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The post-translational modification of histones regulates many
cellular processes, including transcription, replication and DNA
repair. A large number of combinations of post-translational
modifications are possible. This cipher is referred to as the histone
code. Many of the enzymes that lay down this code have been
identified. However, so far, few code-reading proteins have been
identified. Here, we describe a protein-array approach for
identifying methyl-specific interacting proteins. We found that
not only chromo domains but also tudor and MBT domains bind
to methylated peptides from the amino-terminal tails of histones
H3 and H4. Binding specificity observed on the protein-domain
microarray was corroborated using peptide pull-downs, surface
plasma resonance and far western blotting. Thus, our studies
expose tudor and MBT domains as new classes of methyl-lysine-
binding protein modules, and also demonstrates that protein-
domain microarrays are powerful tools for the identification of
new domain types that recognize histone modifications.
Keywords: lysine methylation; protein-domain arrays;
tudor domain
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INTRODUCTION
Covalent modification of histones is important for the regulation of
transcription and chromatin dynamics (Ehrenhofer-Murray, 2004).
These covalent modifications are deposited in a combinatorial
manner, predominantly on the amino-terminal tails of the core
histones. This combinatorial assortment of phosphorylation,
acetylation and methylation on these tails has been termed the

‘histone code’ (Jenuwein & Allis, 2001). The complexity of this
code is further enhanced by the fact that there are three forms of
lysine methylation (mono-, di- and tri-) and two forms of arginine
methylation (mono- and di-; Aletta et al, 1998). It has been
demonstrated that different codes are associated with active and
suppressed transcriptional states, which inturn results in the
recruitment of distinct protein complexes that affect chromatin
structure. A subset of proteins within these complexes harbour
conserved protein domains, which are believed to be responsible
for mediating these interactions. These include chromo domains
that bind to methylated lysine residues and bromo domains that
bind to acetylated lysine residues (Jenuwein & Allis, 2001).

Histone acetylation is associated with an active transcriptional
state, whereas lysine methylation can be either repressive or
activating, depending on the site of the post-translational
modification. In support of the idea that distinct methyl-lysine
marks recruit different proteins that in turn specify different
transcriptional responses, it has been shown that lysine 9
methylation on histone H3 (H3K9me) results in the chromo
domain-dependent recruitment of HP1 (Bannister et al, 2001;
Lachner et al, 2001). Likewise, specific chromo domain-mediated
interactions occur between H3K27me and Polycomb (Fischle
et al, 2003; Min et al, 2003), and between H3K4me and Chd1
(Pray-Grant et al, 2005). Recently, the WD40 repeats of WDR5
were shown to directly associate with H3K4me (Wysocka et al,
2005). Thus, methyl marks on histone tails are not read by chromo
domain-containing proteins alone.

Chromo domains and bromo domains are usually found in
proteins that are associated with chromatin. There are several
other domain types that are also found predominantly in
chromatin-associated proteins, including tudors, PhDs, SANTs,
SWIRMs, MBTs and PWWPs. Indeed, some of these domain types
(tudors, MBTs and PWWPs) are structurally related to chromo
domains and have been collectively called the ‘royal family’
(Maurer-Stroh et al, 2003). It has been suggested that the ‘royal
family’ of protein domains may have functional similarities. In
keeping with this idea, the tudor domain of the protein mutated in
spinal muscular atrophy, the SMN protein, binds to a symmetri-
cally dimethylated arginine motif (Friesen et al, 2001), and recent
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studies have shown that the tudor domain of the double-stranded
break-sensing protein, 53BP1, can bind to H3K79me2 (Huyen
et al, 2004).

To screen for protein domains that possess the ability to
‘read’ the modification status of the histone tails, we have taken
a protein-domain microarray approach. Similar microarray
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I1 MI-2
I2 HP1α
I3 HP1γ
I4 Msl3-like
I5 SUV39H1 
I6 CBX1
I7 HP1β
I8 CDY1

C1 EBNA-2Co-A
C2 Ret-bp1
C3 M96
C4 STK31
C5 53BP1/1-2
C6 53BP1/1
C7 53BP1/2
C8 Anchor
C9 JMJD 2B
C10 JMJD 2C
C11 RBP1like-2
C12 SMN

PWWP
E1 BRPF1 
E2 BS69

E4 DNMT3B
E5 HDGF
E6 HRP-3
E7 MSH6
E8 NSD1
E9 WHSC1-1 

Bromo Bromo
K1 GCN5
K2 TAF1- D1
K3 TAF1- D2
K4 P/CAF
K5 SP140
K6
K7 SNF2 β
K8 SMAP
K9 BAF180 1-2
K10 BAF180 3 
K11 BAF180 3-4 
K12 BAF180 5-6 

L1 TIF1α
L2 KAP-1
L3 P300
L4 WDR9 1-2
L5 WDR9 1
L6 WDR9 2
L7 BAZ
L8 BRDT 1-2
L9 BRDT 1
L10 BRDT 2

SANT/SWIRM
F1 MPP11-like 
F2 MTA1
F3 N-CoR2
F4 N-CoR2-1
F5 N-CoR2-2
F6 N-CorR1 
F7 RERE
F8 ADA2-SANT 
F9 ZuotinRel.
F10 KIAA1915
F11 KIAA0601
F12 ADA2-Swirm

B1 TDRD1/1
B2 TDRD1/2
B3 TDRD2 
B4 TDRD3 
B5 TDRD4-1 
B6 TDRD4-2 
B7 TDRD4-3 
B8 TDRD5 
B9 PCTAIRE-1
B10 PCTAIRE-2 
B11 PCTAIRE-3 
B12 JMJD2A/1-2

PhD + 
G1 JMJD2APhD+2Tudor
G2 JMJDPhD+JMJC
G3 M96Tudor+PhD
G4 MYST4PhD+PhD
G5 NSD1PhD+PWWP
G6 WHSC1PhD+PWWP
G7 PRKCB1
 PhD+BRD+PWWP
G8 BS69PhD+ BRD 

Tudor Tudor Tudor
A1 ESET
A2 CG1−72
A3 FX(56−152)
A4 C20orf140
A5 JMJD2A/2
A6 Pombe 1
A7 Pombe 2 
A8 Colon 1 
A9 Colon 2
A10 JMJD2A/1
A11 Tudor 9 
A12 LaminB

MBT-tudor
J1 L(3)MBT
J2 SCML1
J3 SCML2
J4 SCMH1
J5 LML2
J6 KIAA1617
J7 C20orf140-MBT
J8 CG1-72-MBT
J9 C20orf140-MBT+TDR

CW
D1 CW1 
D2 CW3 
D3 CW4 
D4 CW5 
D5 CW6
D6
D7
D8
D9 Tudor Rhp9
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H1 TIP60 
H2 CHD2
H3 CHD4
H4
H5 SMARCC2
H6 MRG15 
H7 RBBP1
H8 PC2
H9 PC3
H10 CHD5
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Anti-GST SmD3-Rme2s

H3K79me2 H3K79

Fig 1 | Methylated peptides bind to tudor domains on the CADOR chip. (A) A collection of 109 glutathione S-transferase (GST) fusion proteins were

arrayed in duplicate on a nitrocellulose slide. The layout of the array is shown. The middle position (M) contains GST alone as a background

indicator. (B) The arrayed GST fusion proteins are listed. The accession numbers and regions cloned can be found in the supplementary information

online. (C) The array was first probed with an anti-GST antibody and detected with a fluorescein isothiocyanate-conjugated secondary antibody to

establish roughly equal loading. The array was subsequently probed with Cy3-labelled peptides, including a peptide from SmD3 that harbours

symmetrically dimethylated arginine residues and peptides harbouring K79 from histone H3 in dimethylated and unmethylated forms. The H3K79me2

peptide shows a high degree of methyl-independent binding. A methyl-dependent interaction is seen with the tudor domain of C20orf104 (red oval).

The tudor domains of 53BP1 are marked (blue oval).
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approaches have been used to identify protein–protein inter-
actions, including interactions that are sensitive to arginine
methylation and are phospho-serine dependent (Espejo et al,
2002; Liu et al, 2002). The arrays used in the above-mentioned
studies focused on signal-transduction issues and harboured WW,
SH3, SH2, PDZ and 14.3.3 domains. To address the subject of
modified histone tails binding to protein domains, we generated
a microarray that focused on domains found in chromatin-
associated proteins. This chromatin-associated domain array
(CADOR) chip contains bromo, chromo, tudor, PhD, SANT,
SWIRM, MBT, CW and PWWP domains fused to glutathione
S-transferase (GST).

To identify novel methyl-lysine-dependent protein–protein
interactions, we have probed the CADOR chip with fluorophore-
tagged N-terminal peptides from histones H3 and H4 that vary in
their degree and position of methylation. The well-documented
interaction between the chromo domains of HP1 (a, b and g)
and H3K9me peptides was detected. In addition, novel methyl-
dependent interactions are seen with a chromo domain (CDY1),
tudor domains (53BP1, C20orf104 and JMJD2A) and MBT
domains (CGI-72 and L(3)MBTL), thus demonstrating the feasi-
bility of this approach for identifying proteins that read
the histone code.

RESULTS
Detection of known methyl-dependent interactions
To identify potential proteins that can bind to histone tails in
a modification-dependent manner, we generated protein
microarrays using domains found predominantly in chromatin-
associated proteins. To generate these CADOR chips, 109
different protein domains were cloned as GST fusions (Fig 1A,B)
and spotted onto nitrocellulose-coated glass slides (Fig 1C).
To establish that the binding integrity of the domains has been
maintained, the array was first probed with a symmetrically
arginine methylated peptide from the splicing factor SmD3

(SmD3-Rme2s), which has previously been demonstrated to
bind to the tudor domain of SMN (Friesen et al, 2001).
As expected, we see specific binding to SMN, as well as
novel interactions with the tudor domains of TDRD3 and a
Schizosaccharomyces pombe protein (Fig 1C). The unmethylated
SmD3 peptide does not bind to any fusion proteins (data not
shown). This raises the possibility that asymmetrically arginine
methylated peptide may also bind to tudor domains. It has also
been reported that the tudor domains of the double-stranded
break-sensing protein, 53BP1, can bind to H3K79me2 (Huyen
et al, 2004). The CADOR chip was thus also probed with
a peptide from histone H3 that harbours the dimethylated
K79 residue. In this case, methyl-dependent binding to the
tudor domain C20orf104 (red oval) was observed, but not
that of 53BP1 (blue oval). In addition, the unmethylated peptide
bound several domains.

Detection of novel methyl-dependent interactions
Next, to identify novel protein domains that could ‘read’ the
various post-translational modifications on histone tails, we
probed the CADOR chip with peptides that were mono-, di- or
tri-methylated at lysines 4 and 9 of histone H3 and lysine 20 of
histone H4 (Fig 2). The binding of the HP1 chromo domain to the
H3K9 methyl mark is well accepted, and this interaction is clearly
seen with all three HP1 variants. In addition, a novel interaction
between the CDY1 chromo domain and the H3K9me2 and
H3K9me3 peptides is observed. Only the H3K9 methyl mark
possesses the ability to bind to the arrayed chromo domains, and
no chromo domain interactions are seen with methylated peptides
harbouring H3K4 or H4K20.

Tudor domain binding is seen at all three methylation sites
tested (H3K4, H3K9 and H4K20; Fig 2), and not only the site of
methylation but also the degree of methylation (mono-, di- or tri-)
is important for binding. The tudor domains of 53BP1 preferen-
tially bind to the di-methylated state of all three sites. The tudor

H3K4me1 H3K9me1 H4K20me1

H3K4me2 H3K9me2 H4K20me2

H3K4me3 H3K9me3 H4K20me3

Fig 2 | Probing the CADOR chip with a series of methylated peptides from the tails of histones H3 and H4. The protein-domain microarray was probed

with Cy3-labelled peptides. The unmethylated H3(1–18) and H4(11–28) peptides showed no binding (data not shown). Chromo domain interactions

are blocked with a white square. Tudor domain interactions are highlighted with ovals: C20orf104 (red), 53BP1 (blue) and JMJD2A (turquoise).

MBT domain interactions are marked with rectangles: CGI-72 (orange) and L(3)MBTL (yellow).
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domain of C20orf104 shows a similar binding profile to 53BP1.
The tudor domains of JMJD2A bind to di- and tri-methylated H3K4
and H4K20.

MBT domains bind most strongly to a mono-methylated
lysine mark. The MBT domains of both L(3)MBTL and
CGI-72 show this ability at H3K4me1. The MBT domain of
CGI-72 also binds to H4K20me1, and although L(3)MBTL
does not bind to the mono-methylated mark here, it binds
to H4K20me2.

To independently validate the domain–peptide interactions
that we detected with the CADOR chip, we used the more
traditional approaches of peptide pull-down (Fig 3) and surface
plasmon resonance (supplementary Fig S1 online). These recipro-
cal approaches confirmed the methyl-dependant domain inter-
actions first detected on the CADOR chip (Fig 2). The binding
data are summarized in Table 1.

Tudor and MBT domains bind core histones
We have found that the peptides from the N-terminal tails of
histones H3 and H4 have the ability to bind to a subset of tudor
domains. To establish that these domains not only bind to peptides
but also can interact with histones as a whole, we performed far
western assays with GST–tudor fusion proteins on core histone.
Core histones were isolated from G9a wild-type and null
embryonic stem cells and from Suv39h double-null mouse
embryonic fibroblasts (MEFs; Lachner et al, 2001; Tachibana
et al, 2002). G9a-null cells lack the di-methyl mark on H3K9, and
Suv39h double-null cells are not tri-methylated at H3K9 (Fig 4A—
western). As a control in this assay, we see that HP1b binds to
histone H3, and that the binding is reduced to histone H3 isolated
from both the G9a-null and Suv39h double-null cells. The HP1b
chromo domain binds to mono-, di- and tri-methylated H3K9
(Figs 2,3), and the loss of any one methylated form reduces this
binding to the histone, but does not eliminate it (Fig 4A—far
western). The chromo domains of HP1b and CDY1 show similar
binding profiles on both the CADOR array and by pull-down (Figs 2,3).
This similarity is again seen in the far western experiment, in which
the CDY1 chromo domain binds only to histone H3, and this
binding is sensitive to lysine 9 methylation by Suv39h and G9a.
Furthermore, full-length versions of these two chromo domain-
containing proteins colocalize in Suv39h wild-type but not double-
knockout MEFs, when co-transfected as DsRed–HP1b and green
fluorescent protein (GFP)–CDY1 fusions (Fig 4B). Probings with the
tudor domains of JMJD2A, C20orf104 and 53BP1 show that they
all bind to histones H3 and H4, but not to H2A or H2B (Fig 4A—far
western), as would be predicted from the domain and peptide pull-
down experiments (Figs 2,3). Interestingly, binding of the JMJD2A
tudor domains to histones H3 and H4 requires the presence of the
Suv39h enzymes. This could be explained by the recent findings
that tri-methylation of H3K9 is required for the subsequent tri-
methylation of H4K20 (Schotta et al, 2004), and suggests that the
JMJD2A protein has repressor activity.

DISCUSSION
Here we describe the use of a protein-domain microarray
approach to screen for chromatin-associated domains that
specifically recognize histone H3 and H4 tail peptides methylated
to varying degrees on specific lysine residues. It is important to
note that interactions may be missed when using this approach.
This could occur if the GST fusion protein has not retained its
structure under these relatively harsh conditions, or if two
domains within the same protein (or in the same complex) are
binding different marks on the histone tails, thus stabilizing an
interaction due to an avidity effect. However, using this approach,
we identified six novel methyl-dependent interactions between
domains and histone tails. The chromo domain of CDY1 can
interact with di- and tri-methylated H3K9. CDY1 is found on the
Y chromosome and has been implicated in the process of
spermatogenesis, and there is a strong association between the
loss of CDY1 function and male infertility (Machev et al, 2004).

From this study, tudor domains have emerged as a new domain
type that can bind to histone tails. The tudor domains of JMJD2A
bind most strongly to di- and tri- methylated H4K20, and also to
H3K4me3 and H3K9me3 (Figs 2,3). JMJD2A is a member of the
JMJD2 gene family. Three of the six JMJD2 family members
harbour two tudor domains (Katoh, 2004). Notably, JMJD2A
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Fig 3 | A pull-down-based approach detects methyl-dependent

interactions between domains (chromo, tudor and MBT) and methylated

histone tail peptides. Biotinylated peptides were immobilized on

streptavidin beads and used to pull down the indicated glutathione

S-transferase fusion proteins.
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(KIAA0677) was recently identified as a component of the N-CoR
corepressor complex (Yoon et al, 2003), and the tudor domains of
JMJD2A are required for its repressor activity (Zhang et al, 2005).
In addition, JMJD2A binds the retinoblastoma protein (Rb) and has
been implicated in the repression of E2F-regulated promoters
(Gray et al, 2005). This is consistent with our finding that the tudor
domains of JMJD2A lose their ability to bind to histones H3 and
H4 in the absence of Suv39h activity (Fig 4)—a signal that is
implicated in gene silencing (Lachner et al, 2001). 53BP1 is
involved in sensing DNA double-stranded breaks (Charier et al,
2004; Stucki & Jackson, 2004). The tudor domains of 53BP1 were
recently shown to bind to di-methylated lysine 79 on histone H3
(Huyen et al, 2004). Using a domain array approach, we do not
see methyl-dependent binding of this peptide to the tudor domains
of 53BP1 (Fig 1C). However, we do see binding of these tudor
domains to other di-methylated peptides, including H3K4me2,
H3K9me2 and H4K20me2 (Fig 2). The strongest relative binding
of the 53BP1 tudor domains is to H4-2mK20 (supplementary
Fig S1 online). This is in keeping with the recent finding that
in S. pombe, there is a genetic link between H4K20 methylation
and Crb2, the homologue of 53BP1 (Sanders et al, 2004). A similar
profile of binding is seen for the single tudor domain of
C20orf104. The C20orf104 has been identified as a tumour
antigen (Behrends et al, 2003).

The MBT domain-containing proteins CGI-72 and L(3)MBTL
bind to the mono-methylated mark on H3K4. CGI-72 also binds
to the mono-methylated form of H4K20, and L(3)MBTL binds to
H4K20me2 (Figs 2,3). L(3)MBTL is a member of the Polycomb
group proteins, which associates with condensed chromosomes
during mitosis (Koga et al, 1999) and possesses transcriptional

repressor activity (Boccuni et al, 2003). In addition, deletions
of the L(3)MBTL locus are associated with myeloid malignancies
(Li et al, 2004). CGI-72 has not been studied, but it is structurally
similar to C20orf104.

This study uses a novel approach to identify protein domains
that can ‘read’ post-translational modifications laid down on
histone tails, suggesting that the ‘royal family’ of protein domains
are an important class of methyl-dependent protein interaction
domains. Using this approach, it is likely that other domain–
peptide interactions will be detected, as more of the histone
code is used to probe this array. Furthermore, this approach will
allow us to investigate the importance of not only the degree
of methylation but also the combinations of different post-
translational modifications that promote or inhibit specific
interactions, thus getting at the crux of the histone code.

METHODS
Cloning and purification of GST fusion proteins. The comple-
mentary DNAs encoding the domains listed in Fig 1B (see
supplementary information online) were cloned into the pGEX-
6P1 vectors by PCR using a human cDNA library (Origene,
Rockville, MD, USA), and verified by DNA sequencing. GST
fusion proteins were purified as described previously (Espejo et al,
2002). The full open reading frame of CDY1 was cloned into
pEGFP (Clontech, Palo Alto, CA, USA) and HP1b was cloned into
DsRed2 (Clontech).
Generation of protein microarray, peptide synthesis and
labelling. The generation of protein microarrays has been
described (Espejo et al, 2002). Peptides were synthesized by the
W.M. Keck Center (New Haven, CT, USA). Methylated and

Table 1 | Summary of interaction detected in the pull-down assay

H3K9me1 H3K9me2 H3K9me3 H3K4me1 H3K4me2 H3K4me3 H4K20me1 H4K20me2 H4K20me3 H3K79me2* SmD3-Rme2s

Chromo domains

HP1a O O O — — — — — — — —

HP1b O O O — — — — — — — —

HP1g O O O — — — — — — — —

CDY1 — O O — — — — — — — —

Tudor domains

SMN — — — — — — — — — — O

TDRD3 — — — — — — — — — — O

Pombe-1 — — — — — — — — — — O

53BP1(1,2)z — O — — O — O O — — —

C20orf104 — O — — O — — O — O —

JMJD2A(1,2)z — — O — — O — O O — —

MBT domains

CGI-72 — — — O — — O — — — —

L(3)MBTL(2,3)z — — — O — — — O — — —

*This peptide shows a degree of methyl-independent binding.
zIf multiple domains are present in a protein, the numbers in parentheses indicate the domains in this particular clone.
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unmethylated forms of the following peptides were synthesized:
histone H3 (1–18)—acetyl-ARTKQTARKSTGGKAPRK-biotin, histone
H4 (11–28)—acetyl-GKGGAKRHRKVLRDNIQGK-biotin, histone
H3 (70–88)—acetyl-LVREIAQDFKTDLRFQSSK-biotin and SmD3
biotin-KGRGRGRRGGRGQNSASRGGSQR-cooh (all arginines are
symmetrically dimethylated). Biotinylated peptides were labelled
as described previously (Espejo et al, 2002).

Peptide pull-downs. Biotinylated peptides (20 mg) were immobi-
lized on 10 ml of streptavidin beads (Sigma, St Louis, MO, USA) in
200 ml of binding buffer (50 mM Tris–HCl pH 7.5, 15 mM NaCl,
1 mM EDTA, 2 mM dithiothreitol and 0.5% NP-40) at 4 1C. The
next day, the beads were washed three times with binding buffer
and then incubated with 25 mg of GST fusion protein for 2.5 h with
rotation at 4 1C. After five washes with binding buffer, the beads
were boiled in protein loading buffer, fractionated by 10% SDS–
polyacrylamide gel electrophoresis and subjected to western blot
analysis using an anti-GST antibody.
Far western blotting. Core histones were acid purified (Butler
et al, 1986) from G9a and Suv39h knockout and wild-type cell
lines, and 4 mg of each sample was run on SDS–polyacrylamide
gel electrophoresis, and then transferred onto a PVDF membrane.
Blots were blocked in PBS–Tween 20 containing 5% non-fat dry
milk, and then incubated with 5 mg/ml of the indicated GST fusion
protein in the blocking buffer overnight at 4 1C. The blots were
then probed with an anti-GST antibody followed by anti-rabbit–
horseradish peroxidase and then subjected to enhanced chemilu-
minescence (Amersham, Uppsala, Sweden) detection. Western
analysis was performed with antibodies specific to H3K9me2
(Upstate, Charlottesville, VA, USA; Cat# 07-212) and H3K9me3
(Upstate; Cat# 07-442).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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