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GSK-3 signaling in developing cortical 
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and dendritic orientation
Meghan Morgan-Smith1,2*, Yaohong Wu1, Xiaoqin Zhu1, Julia Pringle1,  
William D Snider1,2*

1UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States; 
2Neurobiology Curriculum, University of North Carolina, Chapel Hill, United States

Abstract GSK-3 is an essential mediator of several signaling pathways that regulate cortical 
development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β  
in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers 
exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was 
similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in 
interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. 
However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal 
orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. 
Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation  
of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data 
demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and 
suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins.
DOI: 10.7554/eLife.02663.001

Introduction
Glycogen synthase kinase (GSK-3) α and β are serine/threonine kinases that act as key downstream 
regulators in multiple signaling pathways, including Wnt/β-catenin, receptor tyrosine kinase (RTK)/PI3K, 
and Sonic hedgehog (Shh) (Kaidanovich-Beilin et al., 2012). GSK-3s act via mechanisms that include 
regulation of transcription factors, control of multiple aspects of cellular metabolism, and phosphoryl-
ation of cytoskeletal proteins (Hur and Zhou, 2010; Kaidanovich-Beilin and Woodgett, 2011). Most 
often, although not invariably, GSK-3s function as negatively acting kinases by inhibiting the functions 
of substrates at baseline. Inhibition is then relieved via signaling pathways that engage GSK-3 (Doble 
and Woodgett, 2003; Kaidanovich-Beilin and Woodgett, 2011). For most GSK-3 substrates, phos-
phorylation by another kinase near the GSK-3 site (‘priming’) is required for, or enhances, GSK-3 sub-
strate phosphorylation (Cohen and Frame, 2001; Doble and Woodgett, 2003; Kaidanovich-Beilin 
and Woodgett, 2011). Priming kinases for GSK-3 substrates include cyclin dependent kinase-5 (cdk5), 
a kinase that is known to regulate important neurodevelopmental events like radial migration (Tanaka 
et al., 2004; Cole et al., 2006; Li et al., 2006; Xie et al., 2006).

In the nervous system, GSK-3β has long been thought to be a target of lithium used in treatment of 
bipolar disorder (Klein and Melton, 1996; O'Brien et al., 2004). Some of the GSK-3β effects related 
to lithium actions are due to regulation of signaling downstream of dopamine receptors (Beaulieu 
et al., 2004, 2008; Urs et al., 2012). More recently GSK-3 signaling has been implicated in the path-
ogenesis of schizophrenia (Emamian et al., 2004; Mao et al., 2009; Emamian, 2012). Disrupted in 
Schizophrenia-1 (DISC1), mutated in some familial cases of schizophrenia, is thought to function in part 
by modulating GSK-3β effects on progenitor proliferation (Mao et al., 2009; Singh et al., 2011).
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Despite the obvious importance of GSK-3 signaling in pathogenesis and treatment of psychiatric 
disorders, there are important gaps in information on the role of GSK-3 in the developing brain. It has 
clearly been established that GSK-3 signaling is a strong regulator of radial progenitor proliferation in 
the developing cerebral cortex and that these effects are at least partly meditated through β-catenin 
(Chenn and Walsh, 2002; Kim et al., 2009). Additionally, a recent study demonstrated an important 
role for GSK-3 in regulating INP amplification, an effect associated with GSK-3β binding to the scaf-
folding protein Axin (Fang et al., 2013). Thus, critical roles for GSK-3 signaling in processes that con-
trol neuron number in the developing telencephalon have been established.

In contrast, functions of GSK-3 in regulating developing cortical neurons are much less clear. 
Multiple in vitro studies have suggested roles for GSK-3 in regulating neuronal polarity and axon 
growth and branching (see Hur and Zhou, 2010 for review). These functions are thought to be 
mediated via GSK-3 phosphorylation of microtubule-associated proteins (MAPs) including Collapsin 
response mediator protein-2 (CRMP-2) (Yoshimura et al., 2005), Adenomatous polypsis coli (APC) 
(Shi et al., 2004; Zhou et al., 2004), Tau (Stoothoff and Johnson, 2005), microtubule-associated 
protein 1B (MAP1B) (Trivedi et al., 2005), Doublecortin (DCX) (Bilimoria et al., 2010), and subse-
quent regulation of cytoskeletal dynamics. In general, inhibition of GSK-3β via serine 9 (ser9) and 
GSK-3α via serine 21 (ser21) phosphorylation and subsequent relief of phosphorylation of downstream 
targets is thought to be required for the formation of the axon and subsequent axonal growth (Jiang 
et al., 2005; Hur and Zhou, 2010). In a similar vein, a study employing in utero electroporation of an 
activating construct suggested that GSK-3 inhibition was essential for radial-guided cortical neuronal 
migration downstream of STK11 (LKB1) via a mechanism involving APC (Asada and Sanada, 2010). 
A prediction of this work might be that GSK-3 deletion would enhance axon growth and radial migra-
tion. However, to date these effects of GSK-3 on neuronal polarity and migration have not been 
confirmed with mouse genetic studies. Further, mice with point mutation knockins that prevent 

eLife digest In the brain, one of the most striking features of the cerebral cortex is that its 
neurons are organized into different layers that are specifically connected to one another and to 
other regions of the brain. How newly generated neurons find their appropriate layer during the 
development of the brain is an important question; and, in humans, when this process goes awry,  
it can often result in seizures and mental retardation.

An enzyme called GSK-3 regulates several major signaling pathways important to brain 
development. The GSK-3 enzyme switches other proteins on or off by adding phosphate groups 
to them.

Morgan-Smith et al. set out to better understand the role of GSK-3 in brain development by 
deleting the genes for this enzyme specifically in the cerebral cortex of mice. Mice have two genes 
that encode slightly different forms of the GSK-3 enzyme. Deleting both of these in different groups 
of neurons during brain development revealed that a major group of neurons need GSK-3 in order 
to migrate to the correct layer. Specifically, the movement of neurons from where they arise in the 
central region of the brain to the outermost layer (a process called radial migration) was disrupted 
when the GSK-3 genes were deleted.

Morgan-Smith et al. further found that cortical neurons without GSK-3 were unable to develop 
the shape needed to undertake radial migration because they failed to switch from having many 
branches to having just two main branches. Additional experiments revealed that these abnormalities 
did not depend on certain signaling pathways, such as the Wnt-signaling pathway or the PI3K 
signaling pathway that can control GSK-3 activity.

Instead, Morgan-Smith et al. found that two proteins that are normally targeted by the GSK-3 
enzyme have fewer phosphate groups than normal in the cortical neurons that did not contain the 
enzyme: both of these proteins regulate the shape of neurons by interacting with the molecular 
‘scaffolding’ within the cell. The GSK-3 enzyme was already known to modify the activities of many 
other proteins that affect the migration of cells. Thus, the findings of Morgan-Smith et al. suggest 
that this enzyme may coordinate many of the mechanisms thought to underlie this process during 
brain development.
DOI: 10.7554/eLife.02663.002
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ser9/21 phosphorylation are viable and have not been reported to show defects in neuronal mor-
phology or migration (McManus et al., 2005; Gartner et al., 2006). Finally, GSK-3 may regulate 
migration and morphology of cortical neurons via entirely different pathways for example via mediat-
ing effects of semaphorin signaling (Chen et al., 2008; Renaud et al., 2008; Nakamura et al., 2009).

We have now assessed GSK-3 functions in newly born cortical neurons using Neurod6 (Nex)-Cre 
(Goebbels et al., 2006) to mediate recombination of Gsk3 floxed alleles in INPs and newly born excit-
atory neurons. We demonstrate, surprisingly, that GSK-3 activity is essential for radial neuron migra-
tion in all areas of the cortex and in the hippocampus. In contrast, tangential migration is not affected 
after Gsk3 deletion in cortical interneuron precursors. Remarkably, the migration effects appear to be 
independent of Wnt/β-catenin signaling that mediates GSK-3 functions in neuronal progenitors. The 
few upper layer neurons that reached their normal location exhibited strikingly abnormal orientation 
of basal dendrites. GSK-3 control of migration and morphology is correlated with the regulation 
of phosphorylation of DCX on ser327 and CRMP-2 on Thr514. We conclude that GSK-3 is a critical 
regulator of neuronal migration and morphogenesis and that GSK-3 regulation is mediated by phos-
phorylation of key cytoskeletal proteins.

Results
GSK-3 signaling regulates migration of cortical excitatory neurons
To investigate the function of GSK-3 in developing cortical neurons, we generated Gsk3a−/−Gsk3bloxp/loxp: 
Neurod6-Cre mice (Gsk3:Neurod6). The Neurod6-Cre line induces recombination in intermediate 
progenitors of the dorsal telencephalon and early postmitotic neurons beginning at approximately 
embryonic day 11 (E11) (Goebbels et al., 2006). Prior studies using crosses with reporter lines indicate 
that recombination occurs in virtually all excitatory pyramidal neurons in the dorsal telencephalon 
(Goebbels et al., 2006; Monory et al., 2006). Western blot analysis of lysates from the whole cor-
tex, shows a 60% decrease in GSK-3β protein at E19.5 as compared with heterozygous litter mates 
(Figure 1C). Remaining GSK-3β protein in the mutants is likely due to lack of recombination in 
interneurons and developing glia. At E19, Gsk3:Neurod6 brains are roughly the same size as littermate 
controls. However, Gsk3:Neurod6 mice die shortly after birth (P0–P3) for reasons that have not yet 
been determined.

To explore neuronal functions of GSK-3, we first assessed cortical lamination at E16, a time of rapid 
neuronal migration along radial glial processes. Deep layer neurons appeared to be normally posi-
tioned (Figure 1—figure supplement 1). Thus staining with Tbr1, a layer 6 marker, revealed a distinc-
tive band in the deeper layers of the cortex in both controls and Gsk3:Neurod6 mutants. In contrast, 
we noted clear abnormalities in the localization of Cux1 expressing neurons that normally populate 
Layers 2/3 (Figure 1—figure supplement 1). A clear band of Cux1 positive neurons has formed in 
controls by E16. In contrast Gsk3:Neurod6 mice exhibit a dispersion of Cux1 cells with fewer neurons 
reaching the outermost layer, even at this early developmental stage.

Dramatic mislocalization of layer 2/3 neurons was apparent by E19.5. Coronal sections through 
developing somatosensory cortex showed a large population of Cux1 expressing neurons essen-
tially 'stuck' in the intermediate zone and throughout the deeper cortical layers (orange arrows) 
(Figure 1A–A’). Indeed some Cux1-expressing neurons in mutants were observed in the ventricular 
zone (yellow arrowhead). The migration defect in Gsk3:Neurod6 mutants was striking along the 
entire rostrol/caudal axis at E18.5, as observed in parasagittal sections (arrows) (Figure 1B–B'). The 
migration defect was particularly prominent anteriorly, a developmental profile corresponding to the 
neurogenic gradient of the developing cortex (Caviness et al., 2009).

We also generated Gsk3aloxp/loxp, Gsk3bloxp/loxp: Neurod6-Cre mice (Gsk3loxp:Neurod6) using a Gsk3aloxp/loxp 
mouse line, which harbors loxp sites flanking exon 2 of Gsk3a. Western blot analysis of lysates from the 
whole cortex at P0, verified an 85% decrease in GSK-3α and a 76% decrease in GSK-3β protein when 
compared with wild-type littermate controls (Figure 2B). At P0 as expected, Gsk3loxp:Neurod6 mice 
showed the same migration failure of upper layer neurons as Gsk3:Neurod6 (Figure 2A). Inspection 
and quantification, (Figure 2A,C) showed most Cux1+ neurons stuck in deeper layers in mutants, 
whereas in controls a heavy majority of neurons had already migrated to the most superficial layers. An 
increase in neurogenesis could in theory account for some of the Cux1+ neurons found in deeper lay-
ers, but counts of Cux1+ cells revealed no major difference in numbers between Gsk3 mutants and 
controls (control Cux1/total = 32.45% ± 3.74, mutant = 34.31% ± 0.649, p=0.561, unpaired t-test).

http://dx.doi.org/10.7554/eLife.02663
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Figure 1. GSK-3 signaling is essential for proper lamination of the developing cortex. (A–A') Cux-1 staining (red) in coronal sections from control and 
Gsk3:Neurod6 mice at E19.5. Cux-1 neurons are strikingly mislocalized in Gsk3:Neurod6 mutants (orange arrows) including a small population of neurons 
that remain in the ventricular zone (yellow arrowhead). Nuclei were counterstained with DRAQ5. Scale bar = 500 μm. (n = 4). (B–B') Cux-1 staining in 
parasagittal vibratome sections from control and Gsk3:Neurod6 mutants at E18.5. Cux-1 expressing neurons (arrows) are mislocalized in Gsk3:Neurod6 
mutants and populate the deeper layers of the cortex along the entire rostrol/caudal axis. Scale bar = 200 μm. (C) Representative Western blot confirms 
Figure 1. Continued on next page
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A few Cux1 neurons migrated successfully to layer 2/3 (area denoted by yellow lines) in Gsk3loxp: 
Neurod6 mutants (Figure 2A). Whether this subset of normally placed neurons did not undergo recom-
bination at an early enough stage for migration to be regulated could not be determined. However, 
these properly positioned neurons exhibited abnormalities of dendritic orientation (see Figure 5).

Interestingly, mice with floxed alpha rather than null alpha alleles survived somewhat longer than 
the Gsk3:Neurod6 mice but died after the second postnatal week (P15–P17). At P7, Gsk3loxp:Neurod6 
mutants exhibited a striking lamination phenotype involving Cux1 neurons (Figure 2D–D'). This per-
sistent lamination defect demonstrates that Gsk3 deletion results in permanent migration failure and 
does not simply result in a delay.

To further assess functions of GSK-3 in radial migration, we over-expressed Gsk3b in newly born 
cortical neurons using a pNeurod1 (Neurod1) vector (Guerrier et al., 2009). Co-electroporation of 
Neurod1-Cre and lox-STOP-lox Ai9 in control embryos at E15 (Figure 2—figure supplement 1A) was 
compared to co-electroporation of Neurod1-Gsk3b and Neurod1-Egfp in experimental embryos 
(Figure 2—figure supplement 1B). Importantly, over-expression of Gsk3b did not inhibit migration 
as might have been expected from prior studies (Asada and Sanada, 2010). In fact, Gsk3b over-
expression enhanced neuronal migration and resulted in greater than normal numbers of neurons 
populating the outermost layers of the cortex by E19.5 (Figure 2—figure supplement 1C).

Specificity of GSK-3 signaling for radial migration
Importantly, the migration defect in the developing cortex is specific to excitatory pyramidal neurons. 
In order to assess interneurons, we used the Dlx5/6-Cre (Stenman et al., 2003) line to generate 
conditional mice lacking Gsk3 in GABAergic interneurons. A robust decrease of GSK-3β protein (84%) 
was observed in E18 MGE lysates from Gsk3:DLX5/6-Cre mice when compared to littermate con-
trols (Figure 3D,E). Interneuron migration was monitored using the AI3 reporter line (Gsk3-Ai3:Dlx). 
Surprisingly, in both controls and Gsk3 mutants, interneurons exhibited robust migration along the 
two migratory streams (yellow arrows) from the medial ganglionic eminence (MGE) (Figure 3A–A'). In 
Gsk3 mutants, as in controls, interneurons entered all areas of the cortical plate by E19.5. Quantification 
is shown in (Figure 3—figure supplement 1). These results are not meant to imply that migration of 
interneurons was normal in every respect as we did not assess migration of specific interneuron subsets.

In order to assess the generality of GSK-3 regulation of radial migration, we assessed migration in 
developing hippocampus. The hippocampus, like the cortex, is an area where developing neurons 
migrate along radial glial-like processes (Nowakowski and Rakic, 1979; Eckenhoff and Rakic, 1984). 
Neurod6-Cre expression is evident in developing hippocampal neurons as early as E14 (Goebbels et al., 
2006), allowing us to delete Gsk3 in those cells. Pyramidal neurons generated from the hippocampal 
primordia undergo migration along radial processes to form CA1/CA3 and the dentate gyrus (DG) 
(Altman and Bayer, 1990). The transcription factor CTIP2 marks neurons in the developing CA1 region 
(Figure 3B). Gsk3:Neurod6 mice exhibited a striking hippocampal migration defect. CTIP2 expressing 
neurons did not migrate properly (yellow arrows) and as a consequence CA1 did not fully develop 
(Figure 3B–B'). As a result, CA1-3 and the DG (arrowheads) were disorganized, and the hippocampal 
sulcus was not well defined (Figure 3C–C'). These defects were striking in rostral areas, as shown, 
although somewhat less pronounced in caudal sections (data not shown). Interestingly, fimbrial axonal 
projections formed in Gsk3:Neurod6 mice (Figure 3B–B', orange arrows) demonstrating that even though 
migration fails, hippocampal neurons were able to polarize and extend appropriately directed axons.

Gsk3 deletion delays the multipolar to bipolar transition
To verify that the migration defect was cell autonomous and to visualize morphology of Gsk3-
deleted neurons, we introduced Cre and EGFP into a subpopulation of developing neurons in 
Gsk3a−/−Gsk3bloxp/loxp mice. Neurod1-Cre and lox-STOP-lox lacZ/Egfp (Z/EG) plasmids were injected 

strongly reduced GSK-3β protein levels in the E19.5 Gsk3:Neurod6 cortex compared to heterozygous control (n = 3 het control, n = 3 CKO). Relative 
Density *p<0.05, unpaired t-test.
DOI: 10.7554/eLife.02663.003
The following figure supplements are available for figure 1:

Figure supplement 1. Migration defect apparent by E16 after Gsk3 deletion in cortical excitatory neurons. 
DOI: 10.7554/eLife.02663.004

Figure 1. Continued
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into the ventricles and co-electroporated at E14–15.5. Electroporation at this age targets radial pro-
genitors that generate mainly upper layer neurons. This co-electroporation technique allowed us to 
visualize individual Gsk3-deleted neurons in an otherwise control background. Labeled neurons were 
imaged at late embryonic and postnatal stages.
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Figure 2. Migration defects in Gsk3-deleted mice are persistent. (A) P0:Cux 1 staining (red) in coronal sections of Gsk3loxp:Neurod6 mutants and 
littermate heterozygote controls. Cux1-expressing neurons are localized to layer2/3 in controls (denoted by yellow dashed lines) while Cux1-expressing 
neurons are localized throughout the cortical plate in the mutants. (n = 5, scale bar = 100 μm). (B) Representative Western blot of P0 cortical lysates 
confirms strongly reduced GSK-3α and GSK-3β protein levels in Gsk3loxp:Neurod6 mutants when compared to Gsk3aloxp/loxpGsk3bloxp/loxp controls. GAPDH 
was probed as a loading control (n = 3 control, n = 3 CKO). (C) P0 quantification of control and Gsk3loxp:Neurod6 Cux1 neurons using 8 bin analysis 
spanning white matter (WM) to the pial surface (PS), (n = 2 het control, n = 2 CKO). (D–D') P7: Gsk3loxp:Neurod6 mutants stained with Cux1 (red) show 
persistent altered lamination with Cux1-expressing neurons spread throughout all layers of the cortex. Littermate controls show normal Cux1 distribution 
in layer 2/3. Scale bar = 200 μm.
DOI: 10.7554/eLife.02663.005
The following figure supplements are available for figure 2:

Figure supplement 1. Gsk3 overexpression enhances radial migration. 
DOI: 10.7554/eLife.02663.006
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Figure 3. GSK-3 signaling is dispensable for tangential migration, but required for radial hippocampal migration. 
(A–A') E19.5 coronal sections showing EYFP-expressing interneurons in heterozygous control and Gsk3:Dlx5/6 
mutants crossed with the Ai3 reporter line. Gsk3-deleted interneurons (green) enter the cortex in two streams in 
both controls and mutants (arrowheads). Mutants showed no overt migration defect. Nuclei were counterstained 
with Hoechst. (n = 3). (B–B') E19 coronal sections of control and Gsk3:Neurod6 mutants showing CTIP2 (green) 
expressing neurons in the hippocampus. In the Gsk3:Neurod6 mutants, the pyramidal cell layer (green) does not 
extend laterally into a compact CA1 region and remains dispersed (yellow arrowheads). Fimbrial axonal 
projections appear normal in Gsk3:Neurod6 mutants (orange arrow). Nuclei were counterstained with DRAQ5. 
Figure 3. Continued on next page
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Deletion of Gsk3 in individual neurons phenocopies the migration delay seen in the Gsk3:Neurod6 
mutants. At E19 most control neurons were located in the upper cortical layers as expected (Figure 4A). 
In contrast, most Gsk3-deleted neurons had cell somas that were localized to the deeper layers of the 
cortex and very few were found in upper layers (Figure 4A'). Importantly, Gsk3-deleted neurons were 
clearly able to project axons (orange arrows) suggesting that initial polarization had proceeded in the 
absence of Gsk3. Further, most Gsk3 null neurons in the cortical plate elaborated a long leading pro-
cess directed toward the pial surface (yellow arrowheads) (Figure 4A'). Thus at least the initial stages 
of dendritic arborization also appeared to proceed in the absence of Gsk3.

The GSK-3 migration defect was strikingly persistent into the postnatal period. In mice electropo-
rated at E14–15.5 and analyzed at P10, Gsk3-deleted neurons remained in the deeper layers and 
subcortical white matter (Figure 4B–B'). Egfp-expressing neurons co-labeled with Cux1 (red) demon-
strating that they had acquired the proper laminar markers but were unable to attain the proper pos-
ition (Figure 4C, arrows). Again, long apical processes that reached the pial surface were elaborated 
by Gsk3-deleted neurons, basal dendrites formed, and axons projecting towards the corpus callosum 
were evident. Thus, Gsk3 regulates some critical aspect of migration but not the early stages of axon 
and dendrite formation.

In quantifying our results, we found that in control animals the majority of electroporated neurons 
(73.7%) were found in the upper layers of the cortex (yellow dashed lines) by P10 (Figure 4B–B',D). In 
contrast, Gsk3-deleted neurons remained in the deeper layers of the cortex and only 23% had reached 
the upper layer 2/3 by P10 (p=<0.005).

A number of in vitro studies have suggested that Gsk3 regulates neuronal polarization. It is plausi-
ble that some defect or delay in the polarization might account for migration failure. To test this idea, 
we electroporated Neurod1-Cre and Z/EG into the Gsk3a−/−Gsk3bloxp/loxp cortex, plated cortical cells 
in dissociated culture and assessed stage progression at 3 days in vitro (3DIV). We observed no statis-
tically significant difference in the stage progression between control and Gsk3-deleted neurons 
(Figure 4—figure supplement 1A). Further, Gsk3-deleted neurons that successfully extended an axon 
remained highly dynamic (Figure 4—figure supplement 1B) and extended and retracted neurites. 
Thus at least some processes that require complex cytoskeletal regulation proceed normally in the 
Gsk3-deleted neurons.

To assess the cell biological mechanisms of GSK-3 regulation of neuronal migration, we co-
electroporated Neurod1-Cre;Z/EG or a control pCAG-dsRED construct into the lateral ventricles of 
control and Gsk3a−/−Gsk3bloxp/loxp mice. This was followed by live imaging of migration ex vivo in a 
cortical slice preparation (Hand et al., 2005) at 3DIV. In controls electroporated with pCAG-dsRED, 
labeled neurons transitioned from multipolar to bipolar morphology and migrated through the cortical 
plate over a period of 12 hr, as expected (Figure 4E). The progress of individual neurons could readily 
be tracked and is indicated for three examples by the progress of the colored arrowheads in the three 
panels. In contrast, most Gsk3-deleted neurons failed to translocate through the intermediate zone 
and remained in a multipolar state in the outer subventricular zone (arrowheads) (Figure 4E and 
Videos 1, 2). Further, during the 12 hr of observation most Gsk3-deleted neurons did not transition to 
a bipolar morphology, a step thought to be required for radial-guided migration.

Abnormal dendritic orientation in Gsk3 mutants
That fact that multiple cytoskeletal proteins are GSK-3 substrates might suggest that Gsk3 deletion 
would have profound effects on dendrite and axonal arborization. To address GSK-3 regulation of 

Scale bar = 500 μm. (n = 3). (C–C') Higher magnification of hippocampal area shown in (B). The Gsk3:Neurod6 
mutants show disrupted cytoarchitecture. In the mutants, DRAQ5-labeled cells are mislocalized and diffuse 
(arrowheads) and fail to form clearly defined CA1/CA3 regions of the hippocampus. The Gsk3:Neurod6 mutant 
mice also lack a clearly defined hippocampal sulcus (green bars) and dentate gyrus (DG). (D) Representative 
Western blot of E18 MGE lysates confirm strongly reduced GSK-3β protein after recombination with Dlx5/6-Cre. (E) 
Quantification of protein knockdown in D (n = 3 WT, n = 3 CKO, unpaired t-test).
DOI: 10.7554/eLife.02663.007
The following figure supplements are available for figure 3:

Figure supplement 1. No apparent migration defect in Gsk3:Dlx5/6 mice. 
DOI: 10.7554/eLife.02663.008

Figure 3. Continued
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Figure 4. GSK-3 deletion delays the multipolar to bipolar transition. (A–A') Representative E19 coronal sections after in utero electroporation at  
E14.5 with Neurod1-Cre and Z/EG plasmids. Electroporated cells were visualized with anti-EGFP (green), and nuclei were stained with DAPI (blue). 
Gsk3-deleted neurons remain in the deeper layers of the cortex but elaborate a long pial-directed process (yellow arrowheads). Gsk3-deleted neurons 
elaborate axons projecting towards the corpus callosum (orange arrows). Scale bar = 200 μm (n = 5, two independent litters). (B–B') Coronal sections at 
P10 after E14.5 electroporation, as in A. Gsk3-deleted neurons remain in the deeper layers of the cortical plate and fail to reach layer 2/3 (denoted  
with yellow bars). Scale bar = 200 μm (n = 3, 2 independent litters). (C) Higher magnification of Gsk3-deleted neurons in B' (box). Gsk3-deleted neurons 
(green) in deeper layers co-label with Cux (red) (orange arrows). Nuclei were stained with Dapi. (D) Quantification of control and Gsk3-deleted neurons in 
Figure 4. Continued on next page
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cortical neuronal morphology, we deleted Gsk3 
using in utero electroporation of Neurod1-Cre 
as outlined above, and analyzed dendritic mor-
phology at P15.

As demonstrated above, most Gsk3-deleted 
neurons failed to migrate and populated the 
deeper layers of the cortex at P15. Many of these 
migration arrested neurons exhibited abnormal 
dendritic arbors (data not shown). Because  
improper laminar position might affect dendritic 
arborization, we focused analysis on a small sub-
set of Gsk3-deleted neurons that reached layer 
2/3. Images at E16 (Figure 1—figure supple-
ment 1) and E19 (Figure 4A') show that a few 
Gsk3-deleted neurons are normally positioned 
and suggest that these normally positioned neu-
rons did not undergo a substantial delay in  
migration. All of the neurons elaborated dendritic 
arbors and extended an axon into the corpus 
callosum. However, many of these normally posi-
tioned Gsk3-deleted neurons exhibited markedly 
abnormally oriented basal dendrites (Figure 5A, 
arrows). In many cases, basal dendrites were 
oriented towards the pial surface rather than 
towards the deeper cortical layers (Figure 5B–D). 
Additionally, Gsk3-deleted basal processes grew 

longer and were more branched than those of control neurons (Figure 5D and Figure 5—figure sup-
plement 1C,D). Many Gsk3-deleted neurons also exhibited striking defects in the apical dendrite 
(Figure 5C,C',E orange arrows and Figure 5—figure supplement 1B). Thus, apical dendrites of 
the Gsk3-deleted neurons, although properly oriented towards the pial surface often extended 
branches close to the soma that extended apically rather than laterally (Figure 5E, orange arrows and 
Figure 5—figure supplement 1B).

Perhaps surprisingly Gsk3-deleted neurons extended axons into the callosum towards the con-
tralateral cortex (Figure 4A,A’ orange arrows). Axonal arborization in the contralateral cortex had 
reduced density, an abnormality that is under further investigation (data not shown).

GSK-3 regulation of migration is independent of Wnt/β-catenin 
signaling
Signaling via β-catenin is an obvious candidate to mediate GSK-3 regulation of migration. In the 
canonical Wnt cascade, Wnt signaling through frizzled receptors leads to dishevelled and  
GSK-3 sequestration, β-catenin accumulation and enhanced β-catenin/TCF-mediated transcrip-
tion (Kaidanovich-Beilin and Woodgett, 2011). In radial progenitors, β-catenin signaling is clearly 
an important mediator of the effects of GSK-3 deletion on proliferation (Chenn and Walsh, 2002; 
Kim et al., 2009).

upper (layer 2–3) vs deeper layers of the cortex at P10. (n = 3, 4209 total neurons counted, 2234 control vs 1975 Gsk3 deleted) **p=0.003, unpaired t-test. 
(E) Gsk3 deletion delays the multipolar to bipolar transition. Still images from time-lapse imaging of slice cultures at 3DIV. pCAG-dsRED or Neurod1-Cre;Z/EG 
was injected into the ventricles of Gsk3a−/−Gsk3bloxp/loxp embryos and electroporated at E15. Representative images were taken at time 0, 6, and 12 hr. 
Control dsRed neurons migrate through the cortical plate (yellow, red, and blue arrows show individual neurons at the different time points). (n = 2 controls). 
Gsk3-deleted neurons fail to migrate through the cortical plate and exhibit persistent multi-polar morphology (yellow arrowheads). (n = 4 mutants).
DOI: 10.7554/eLife.02663.009
The following figure supplements are available for figure 4:

Figure supplement 1. Gsk3-deleted neurons polarize and are highly dynamic. 
DOI: 10.7554/eLife.02663.010

Figure 4. Continued

Video 1. Live cell imaging of radially migrating neurons 
in a cortical slice preparation. Control neurons 
electroporated at E15.5 migrate towards the pial 
surface after 3 days ex vivo. Neurons are imaged using 
time-lapse microscopy with images taken every 45 min 
for a 20-hr session.
DOI: 10.7554/eLife.02663.011
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To determine the role of GSK-3 regulation of 
β-catenin in developing cortical excitatory neu-
rons, we utilized a β-catenin (Ctnnb1) mouse that 
harbors loxP sites flanking exon 3 (Ctnnb1Ex3: 
Neurod6) (Harada et al., 1999). Exon 3 encodes 
the residues that GSK-3 phosphorylates to sig-
nal β-catenin degradation; thus deleting exon 3 
stabilizes β-catenin. Using a β-catenin antibody 
directed at the residues encoded by exon3 veri-
fied a reduction in this protein fragment at P0 as 
expected after Neurod6-mediated recombina-
tion (Figure 6C,H). Migration of Cux1 neurons 
was entirely normal in these animals (Figure 6A, 
Figure 6—figure supplement 1A). Further, in 
contrast to Gsk3:Neurod6, Ctnnb1Ex3:Neurod6 
mice survive, breed, and have no overt behav-
ioral phenotype. They display a rostral midline 
defect resulting from lack of the hippocampal 
commissure (data not shown), as seen in other 
models using stabilized β-catenin (Chenn and 
Walsh, 2003).

For additional assessment of the role of 
β-catenin signaling, we performed global anal-
ysis of GSK-3 transcriptional targets at E18 in 
control and Gsk3:Neurod6 cortical lysates using 
Affymetrix microarray analysis. Consistent with 

loss of Gsk3 in our conditional mutants, probe level information specific to exon 2 of Gsk3b showed 
that exon 2 was decreased by an average 2.15-fold. However, classic Wnt pathway target genes down-
stream of β-catenin/(TCF)/LEF-1 transcription factors, including CyclinD1, Brachyury, Wisp1, Cdx1, 
and Engrailed2 were unchanged (data made available in GEO, GSE58727). Finally mice in which 
β-catenin signaling is abrogated after Neurod6-Cre mediated recombination (Ctnnb1loxp/loxp:Neurod6) 
also show no change in migration of Cux1 neurons (ES Anton, personal communication, June 2014).

To further assess a potential role of Wnt/β-catenin signaling in cortical lamination, we created a 
conditional dishevelled 2loxp/loxp (Dvl2) mouse (Ohata et al., 2014). We then generated a triple mutant 
by crossing our floxed Dvl2loxp/loxp with existing Dvl1 and Dvl3 nulls and the Neurod6-Cre line 
(Dvl123:Neurod6). Deletion of all three Dvls presumably completely abrogates Wnt signaling via the 
canonical pathway. A robust decrease of DVL2 protein (91%) was observed in P0 cortical lysates from 
Dvl123:Neurod6 mutants when compared to Cre− Dvl2loxp/loxp controls (Figure 6C,H). These mice are 
born but die immediately at P0. Remarkably, lamination in the triple allele mutant Dvl123:Neurod6 
appears relatively normal at E18 (Figure 6B). This result further supports the idea that GSK-3 regula-
tion of migration is not mediated by the WNT/β-catenin cascade.

Surprising lack regulation by STK11 (LKB1), CDC42, and PTEN
Recent work utilized RNAi and GSK-3 S9A mutant constructs to conclude that STK11 (LKB1) inactiva-
tion of GSK-3 via ser9 phosphorylation alters neuronal migration (Asada and Sanada, 2010). However, 
Gsk3 knock-in S9A/S21A Gsk3 ‘constitutively active’ mice develop normally and migration defects 
have not been reported (Jiang et al., 2005; Gartner et al., 2006). To further address the issue of 
GSK-3 inhibition downstream of STK11, we genetically deleted Stk11 from developing excitatory neu-
rons (Stk11:Neurod6). Stk11:Neurod6 mutant mice die around P20. Western blot analysis verified a 
66% decrease in STK11 (LKB1) protein in Stk11:Neurod6 mutant mice when compared to heterozy-
gous littermate controls (Figure 6G,H). Perhaps surprisingly, no gross lamination abnormalities were 
observed (Figure 6D, Figure 6—figure supplement 1B). Thus in our hands, STK11 (LKB1) regulation 
of GSK-3 activity is not essential for radial-guided neuronal migration in vivo.

We also deleted a key regulator of Par6-aPKC, Cdc42, using Neurod6-Cre. aPKCs are also known 
to phosphorylate Ser9/Ser21 of GSK-3 (Etienne-Manneville and Hall, 2003). Cdc42:Neurod6 mutants 
also die shortly after birth, but again we observed no gross lamination defect in these mutant mice 

Video 2. Gsk3-deleted neurons fail to migrate in 
cortical slice preparation. Gsk3a−/−Gsk3bloxp/loxp mice 
electroporated at E15.5 with Neurod1-cre and Z/EG 
have an elongated multipolar stage and do not migrate 
towards the pial surface. Images were taken every  
45 min over a 20-hr imaging session.
DOI: 10.7554/eLife.02663.012
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Figure 5. GSK-3 signaling is required for proper dendrite orientation. (A) Gsk3 deleted neurons at P15 shown after in utero electroporation at E14.5 with 
Neurod1-Cre and Z/EG plasmids. Multiple neurons with obvious abnormalities in dendritic orientation were observed in the upper layers of the cortex 
(orange arrows). Scale bar = 200 μm. (B–B') Control and Gsk3-deleted neurons in the upper layers at P15, immunostained with antibodies against 
eGFP (black) using same methods as Figure 4. Gsk3-deleted neurons have abnormally polarized arbors indicated by orange arrows. Scale bar = 50 μm. 
Figure 5. Continued on next page

http://dx.doi.org/10.7554/eLife.02663
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(Figure 6E, Figure 6—figure supplement 1C). Western blot analysis verified an 87% decrease in 
CDC42 protein levels in mutants when compared to littermate wild type controls at P0 (Figure 6G,H).

In receptor tyrosine kinase (RTK) cascades, GSK-3 lies downstream of PI3K/ AKT signaling. Signals 
transduced through this cascade inhibit GSK-3 via phosphorylation on Ser9/Ser21 (Hur and Zhou, 
2010). The phosphatase PTEN suppresses PI3K signaling. To determine if PI3K signaling affects migra-
tion, we genetically deleted Pten in neurons using Neurod6-Cre. Western blot analysis at P0 revealed 
an 88% decrease in PTEN protein in our conditional knockouts when compared to littermate wild-type 
controls (Figure 6G,H). Though Pten:Neurod6 mutants die around birth, no overt lamination defects 
were observed (Figure 6F, Figure 6—figure supplement 1D).

These findings taken together suggest that regulation of GSK-3 phosphorylation at ser9/ser21 is 
not important in the control of radial migration.

Reduced phosphorylation of DCX and CRMP-2 in GSK-3 mutants
To determine the status of relevant GSK-3 targets, we conducted western blot analysis of GSK-3 
substrates that have been implicated in migration regulation. Recently, the key migration regu-
lator doublecortin (DCX) was shown to be a GSK-3 substrate (Bilimoria et al., 2010). In P0 cortical 
lysates of Gsk3loxp:Neurod6 mutants, we observed a 61% decrease in phosphorylated DCX on Ser327 
(Figure 7A–A'). These results demonstrate that DCX is importantly regulated by GSK-3 in developing 
cortical neurons.

CRMP-2 family proteins have also recently been implicated in control of radial migration (Ip et al., 
2014). We found an 80% decrease in phosphorylated CRMP-2 on Thr514 in P0 cortical lysates from 
Gsk3loxp:Neurod6 mutants (Figure 7A–A'). Changes in the phosphorylation status of DCX and CRMP-2 
have been implicated in migration control, raising the possibility that reduced functions of these pro-
teins toward microtubules are responsible for the effects of Gsk3 deletion.

GSK-3 regulation appeared to be surprisingly specific. Thus, we did not detect changes in pSer722 
FAK (Bianchi et al., 2005), pSer744 dynamin-1 (Clayton et al., 2010), and pSer129 CREB (Fiol et al., 
1994; Bullock and Habener, 1998) (Figure 7B–B'). Presumably other kinases contribute to phospho-
rylation of the putative GSK-3 sites in vivo. However, we cannot rule out changes that would be 
masked by the dilution effect of non-recombined cells, changes confined to specific cellular compart-
ments, or changes that might be more apparent later in development. There was no increase in cleaved 
caspase-3 staining or other evidence of apoptosis in the mutants at P0 (Figure 7B–B'). We did see 
increases in cleaved caspase-3 staining in cortex in Gsk3loxp:Neurod6 mice starting at later postnatal 
stages and these changes currently under investigation (data not shown).

Discussion
Overview
In this work, we have documented a cell autonomous requirement for GSK-3 signaling in migration 
and dendritic orientation of cortical excitatory neurons. GSK-3 activity is critical for the radial migration 
of later born, Cux1-expressing neurons in all regions of cortex, and for radial migration in the hippo-
campus. The GSK-3 requirement is specific for radial migration as tangential migration proceeded 
despite Gsk3 deletion. GSK-3 regulation of migration appears to be independent of Wnt/β-catenin 

(C–C') Neurolucida reconstructions of control and Gsk3-deleted neurons in the upper layers of the cortex. The axon (red) projects towards the ventricle 
in control and Gsk3-deleted neurons. Both apical dendrites (orange) and basal dendrites (blue) are more branched (orange arrows) and basal dendrites 
(blue) are mispolarized (blue arrowheads) in Gsk3-deleted neurons. Scale bar = 100 μm. (D) Basal dendrite quantification. Dendrogram shows that basal 
dendrites more frequently project towards the pial surface in Gsk3-deleted neurons when compared to control basal dendrite orientation. (n = 3, n = 3 
CKO; 15 control and 15 Gsk3-deleted neurons quantified). (E) Apical dendrite dendrogram indicates polarization and length of processes. Control 
apical dendrites project pially (90°). Numerous small apical branches form near the soma and project laterally (orange arrows). Gsk3-deleted neurons 
also project pially-directed apical dendrites. However, Apical branches have a pially-directed orientation, resulting in abnormal morphology (orange 
arrows, also see C').
DOI: 10.7554/eLife.02663.013
The following figure supplements are available for figure 5:

Figure supplement 1. Quantification of dendritic branching at P15 in control and Gsk3-deleted neurons. 
DOI: 10.7554/eLife.02663.014

Figure 5. Continued
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Figure 6. Lamination in other signaling mutants. (A) P0 representative coronal sections of control (heterozygous for floxed allele) and Ctnnb1Ex3:Neurod6 
mutants stained for Cux1 (red) and Hoechst (blue). (n = 5) Scale bar = 100 μm. (B) E18 Coronal sections of control and Dvl123:Neurod6 showing Cux-1 
(red) and DRAQ5 (blue) staining. Cux-1 neurons reach layer 2/3 in both controls and Dvl123:Neurod6 triple mutants. (n = 3). (C) Western blot verification 
Figure 6. Continued on next page
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and PI3K signaling. Rather, Gsk3 deletion is associated with striking reductions in phosphorylation of 
key microtubule regulatory proteins, DCX and CRMP-2.

GSK-3 regulation of cortical neuronal development
Our work builds on a growing body of evidence establishing critical requirements for GSK-3 in cortical 
neuronal development, with GSK-3 signaling having different functions at different developmental 
stages. In radial progenitors, GSK-3 is a critical mediator of proliferation via regulation of β-catenin 
(Kim et al., 2009). At later stages, recent work has demonstrated that GSK-3 is a key mediator of the 

of protein deletion after recombination of floxed alleles with Neurod6-Cre. Ctnnb1Ex3:NeuroD6 (n = 3 WT, n = 3 CKO), Dvl123:NeuroD6 (n = 3 WT, n = 3 
CKO). GAPDH was probed as a loading control. (D–F) P0 representative coronal sections of control (heterozygous for floxed allele) and indicated mutant 
lines stained for Cux1 and Hoechst. Scale bars are 100 μm, at least n = 5 per line. (G) Western blot verification of protein deletion in mutant lines. GAPDH 
was probed as a loading control. N's refer to numbers of mutants and paired controls. Stk11:Neurod6 (n = 2), Cdc42:Neurod6 (n = 2), Pten:Neurod6  
(n = 3). (H) P0 Western Blot quantification of Ctnnb1Ex3:Neurod6, Dvl123:Neurod6, Stk11:Neurod6, Pten:Neurod6 and Cdc42:Neurod6 lines.
DOI: 10.7554/eLife.02663.015
The following figure supplements are available for figure 6:

Figure supplement 1. Quantification of lamination in other signaling mutants. 
DOI: 10.7554/eLife.02663.016

Figure 6. Continued

Figure 7. Phosphorylation status of GSK-3 substrates. (A–A') Western blots of P0 cortical lysates from Gsk3loxp:Neurod6 
mutants and wild-type controls performed in triplicate. Levels of GSK-3 proteins and phospho-target proteins are 
shown. Strong reductions in phosphorylation of doublecortin on ser327/Thr321 and CRMP-2 on Thr514 are evident. 
(A') Quantification of relative densities from A. p values shown in figure (n = 3, unpaired t-test) (B–B') Western blots 
of cortical lysates at P0 showing levels of other GSK-3 targets. No changes were observed in phosphorylation of 
dynamin, pCREB, or pFAK. No change was observed in cleaved caspase-3. GAPDH was used as a loading control. 
(B') Quantification of relative protein densities (n = 3, unpaired t-test).
DOI: 10.7554/eLife.02663.017
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amplification of the INP pool via interactions with the scaffolding protein Axin (Fang et al., 2013). 
Axin-GSK-3 binding in the cytoplasm is clearly required for expansion of the INP pool, although the 
mechanism of GSK-3 action was not specified in this study. Interestingly, β-catenin regulation of tran-
scription in the nucleus was required for differentiation of INPs into neurons. These effects of GSK-3 
signaling on radial progenitors and INPs are presumably a strong determinant of final cortical neuronal 
number in mature animals.

We now find that excitatory neuron development is also under important GSK-3 regulation. Thus, 
Cux1-expressing neurons require GSK-3 signaling for timely multipolar to bipolar transition and migra-
tion along radial processes. Deeper layer neurons expressing Tbr1 were not strongly influenced, but 
we cannot be certain that GSK-3 protein was fully depleted in these earlier born neurons at the time 
migration was occurring. The behavioral consequences of migration failure and dendritic arbor abnor-
malities could not be assessed due to early death of the Gsk3-mutant animals. Whether death was due 
to cortical abnormalities or defects in other cells that underwent recombination with Neurod6-Cre 
could not be determined. However, even a very mild form of this type of migration defect would pre-
sumably be catastrophic for human brain development.

In contrast to regulation of progenitor proliferation and neural differentiation, GSK-3 regulation of 
radial migration appears to be independent of Wnt/β-catenin signaling. Thus, neither the stabilization 
of β-catenin nor deletion of all Dvls in developing cortical neurons using the Neurod6-Cre driver pro-
duced major defects in cortical layering. Interestingly, the migration defect also appears to be inde-
pendent from a migration defect associated with mutations of the schizophrenia-associated protein, 
DISC1. DISC1 regulates progenitor proliferation via interactions with GSK-3, decreased GSK-3 kinase 
activity and, ultimately, increased β-catenin signaling (Mao et al., 2009). Interestingly, a recent study 
demonstrated that DISC1 regulates migration independently of GSK-3 via effects on the centrosome 
(Ishizuka et al., 2011). However, our work reported here clearly demonstrates that GSK-3 also has a 
critical role in the regulation of cortical neuronal migration.

Radial migration is an enormously complex process requiring timely progenitor differentiation, dra-
matic morphological change, intricate mechanisms for cell and nuclear movements, and dynamic 
sensing of multiple cues that start and stop the process. Not surprisingly, GSK-3 joins dozens of other 
molecules implicated in the control of radial migration (see Ayala et al., 2007 for review). Comparisons 
with the literature suggest that effects of GSK-3 deletion are among the most severe that have yet 
been observed.

Interestingly, GSK-3 importantly regulates multiple proteins implicated in migration and is an 
important mediator in several of the signaling pathways involved. Thus GSK-3 is known to phospho-
rylate DCX (Bilimoria et al., 2010), FAK (Bianchi et al., 2005), dynamin (Clayton et al., 2010), neuro-
genin (Li et al., 2012), CRMP-2 (Uchida et al., 2005; Yoshimura et al., 2005), and MAP1B (Trivedi 
et al., 2005). Further, GSK-3 mediates Reelin signaling (Beffert et al., 2002), LKB1 effects (Asada and 
Sanada, 2010), Cdc42 effects (Etienne-Manneville and Hall, 2003), integrin signaling (Guo et al., 
2007), semaphorin signaling (Eickholt et al., 2002; Uchida et al., 2005), and other pathways that 
have been implicated in control of radial migration. Finally, GSK-3 shares multiple substrates with 
cdk5, a kinase that is situated among the most important regulators of neuronal migration and acts as 
a ‘priming’ kinase for GSK-3 signaling (Xie et al., 2006).

Clearly GSK-3 effects on neuronal development extend well beyond the phase of migration. For 
example, although dendritic arbors form, abnormalities in dendritic orientation were striking in Gsk3-
deleted neurons. Importantly, interference with semaphorin signaling mediators also produces abnor-
malities of apical process development and orientation of basal dendrites (see below).

Mechanisms of GSK-3 regulation
In general, GSK-3 acts via two classes of mechanisms: one where GSK-3 activity inhibits substrate 
function or availability and another where GSK-3 activity is required for substrate function. Therefore, 
we might expect Gsk3 deletion to enhance processes normally inhibited by GSK-3 activity and to 
inhibit processes that require GSK-3 activity.

Multiple studies have suggested that inhibition of GSK-3 kinase activity is important for morpholog-
ical functions such as establishment of neuronal polarity and cellular migration. The effects of GSK-3 
inhibition are thought to be mediated by dephosphorylation of CRMP-2, APC and other cytoskeletal 
mediators with resulting stabilization of microtubules at the tips of axons (Etienne-Manneville and 
Hall, 2003; Jiang et al., 2005; Yoshimura et al., 2005; Hur and Zhou, 2010). Another recent study 

http://dx.doi.org/10.7554/eLife.02663
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employing in utero electroporation suggested that an STK11(LKB1)/GSK-3 pathway resulting in 
GSK-3β ser9 phosphorylation and APC localization at the leading edge was important in cortical neu-
ronal migration (Asada and Sanada, 2010).

In the studies outlined above, inhibition of GSK-3β kinase activity is indicated by phosphorylation 
on Ser9 and inhibition of GSK-3α by phosphorylation on Ser21. However, a major unresolved paradox 
is that mice with Gsk3a and Gsk3b point mutation knock-ins that prevent ser9 and ser21 phospho-
rylation respectively do not exhibit widespread morphological abnormalities (Gartner et al., 2006). 
Similarly, truncation mutants of the Drosophila GSK-3 homologue, Shaggy, that lack inhibitory phos-
phorylation sites are not associated with morphological abnormalities (Papadopoulou et al., 2004). In 
the context of neuronal migration, although GSK-3 ser9/21 phosphorylation is enhanced downstream 
of Reelin signaling (Beffert et al., 2002; Gonzalez-Billault et al., 2005), GSK-3β kinase activity towards 
the important substrate MAP1B is actually increased rather than diminished (Gonzalez-Billault et al., 
2005). Finally, our findings reported here do not support critical roles in radial migration for STK11, 
CDC42, or PTEN, all of which are known to regulate GSK-3 ser9/21 phosphorylation. These findings, 
taken together, raise questions about the importance of negative regulation of GSK-3 via Ser9/21 
phosphorylation on functions of microtubule binding proteins related to migration in vivo.

Our results demonstrate that Gsk3 deletion blocks radial migration and that Gsk3 over-expression 
may enhance it. Thus our results are more in line with a mechanism in which GSK-3 activity is required 
for normal substrate function. Several proteins have been shown to require GSK-3 kinase activity for 
normal function. These include DCX where GSK-3 mediated phosphorylation is thought to be required 
for DCX's actions in regulating axon branching and possibly in migration (Bilimoria et al., 2010). 
Additional examples possibly relevant to migration are GSK-3 regulation of FAK phosphorylation at 
ser722 (Bianchi et al., 2005) and dynamin-1 phosphorylation of ser774 (Clayton et al., 2010). GSK-3 
phosphorylation regulates functions of these proteins in complex ways, but possibly enhances func-
tions that may be required for neuronal migration.

A well-studied example of a pathway that is associated with upregulation of GSK-3 activity is sema-
phorin signaling. Semaphorin family members have multiple roles as chemorepellants and chemoat-
tractants for many classes of axons and dendrites (for review see Pasterkamp, 2012). Semaphorin 
signaling strongly activates GSK-3 (Eickholt et al., 2002) resulting in phosphorylation of a key MAP, 
CRMP-2 (Uchida et al., 2005), as well as other CRMP family members (Cole et al., 2006; Yamashita 
and Goshima, 2012). Intriguingly, during neuronal polarization semaphorin signaling is associated 
with suppression of axons, and formation of dendrites (Shelly et al., 2011), consistent with the idea 
that dephosphorylated CRMP-2 may favor axon formation, whereas phosphorylated CRMP-2 may be 
critical to proper formation of dendritic arbors.

Importantly, migration and dendritic abnormalities that we have described here are consistent 
with cortical neuron phenotypes reported due to manipulation of semaphorin and CRMP signaling. 
Interfering with semaphorin, NP1 or Plexin via silencing RNAs and gene knockouts has been reported 
to interfere with radial migration (Chen et al., 2008; Renaud et al., 2008). Application of exogenous 
semaphorin supports apical process formation (Polleux et al., 2000). Further, reduced semaphorin 
signaling causes bifurcation of CA1 pyramidal dendrites in the developing hippocampus (Nakamura 
et al., 2009). Downstream of semaphorins, interfering with CRMP functions has been reported to 
affect migration and result in branched apical dendrites and abnormal dendrite orientation (Yamashita 
et al., 2012; Yamashita and Goshima, 2012; Ip et al., 2012; for a review see, Ip et al., 2014). Finally, 
in the context of cortical neuronal migration, phosphorylation of CRMP-2 promotes migration. Thus a 
GSK-3 phosphomimetic CRMP-2 can rescue migration defects associated with knockdown of the 
semaphorin signaling mediator, α2-chimaerin (Ip et al., 2012). Taken together, these findings suggest 
that inhibition of CRMP2 phosphorylation at Thr514 in Gsk3-deleted neurons may partially explain 
the migration and dendritic orientation abnormalities we have observed.

Conclusion
In sum, we have demonstrated a key cell autonomous role for GSK-3 signaling in regulating radial 
migration and dendritic orientation of cortical excitatory neurons. Our Gsk3 deletion results are not in 
line with what might have been predicted from prior studies that have correlated ser9/21 phosphoryl-
ation with relief of negative GSK-3 phosphorylation and negative regulation of cytoskeletal-associated 
proteins. In particular, we do not find evidence that an STK11(LKB1)/GSK-3 inhibitory pathway is a key 
migration regulator. In contrast, our results are consistent with the idea GSK-3 phosphorylation of DCX 
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and CRMP-2 is required for appropriate cytoskeletal regulation and migration. Finally, our data are 
consistent with the idea that GSK-3 activity is essential for the effects of semaphorin and CRMP-2 
signaling on cortical neuronal development in vivo.

Materials and methods
Mice
Mice were cared for according to animal protocols approved by the Institutional Animal Care and Use 
Committees of the University of North Carolina at Chapel Hill. GSK-3 lines were generously provided 
by Jim Woodgett. Gsk3a mice possessing exon 2 deletions and Gsk3a and Gsk3b loxp flanked exon 
2 mice have been previously described (Doble et al., 2007; MacAulay et al., 2007; Patel et al., 
2008). Gsk3:Neurod6 mice were generated by mating Gsk3a−/−, Gsk3bloxp/loxp with Neurod6:Cre mice 
generously provided by Dr KA Nave (Goebbels et al., 2006). Gsk3 mutant mice and Neurod6-Cre 
mice were maintained on mixed genetic backgrounds. For all experiments, four allele mutants were 
compared with littermate controls. Triple allelic male mutants (Gsk3a+/-bf/f:Neurod6) fail to survive into 
adulthood with death occurring around P25 for reasons not yet determined.

Ctnnb1 exon 3 (Ctnnb1Ex3) floxed mice were previously described (Harada et al., 1999) and main-
tained on a mixed C57/Bl6 129 background. Stk11-floxed mice have been previously described 
(Bardeesy et al., 2002) and were maintained on a mixed C57/Bl6 129, CF1 background. Pten-floxed 
mice (Groszer et al., 2001), Cdc42-floxed mice were purchased from Jackson lab and have been pre-
viously described (Chen et al., 2006).

Dvl2 floxed allele was generated in the UNC Neuroscience Center Molecular Neuroscience Core 
using conventional methodology (Ohata et al., 2014). Dvl1 (Beier et al., 1992) and Dvl3 (Tsang et al., 
1996) mutant mice were purchased from The Jackson Laboratory (Bar Harbor, Maine) have been pre-
viously described. All Dvl mutant mice were maintained on a mixed background.

Results from mutants and control littermates shown in all of the figure panels were based on at least 
three experiments from independent litters, unless otherwise noted.

In utero electroporation
Mice were anesthetized using 2,2,2-Tribromoethanol (4 mg/10 g mouse) or isofluorine, and embryos 
were exposed at E14.5 or E15.5. Plasmids were mixed with fast green and microinjected into the lat-
eral ventricle of embryos using a picospritzer. Embryos were electroporated with five 50 ms pulses at 
30–35V with a 950 ms interval and returned to the abdominal cavity. Plasmids used were: Neurod1-
Cre, lacZ/Egfp, lox-STOP-lox Ai9, Neurod1-Gsk3b, and Neurod1-EGFP. A CF1 foster dam was used to 
aid postnatal survival studies. Depending on the experiment, mice were perfused at E19.5, P0, P10, or 
P15 with 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) in phosphate buffered saline (PBS) and 
post fixed overnight.

Ex vivo electroporation and organotypic cortical slice culture
Cortical progenitor cells were electroporated ex vivo at E15.5 as described previously (Hand et al., 
2005). Briefly, E15.5 embryos were decapitated, plasmids were injected into lateral ventricle followed 
by electroporation with four 30V pulses that were 30–40 ms in duration and separated by a 100-ms inter-
val. Following electroporation, brains were dissected and vibratome sectioned at 250 μm. Slices were 
transferred to Poly-D-Lysine and laminin coated culture insert (Millipore, Billerica, MA) in a FluoroDish 
(World Precision Instruments, Sarasota, FL), then 2 ml Basal Medium Eagle with FBS, N2 (Gemini Bio-
Poducts, West Sacramento, CA), B27 (Life Technologies, Grand Island, NY), penicillin-streptomycin 
(Life Technologies), and L-glutamine (Life Technologies) supplements were added. Slices were cultured 
for 3 days at 37°C and live imaged using an Olympus FV1000 Confocal microscope with stage incubator.

Cortical progenitor cultures
E14.5–15.5 dorsal cortices were electroporated with Neurod1-Cre; Z/EG, dissected in 4°C Hank's 
Balanced Salt Solution (HBSS) (Life Technologies) and dissociated into single cells using Trypsin (Life 
Technologies) according to previously described methods (Hand et al., 2005). Neurons were plated 
on glass bottom dishes (MatTek) coated with 0.1 mg/ml Poly-D-Lysine (Sigma) and 5 μg/ml Laminin 
(Sigma). Cells were cultured in Neuralbasal-A Medium (Life Technologies), supplemented with 1X B-27 
(Gibco, 17,054-044), L-glutamine (Life Technologies), penicillin-streptomycin (Life Technologies), N2 (Life 
Technologies), and FBS. Neurons were fixed with 4% PFA and stained for stage progression analysis.
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Western Blotting
Mouse cortices were dissected from three control (Gsk3a−/−Gsk3bloxp/+:Neurod6) and mutant 
(Gsk3:NeuroD6) or three control (Gsk3aloxp/loxpGsk3bloxp/loxp) and three mutant (Gsk3aloxp/loxpGsk3bloxp/loxp: 
NeuroD6) mice from independent litters, collected in RIPA lysis buffer supplemented with protease 
and phosphatase inhibitors and cleared by centrifugation. Proteins were separated on SDS-PAGE 
gradient gels, transferred to a PVDF membrane and probed for proteins of interests and secondary 
HRP-conjugated antibodies were used for detection. Blots were washed and detection was performed 
with a commercially available ECL kit. ImageJ software (NIH) was used for quantification of band inten-
sities, and intensities were normalized with total protein or the load control. Statistical analyses were 
conductive using Prism (GraphPad Software Inc., La Jolla, CA). Differences were considered statisti-
cally significant at p<0.05 and are included in each figure. The following antibodies were used: GSK-3 
(Invitrogen, Carlsbad, CA), Actin (Cell Signaling Technology Inc., Danvers, MA), pFAK ser722 (Santa 
Cruz Biotechnology, Inc., Dallas, TX), FAK (Cell Signaling Technology Inc), pCRMP-2 Thr514 (Cell 
Signaling Technology Inc), CRMP-2 (Cell Signaling Technology Inc), pCREB ser129 (Santa Cruz 
Biotechnology, Inc.), CREB (Santa Cruz Biotechnology, Inc.), pDCX ser327, DCX (Cell Signaling 
Technology Inc.), pDynamin-1 ser744 (Santa Cruz Biotechnology, Inc.), Dynamin-1 (Santa Cruz 
Biotechnology, Inc.), PTEN (Cell Signaling Technology Inc.), LKB1 (Upstate), β-catenin (Cell Signaling 
Technology Inc), DVL2 (Cell Signaling Technology Inc), GAPDH (Cell Signaling Technology Inc), Cleaved 
Caspase-3 (Cell Signaling Technology Inc).

Immunohistochemistry
Briefly, 100–150 μm free-floating vibratome sections of brains were collected in PBS, blocked with 
5% normal serum in PBS with 0.1% Triton X-100 and incubated with primary antibodies in blocking 
solution overnight at 4°C. Cryosectioned tissue samples were immunostained as previously described 
(see Newbern et al., 2011). P15 in utero vibratome sections were blocked with 5% normal serum in 
PBS with 0/1% Triton X-100 and 2% DMSO, and incubated with primary antibodies for 3 days. Slices 
were rinsed with PBST for 24 hr and incubated with secondary antibodies for 3 days in PBS with 
0/1% Triton X-100.

The following primary antibodies were used in our study: L1 (Millipore), Cux1 (Santa Cruz 
Biotechnology, Inc.), Neuronal Nuclei (Millipore), GFP (Aves Labs, Inc., Tigard, OR), CTIP2 (Abcam, 
Cambridge, MA) DRAQ5 (Fisher), TBR1 (Abcam, Cambridge, MA), HOECHST (Sigma), RFP (Rockland, 
Gilbertscille, PA). After rinsing, sections were then incubated with Alexa-conjugated secondary anti-
bodies (Invitrogen) overnight at 4°C, rinsed three times in PBS, and mounted with gel/mount (Sigma).

Quantification of cortical layering
Gsk3 overexpression analysis was conducted with Neurod1-Cre and lox-STOP-lox-Ai9 plasmids as 
control and Neurod1-Gsk3b and Neurod1-eGFP plasmids for overexpression. Electroporations 
were performed at E14.5 and analyzed at E19.5. For controls and Gsk3 over-expression, multiple 
comparable cortical sections were analyzed. For analysis of layering, the cortical plate was equally 
divided into eight bins, and cells in each bin were counted using ImageJ software. Bin 7–8 included 
layers 1–3. The percentage of GFP+ neurons in each bin were determined from multiple compa-
rable sections.

Postnatal day 10 analysis after in utero electroporation was conducted with Gsk3a+/−Gsk3bloxp/loxp 
control Gsk3−/−Gsk3bloxp/loxp embryos. EGFP-filled neurons were counted and localized to either upper 
or deeper layers of cortex. Differences were considered statistically significant at p≤0.05 using an 
unpaired t-test.

Lamination quantification of mutant mice at P0 (Gsk3loxp:Neurod6, Gsk3:Dlx5/6, Ctnnb1Ex3:Neurod6, 
Dvl123:Neurod6, Stk11:Neurod6, Cdc42:Neurod6, Pten:Neurod6) was conducted using heterozygous 
controls (Cre+, loxP/+) compared to conditional knockouts. Vibratome sections (3–5 per mouse) 
were imaged at 40X with a 2.4-μm optical slice and Cux-1 cells were counted in an 8 bin analysis. 
Data were quantified as average percentage of Cux-1 neurons per bin with differences considered 
statistically significant at p≤0.05 using an unpaired t-test. Note that the histograms for controls 
Figure 2 and Figure 6—figure supplement 1 (based on a total of 10 control animals) all look very 
similar reflecting the fact that almost all Cux1 neurons have reached Layer 2–3 by P0 in control mice. 
The histogram for the Gsk3 mutants in Figure 2 is drastically different and reflects the distribution 
of Cux 1 neurons observed by inspection in many additional Gsk3:Neurod6 and Gsk3loxp:Neurod6 mice. 
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In contrast, the histograms showing Cux1 neuron distribution for the other mutants were indistin-
guishable from controls.

Determination of number of Cux1 neurons at P0 in Gsk3loxp:Neurod6 mice with Gsk3aloxp/loxpGsk3bloxp/WT: 
Neurod6 heterozygous as controls was performed as follows: Three 100-μm thick vibratome sections 
were imaged and one to two 100-μm cortical columns were obtained per slice for a total of five col-
umns per mouse. Total Cux1 cells and total cell numbers were counted using an 8 bin analysis with 
ImageJ software. Data were quantified as average percentage of Cux1/total per bin and differences 
were analyzed using an unpaired t-test.

Image Acquisition and analysis
Images were collected on Zeiss LSM 710 and Zeiss LSM 780 confocal microscopes. Z-stack images 
were collected with 10X or 20X objectives and tiled together to generate high-resolution images 
of whole brain sections. Binned quantification images were taken using a 20× objective and a 2-μm 
optical slice. Randomly identified sections of the electroporated area in presumptive somatosensory 
cortex were imaged for quantification. Live imaging of migrating neurons was acquired on an Olympus 
FV1000 Confocal microscope with stage incubator. On average, 40 μm Z-stack images were acquired 
and merged every 30–60 min for 8–20 hr. A 40X objective at a 0.8-μm optical slice was used for GSK-
3loxp:Nex cux-1 cell counting.

Dendritic arborization
P15 in utero experiments used Gsk3a+/+Gsk3bloxp/loxp control Gsk3a−/− Gsk3bloxp/loxp or Gsk3aloxp/loxp 
Gsk3bloxp/loxp embryos. Images for the dendritic arbor reconstruction were acquired on a Zeiss LSM 7 
MP multiphoton system using a W-PlanApochromat 20x/1.0 IR-corrected water immersion objective. 
On average, Z-stacks were acquired from 90 to 100 μm range with 0.65 μm steps. Dendritic recon-
structions were performed using Neurolucida. A total of 15 control and 15 Gsk3-deleted cells from 
three mice each were reconstructed for dendritic analysis. Apical and basal dendrite polarity was 
quantified by generating dendrograms (Neurolucida) from reconstructed images. Sholl analysis calcu-
lated the number of dendrite intersections and dendritic lengths, Sholl quantification was conducted 
with an initial 15-μm somal radius and 20 μm concentric radial steps.

Microarray
Dorsal cortices were dissected from three E18 control (Gsk3a−/−Gsk3bloxp/loxp) and mutant (Gsk3;Neurod6) 
embryos derived from two independent litters. RNA was prepared using the MiRNAeasy kit (Qiagen, 
Valencia, CA) and analyzed using the Affymetrix Mouse Gene 2.0 St array (Affymetrix, Santa Clara, 
CA). Following scanning of the array, basic data analysis was carried out using the Partek Genomics 
Suite Version 6.12.0712 (Partek, Inc., St. Louis, MO) Transcripts up or down-regulated by 1.5-fold were 
considered interesting candidates. Microarray data have been made available through Gene Expression 
Omnibus, accession number GSE58727 (GEO, NCBI).
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