynamics between parents and infants, and it
also led to distinctly different interactive dynamics during the RE than in the FF (see Figures
6a–c). During the FF, the parent-child associations (i.e., the time-varying regression
weights) were observed to unfold more gradually following relatively smooth trajectories. In
contrast, the parent-child associations during the RE were characterized by more divergent
differences across dyads and relatively unstructured fluctuations at a more rapid rate. This
finding highlights the ambiguity experienced by the infants in response to the parents’
sudden change in affect in the RE. The rich dynamics embedded in such within-dyad
fluctuations can be easily bypassed, however, if sufficient time-based information has not
been available from each individual dyad.

The current procedures used to identify intra-dyad variability in parent-infant coupling can
be readily utilized to study other dynamic phenomena in psychology. We used a simple
random walk model in the present study because of its flexibility in approximating very
diverse patterns of change with very little modeling constraints. Other, more theoretically
driven models, can be used to test specific notions of how these associations vary over time
(e.g., fluctuations around a stable set point, linear or exponential declines). Approaches such
as regime switching models (Kim & Nelson, 1999), change point detection models (Carlin,
Gelfand & Smith, 1992) and nonlinear state--space models with time-varying parameters
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(Chow, Ferrer & Nesselroade, 2007; Molenaar & Newell, 2003) are all examples of other
alternatives for representing more complex changes in dyadic linkages.

Given that our modeling results were based on reports provided by non-expert raters, there
may be delays and imprecision in the raters’ assessments. However, because the ratings used
for model fitting were aggregated and standardized across multiple raters, these ratings
could still serve as a helpful proxy to validate the directionality of parent-infant coupling
provided that no differential rating delays were present (e.g., systematic delays existed in
rating of infants but not ratings of parents). In the present context, we still found support for
the much corroborated view of mutual infant-parent reciprocity despite the possible
existence of rating delays. Other measurement techniques with higher time precision can be
used to better determine the nature and directionality of infant-parent coupling in other
contexts (Messinger, Mahoor et al., 2008; Messinger, Cassel et al., 2008)

Admittedly, the sample size in the current study (in terms of the number of dyads) was small
relative to the complexity of some of the models considered herein, particularly the random
effects models. Standard error estimates turned out to be reasonable, although other more
subtle between-dyad differences could probably be identified with greater accuracy if data
were available from more dyads. Viewed from a different angle, the availability of intensive
repeated measurements data does help provide additional information concerning patterns of
intraindividual changes, and such data, as we have shown here, help open up new
possibilities for exploring more subtle changes and potential nonstationaries within dyads.

Conclusion
Intra-individual changes and inter-individual differences have been described
metaphorically by Nesselroade (1991) as the warp and woof—threads that run lengthwise
and crosswise, respectively—of the developmental fabric. Studying aspects pertaining to the
warp (intra-dyad dynamics) and woof (inter-dyad differences) of dyadic interactions are
equally critical to our understanding of what distinguishes a dyad from two individuals who
act in isolation. The overarching goal in the present article was to present possible ways of
conceiving and describing dyads as intertwined dynamic systems. The different dynamic
models used in this study are but one of the many ways of representing patterns of dyadic
interactions. We hope that the potential promises of these methods can help researchers
envision a more enriched notion of the processes that govern dyadic interactions, and
possibly inspiring them to design studies that not only capture the constancy, but also the
variability in dyadic interaction.

Acknowledgments
Funding for this study was provided by grants from NICHD (047417 & 052062), NSF (0418400), Autism Speaks,
and the Marino Autism Research Institute.

References
Adamson, Lauren B.; Frick, Janet E. The Still Face: A History of a Shared Experimental Paradigm.

Infancy 2003;4:451–473.
Ainsworth, MS.; Blehar, MC.; Waters, E.; Wall, S. Patterns of attachment: A psychological study of

the strange situation. Hillsdale, NJ: Lawrence Erlbaum; 1978.
Beebe B, Jaffe J, Buck K, Chen H, Cohen P, Blatt S, et al. Six–week postpartum maternal self-

criticism and dependency and 4–month mother-infant self- and interactive contigencies.
Developmental Psychology 2007;43:1360–1376. [PubMed: 18020817]

Bisconti TL, Bergeman CS, Boker SM. Emotional well–being in recently bereaved widows: A
dynamical systems approach. Journal of Gerontology: Psychological Sciences 2004;59(B):158–167.

Chow et al. Page 16

Emotion. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Boker, S.; Laurenceau, J-P. Dynamical systems modeling: An application to the regulation of intimacy
and disclosure in marriage. In: Walls, T.; Schafer, J., editors. Models for intensive longitudinal data.
New York: Oxford University Press; 2006. p. 195-218.

Boker SM, Xu M, Rotondo JL, King K. Windowed cross–correlation and peak picking for the analysis
of variability in the association between behavioral time series. Psychological Methods 2002;7:338–
355. [PubMed: 12243305]

Brazelton, T.; Koslowski, B.; Main, M. The origins or reciprocity. In: Lewis, M.; Rosenblum, L.,
editors. The effects of the infant on its caregiver. New York: Wiley-Interscience; 1974. p. 137-154.

Carlin B, Gelfand A, Smith A. Hierarchical bayesian analysis of changepoints problems. Applied
Statistics 1992;41:389–405.

Cassel T, Messinger DS, Ibanez L, Haltigan JD, Acosta S, Buchman A. Early social and emotional
communication in the infant siblings of children with Autism Spectrum Disorders: An examination
of the broad phenotype. Journal of Autism and Developmental Disorders 2007;37:122–132.
[PubMed: 17186367]

Chow SM, Ferrer E, Nesselroade JR. An unscented Kalman filter approach to the estimation of
nonlinear dynamical systems models. Multivariate Behavioral Research 2007;42:283–321.

Chow, S-M.; Hamaker, EJ.; Fujita, F.; Boker, SM. Representing time–varying cyclic dynamics using
multiple–subject state–space models. (in press)

Chow SM, Nesselroade JR, Shifren K, McArdle JJ. Dynamic structure of emotions among individuals
with Parkinson’s disease. Structural Equation Modeling 2004;11:560–582.

Chow SM, Ram N, Boker SM, Fujita F, Clore G. Emotion as thermostat: Representing emotion
regulation using a damped oscillator model. Emotion 2005;5:208–225. [PubMed: 15982086]

Cohn JF, Tronick EZ. Mother-infant face-to-face interaction: Influence is bidirectional and unrelated
to periodic cycles in either partner’s behavior. Developmental Psychology 1988;24:386–392.

de Weerth C, van Geert P. Changing patterns of infant behavior and mother–infant interaction: Intra
and interindividual variability. Infant behavior and development 2002;24:347–371.

Dolan CV, Molenaar PCM. A note on the calculation of latent trajectories in the quasi Markov simplex
model by means of regression method and the discrete Kalman filter. Kwantitatieve Methoden
1991;38:29–44.

Eid M, Diener E. Intraindividual variabiliy in affect: Reliability, validity and personality correlates.
Journal of Personality and Social Psychology 1999;76:662–676.

Eizenman DR, Nesselroade JR, Featherman DL, Rowe JW. Intra–individual variability in perceived
control in an elderly sample: The MacArthur Successful Aging Studies. Psychology and Aging
1997;12:489–502. [PubMed: 9308096]

Feldman R. From biological rhythms to social rhythms: Physiological precursors of mother-infant
synchrony. Developmental Psychology 2006;42:175–188. [PubMed: 16420127]

Feldman R, Greenbaum CW. Affect regulation and synchrony in mother-infant play as precursors to
the development of symbolic competence. Infant Mental Health Journal 1997;18:4–23.

Feldman R, Greenbaum CW, Yirmiya N, Mayes LC. Relations between cyclicity and regulation in
mother-infant interaction at 3 and 9 months and cognition at 2 years. Journal of Applied
Developmental Psychology 1996;17:347–365.

Felmlee DH, Greenberg DF. A dynamic systems model of dyadic interaction. Journal of Mathematical
Sociology 1999;23:155–180.

Ferrer E, Nesselroade JR. Modeling affective processes in dyadic relations via dynamic factor analysis.
Emotion 2003;3:344–360. [PubMed: 14674828]

Fogel A. Cyclicity and stability in mother-infant face-to-face interaction: A comment on Cohn and
Tronick. Developmental Psychology 1988;24:393–395.

Fombonne E. The epidemiology of autism: A review. Psychological Medicine 1999;29:769–786.
[PubMed: 10473304]

Frederickson BL, Losada MF. Positive affect and the complex dynamics of Human flourishing.
American Psychologist 2005;60:678–686. [PubMed: 16221001]

Gottman, JM.; Murray, JD.; Swanson, CC.; Tyson, R.; Swanson, KR., editors. The mathematics of
marriage: Dynamic nonlinear models. Cambridge, MA: MIT Press; 2002.

Chow et al. Page 17

Emotion. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hamilton, JD. Time series analysis. Princeton, NJ: Princeton University Press; 1994.
Harvey, AC. Time series models. 2. Cambridge, MA: MIT Press; 1993.
Harvey AC, Souza RC. Assessing and modelling the cyclical behaviour of rainfall in northeast brazil.

Journal of Climate and Applied Meteorology 1987;26:1317–1322.
Honda H, Shimizu Y, Imai M, Nitto Y. Cumulative incidence of childhood autism: A total population

study of better accuracy and precision. Developmental Medicine and Child Neurology
2005;47:10–18. [PubMed: 15686284]

Isabella RA, Belsky J. Interactional synchrony and the origins of infant-mother attachment: A
replication study. Child Development 1991;62:373–384. [PubMed: 2055128]

Jaffe J, Beebe B, Feldstein S, Crown C, Jasnow M. Rhythms of dialogue in infancy. Monographs of
the Society for Research in Child Development 2001;66(2) Serial No. 264.

Kaye K, Fogel A. The temporal structure of face-to-face communication between mothers and infants.
Developmental Psychology 1980;16:454–464.

Kim, C-J.; Nelson, CR. State-space models with regime switching: Classical and Gibbs-sampling
approaches with applications. Cambridge, MA: MIT Press; 1999.

Kim JE, Nesselroade JR, Featherman DL. The state component in self–reported world views and
religious beliefs in older adults: The MacArthur Successful Aging Studies. Perceptual and Motor
Skills 2001;90:147–152.

Kochanska G, Forman DR, Coy KC. Implications of the mother-child relationship in infancy
socialization in the second year of life. Infant Behavior & Development 1999;22:249–265.

Koopman SJ, Shephard N, Doornik JA. Statistical algorithms for models in state space using SsfPack
2.2. Econometrics Journal 1999;2:113–166.

Landa R, Holman KC, Garret-Mayer E. Social and communication development in toddlers with early
and later diagnosis of autism spectrum disorders. Archives of General Psychiatry 2007;64:853–
864. [PubMed: 17606819]

Landry SH, Smith KE, Miller-Loncar CL, Swank PR. Predicting cognitive-language and social growth
curves from early maternal behaviors in children at varying degrees of biological risk.
Developmental Psychology 1997;33:1040–1053. [PubMed: 9383626]

Larsen RJ. The stability of mood variability: A spectral analytic approach to daily mood assessments.
Journal of Personality and Social Psychology 1987;52:1195–1204.

Larsen RJ. Toward a science of mood regulation. Psychological Inquiry 2000;11:129–141.
Lavie P. Nonstationarity in human perceptual ultradian rhythms. Chronobiologia 1977;4:38–48.

[PubMed: 880851]
Levenson RW, Gottman JM. Marital interaction: Physiological linkage and affective exchange. Journal

of Personality & Social Psychology 1983;45:587–597. [PubMed: 6620126]
MacCallum RC, Kim C, Malarkey WB, Kiecolt-Glaser JK. Studying multivariate change using

multilevel models and latent curve models. Multivariate Behavioral Research 1997;32:215–253.
Merin N, Young GS, Ozonoff S, Rogers S. Visual fixation patterns during reciprocal social interaction

distinguish a subgroup of 6-month-old infants at-risk for autism from comparison infants. Journal
of Autism and Developmental Disorders 2007;37:108–121. [PubMed: 17191096]

Messinger DS. Positive and negative: Infant facial expressions and emotions. Current Directions in
Psychological Science 2002;11:1–6.

Messinger DS, Cassel T, Acosta S, Ambadar Z, Cohn JF. Infant smiling dynamics and perceived
positive emotion. Journal of Nonverbal Behavior 2008;32:133–155. [PubMed: 19421336]

Messinger DS, Mahoor M, Chow S, Cohn JF. Continuously Automated Measurement of Facial
Expression in Infant-Mother Interaction: A Pilot Study. Infancy. 2008 in press.

Molenaar PCM, Newell KM. Direct fit of a theoretical model of phase transition in oscillatory finger
motions. British Journal of Mathematical and Statistical Psychology 2003;56:199–214. [PubMed:
14633332]

Moore GA, Cohn JF, Campbell SB. Mothers’ affective behavior with infant siblings: Stability and
change. Developmental Psychology 1997;33:856–860. [PubMed: 9300218]

Mundy, P.; Hogan, A. Intersubjectivity, joint attention and autistic developmental pathology. In:
Cicchetti, D.; Toth, S., editors. A developmental perspective on the self and its disorders;

Chow et al. Page 18

Emotion. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Rochester Symposium of Developmental Psychopathology; Hillsdale, N. J: Lawrence Erlbaum;
1994. p. 1-30.

Nesselroade, JR. The warp and woof of the developmental fabric. In: Downs, R.; Liben, L.; Palermo,
D., editors. Visions of development, the environment, and aesthetics: The legacy of Joachim F.
Wohlwill. Hillsdale, NJ: Lawrence Erlbaum Associates; 1991. p. 213-240.

Ong AD, Allaire JC. Cardiovascular intraindividual variability in later life: The influence of social
connectedness and positive emotions. Psychology and Aging 2005;20:476–485. [PubMed:
16248706]

Otter P. Dynamic structure systems under indirect observation: Indentifiability and estimation aspects
from a system theoretic perspective. Psychometrika 1986;51:415–428.

Pickles A, Starr E, Kazak S, Bolton P, Papanikolaou K, Bailey A, Goodman R, Rutter M. Variable
expression of the autism broader phenotype: Findings from extended pedigrees. Journal of Child
Psychology and Psychiatry 2000;41:491–502. [PubMed: 10836679]

Raudenbush S, Brennan R, Barnett R. A multivariate hierarchical model for studying psychological
change within married couples. Journal of Family Psychology 1995;9:161–174.

Révész, P. Random walk in random and non-random environment. Singapore: World Scientific; 1990.
Schweppe F. Evaluation of likelihood functions for gaussian signals. IEEE Transactions on

Information Theory 1965;11:61–70.
Shumway, RH.; Stoffer, DS. Time series analysis and its applications. New York: Springer–Verlag;

2000.
Smith, LB.; Thelen, E. A dynamic systems approach to development. Cambridge, MA: MIT Press;

1993.
Stern, DN. The interpersonal world of the infant: A view from psychoanalysis and developmental

psychology. New York: Basic Books; 1985.
Szatmari P, MacLean JE, Jones MB, Bryson SE, Zwaigenbaum L, Bartolucci G, Mahoney WJ, Tuff L.

The Familial Aggregation of the Lesser Variant in Biological and Nonbiological Relatives of PDD
Probands: a Family History Study. The Journal of Child Psychology and Psychiatry and Allied
Disciplines 2000;41:579–586.

Tarvainen MP, Georgiadis SD, Ranta–aho PO, Karjalainen PA. Time-varying analysis of heart rate
variability signals with Kalman smoother algorithm. Physiological measurement 2006;27:225–
239. [PubMed: 16462010]

Tronick H, Adamson L, Wise S, Brazelton B. The infant’s response to entrapment between
contradictory messages in face-to-face interaction. American Academy of Child Psychiatry
1978;17:1–13.

Tronick E. Emotions and emotional communication in infants. American Psychologist 1989;44:112–
119. [PubMed: 2653124]

Tronick E, Cohn J. Infant-mother face-to-face interaction: Age and gender differences in coordination
and the occurrence of miscoordination. Child Development 1989;60:85–92. [PubMed: 2702877]

Tronick EZ, Gianino A. Interactive mismatch and repair: Challenges to the coping infant. Zero to
Three Bulletin of the National Center for Clinical Infant Programs 1986;3:1–6.

Tronick EZ, Messinger DS, Weinberg MK, Lester BM, LaGasse L, Seifer R, Bauer CR, Shankaran S,
Bada H, Wright LL, Poole K, Liu J. Cocaine exposure is associated with subtle compromises of
infants’ and mothers’ social-emotional behavior and dyadic features of their interaction in the
face-to-face still-face paradigm. Developmental Psychology 2005;41:711–722. [PubMed:
16173869]

Weber EJ, CMP, Van der Molen MW. A nonstationarity test for the spectral analysis of physiological
time series with an application to respiratory sinus arrhythmia. Psychophysiology 1992;29:55–65.
[PubMed: 1609027]

Wei, WWS. Time series analysis. Redwood City, CA: Addison–Wesley; 1990.
Weinberg MK, Tronick EZ. Infant affective reactions to the resumption of maternal interaction after

the still-face. Child Development 1996;67:905–914. [PubMed: 8706534]
West, B. An essay on the importance of being nonlinear. Berlin: Springer-Verlag; 1985.

Chow et al. Page 19

Emotion. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Yale ME, Messinger DS, Cobo-Lewis AB. The temporal coordination of early infant communication.
Developmental Psychology 2003;39:815–824. [PubMed: 12952396]

Yirmiya N, Gamliel I, Pilowsky T, Feldman R, Baron-Cohen S, Sigman M. The development of
siblings of children with autism at 4 and 14 months: Social engagement, communication, and
cognition. Journal of Child Psychology and Psychiatry 2006;47:511–523. [PubMed: 16671934]

Zautra AJ, Reich JW, Davis MC, Nicolson NA, Potter PT. The role of stressful events in the
relationship between positive and negative affects: Evidence from field and experimental studies.
Journal of Personality 2000;68:927–951. [PubMed: 11001154]

Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P. Behavioral manifestations of
autism in the first year of life. International Journal of Developmental Neuroscience 2005;23:143–
152. [PubMed: 15749241]

Chow et al. Page 20

Emotion. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Screenshot of the Continuous Measurement System (CMS).
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Figure 2.
(a), (c) & (d): Plots of each infant’s mean ratings during the FF, SF and RE, respectively;
(b), (d) & (e): plots of each parent’s mean ratings during FF, SF and RE.
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Figure 3.
Path diagram of the bivariate AR(2) model. The dark filled circles attached to the lag-1
cross-regression paths, φinfant–>parent,i and φparent–>infant,i indicate that individual differences
are included in the P→I and I→P cross-regression parameters. The index for episode (k) is
omitted from the path diagram to simplify the notations. Infantit = manifest measurement of
infant (in dyad) i’s emotional valence at time t; Parentit = manifest measurement of parent
(in dyad) i’s emotional valence at time t einfant,it = measurement error for infant; eparent,it =

measurement error for parent;  = measurement error variance for infant;  =
measurement error variance for parent; φ1,infant, φ1, parent, φ2,infant, φ2, parent = AR(1)
parameter for infant, AR(1) parameter for parent, AR(2) parameter for infant and AR(2)
parameter for parent; φinfant–>parent = cross-regression from infant’s emotion at time t−1 to
parent’s emotion at time t; φparent–>infant = cross-regression from parent’s emotion at time t
−1 to infant’s emotion at time t.
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Figure 4.
Path diagram of the stochastic regression model with AR(2) component used to represent
time-varying concurrent synchrony between parents and infants. The index for episode (k) is
omitted from the path diagram to simplify the notations. Infantit = manifest measurement of
infant (in dyad) i’s emotional valence at time t; Parentit = manifest measurement of parent
(in dyad) i’s emotional valence at time t; Statusi = ASD status for infant i (0 for COMP-sibs,
1 for ASD-sibs); αit = AR component; φ1 =AR(1) parameter; φ2 =AR(2) parameter; Bit =

regression parameter at time t;  = variance for AR component;  = variance for time-
varying regression parameter; d1 = deviation in AR variance associated with ASD-sibs
compared with COMP-sibs; d2 = deviation in variance for the regression parameter
associated with ASD-sibs compared with COMP-sibs.
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Figure 5.
(a) Predicted trajectories of parents of male vs. female infants in the SF vs. FF/RE condition;
(b) Predicted trajectories of male and female infants in the SF vs. FF/RE condition. The
horizontal dotted lines in (a) and (b) represent the baseline affective level toward which each
participant’s recovery trajectory converges. One time series of residual errors, et, is used in
all simulations to generate the same magnitudes of perturbations in all conditions. For
infants, the predicted trajectories are generated by iterating through the equation

whereas the predicted trajectories for parents are generated using the same initial condition
and time series of residual errors, but with
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Figure 6.
Estimated regression weights for each dyad based on parameter estimates from the final AR
with stochastic regression model. The regression weights were estimated by means of the
Kalman smoother for (a) the FF episode, (b) the SF episode and (c) the RE episode.
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Table 1

Infant Ethnicity, Gender, and Risk Status

Infant Risk Status

Comparison-sibs ASD-sibs

Infant Ethnicity Male Female Male Female

White 3 5 4 3

Hispanic 4 2 7 2

Black/Other 2 2 2 2

Total 9 9 13 7
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Table 2

Parameter Estimates Obtained from Fitting the Final Bivariate VAR(2) Models.

Parameters Estimates (SE) Parameters Estimates (SE)

Infant AR(1) parameter (φ1,infant) 1.16 (.01) Gender on I → P cross-regression (c2) .002 (.01)

Infant AR(2) parameter (φ2,infant) −.36 (.01) SFvsFF/RE on I → P cross-regression (c3) −.05 (.01)

Parent AR(1) parameter (φ1,parent) .98 (.01) SFvsFF/RE x Gender on I → P cross-regression (c6) .02 (.009)

Parent AR(2) parameter (φ2,parent) −.20 (.01)
Between-dyad variance in P → I cross-regression
( σuparent−>infant

2 )

.002 (.001)

Baseline P → I cross-regression (b0) .03 (.01)
Between-dyad variance in I → P cross-regression
( σuinfant−>parent

2 )

.002 (.001)

SFvsFF/RE on P → I cross-regression
(b3)

−.02 (.01)
Error variance for parent ( σeparent

2 )
.28 (.003)

Baseline I → P cross-regression (c0) .05 (.01)
Error variance for infant ( σeinfant

2 )
.21 (.002)

Note: All parameter estimates except for c2 were statistically different from zero at the .05 level. P → I = parent to infant; I → P = infant to parent.
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Table 3

Time-Invariant Parameter Estimates Obtained from Fitting the AR Model with Stochastic Regression
Component to Data from Each of the Three Episodes.

Parameters Estimates (SE) for FF Estimates (SE) for SF Estimates (SE) for RE

Group-based AR(1) parameter (φ1) 1.24 (.01)* 1.02 (.02)* 1.25 (.01)*

Group-based AR(2) parameter (φ2) −.40 (.01)* −.27 (.02)* −.42 (.01)*

Group-based variance for AR(1) component ( σα0
2 )

.39 (.01)* .59 (.01)* .45 (.01)*

Group-based variance for time-varying regression coefficient
( σB0

2 )

.012 (.005)* .01 (.02) .04 (.01)*

AR variance difference (ASD-sibs - COMP-sibs; d1) .003 (.006) −.05(.02)* −.08 (.01)*

Regression variance difference (ASD-sibs - COMP-sibs; d2) .00 (.00) −.00 (.00) .00 (.00)

*
p < .05
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