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Abstract

We describe some recent developments in statistical methodology and practice in oncology drug 

development from an academic and an industry perspective. Many adaptive designs were 

pioneered in oncology, and oncology is still at the forefront of novel methods to enable better and 

faster Go/No-Go decision making while controlling the cost.
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Introduction

Oncology drug development is quite different from drug development in other therapeutic 

areas. Phase I oncology trials enroll actual patients rather than healthy volunteers. As a 

result, investigators and patients are more accepting of toxicity or adverse events, and the 

nature of toxicity is dose-dependent for most oncology agents. The main objective of phase I 

is to find the maximum tolerated dose (MTD) as efficiently and safely as possible. Phase I 

trials are small, with cohorts of patients evaluated at different doses until dose-limiting 

toxicities (DLTs) are reached. The main objective of phase II is to evaluate the anti-cancer 
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activity of a drug and provide further safety evaluation. Phase II trials are generally non-

randomized one-arm studies in which patients receive the dose determined in previous phase 

I studies, namely, the MTD in the US and one dose below the MTD in Europe and Japan. 

Traditionally, phase III has been the first randomized controlled study. Phase III clinical 

trials are large and complex trials that focused on being the definitive assessment how 

effective and safe a drug is compared to a current gold standard treatment. One positive 

phase III trial is generally sufficient for drug approval in most oncology indications. Despite 

being expensive, the failure rate of phase III trials in oncology drug development is high. 

There is an unmet need in pharmaceutical industry for better, more efficient designs that 

could enable better and faster decision making while controlling the cost.

In this paper we describe some recent developments in statistical methodology and practice 

in oncology drug development from an academic and an industry perspective.

Novel Methods in Phase I Trials in Oncology

The traditional or 3+3 design (1) has been widely used in oncology phase I trials. More 

efficient alternatives have been proposed, the continual reassessment method (2) (CRM) 

being one example, but most of the investigators prefer to use the 3+3 design because it is 

simple to implement. A number of challenging problems in dose-finding have appeared 

recently where the use of the 3+3 design results in a very long or very inefficient trial or 

where it simply cannot be used. These problems include trials with delayed outcomes, 

studies of drug combinations, dose-finding based on toxicity scores, and dose-finding 

methods for cytostatic agents. We review some of these methods below.

Model-Based Designs for Phase I

Several model-based designs have appeared in the literature. Unlike the 3+3 design, these 

model-based designs base dose-escalation strategies on the accruing data through parameter 

estimation. One of the most used among such design is the CRM (2). The overall goal of a 

CRM procedure for dose escalation is to find the MTD as efficiently and safely as possible. 

The original CRM proposal used a simple parametric model to characterize the relationship 

between dose and the risk of a pre-defined dose-limiting toxicity (DLT). One then uses prior 

distributions on model parameters and results from patients treated in the current study to 

update the parameters and, thereby, the estimated relationship of dose to DLT risk.

In response to some criticisms, modified versions of the CRM appeared. Current versions 

run more or less as follows. The study investigators pick a target level of risk of DLT. This 

target, often around 30%, will reflect the investigators' subjective assessment of the 

therapeutic window of the treatment. In other words, the goal is to find thedose or dose level 

that is associated with the target risk of DLTs. This dose or dose level is sometimes called 

the MTD or the recommended phase II dose (RP2D). Traditionally, anticancer drugs have 

had a narrow dose range within which one might feel that the chance of benefit might offset 

the risk of serious or severe toxicity. Under these assumptions, a target risk of 20% to 33% 

may make sense.
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After choosing a target risk, the investigators need to consider and set the dose levels to 

evaluate in the study. We use the term dose level as a generic term that includes doses of 

single agents or different dose combinations. Generally, the phase I protocols include 

specific discrete dose levels, although one may instead wish to consider a range and allow 

evaluation of any dose within this range. The latter approach will generally require a 

parametric model. An additional design requirement is the number of patients to treat at a 

given dose or dose level before deciding to escalate the dose for the next cohort. Typically, 

cohorts will consist of one to three patients.

Finally, the protocol needs a rule to indicate when to stop the study. One possibility is to 

stop when one has treated a pre-specified number of patients at a given dose level and the 

algorithm would assign that same dose to the next patient. For example, one may want to 

stop the study if one has treated six patients at dose level x and, based on all available data, 

the risk of DLT at dose level x is closer to the target than it is for any other dose level under 

evaluation, so the next patient would receive dose level x. This dose level would be the 

MTD or RP2D.

Babb, Rogatko, and Zacks (3) proposed a dose-escalation algorithm that, like the CRM, 

seeks to reach the MTD quickly but penalizes doses with predicted DLT risks above some 

threshold. This approach differs from the CRM as the CRM uses a penalty for each dose 

level based on the distance of its associated DLT risk from the target, regardless of whether 

it is above or below the target. Babb et al. called their algorithm EWOC for escalation with 

overdose control.

Newer agents, rather than attacking any cell that is dividing, say, have intracellular targets 

that appear associated with specific cancers. These targets may be altered signaling 

pathways or the state of methylation of genes in the cancer cells. While not free of untoward 

side effects, these newer agents have a very different toxicity profile than the earlier 

cytotoxic agents (4). A dose-finding trial for these agents can be based on a biomarker of an 

efficacy outcome that is often continuous (5), or both efficacy and toxicity can be used to 

determine the best dose (6). If outcome is binary dose-escalation schemes like the CRM are 

still useful.

Trials with Delayed Outcome

Dose limiting toxicity in phase I trials in solid tumors is often defined based on one cycle of 

therapy that usually lasts 3-4 weeks. In hematology oncology trials, follow-up for toxicity is 

usually 4-6 weeks. Another setting where long term toxicities are likely is radiation therapy 

trials. A number of methods have appeared for such trials that use information from all 

patients, not only patients who have completed follow-up. Cheung and Chappell (7) 

proposed a time-to-event modification of the CRM (2), called TITE-CRM. Ivanova et al. (8) 

proposed a similar frequentist method. The method of Bekele et al. (9) also uses partial 

information from patients to estimate the dose-toxicity relationship. Additionally, it 

prescribes if the next patient can be enrolled right away or if more time is needed to collect 

follow-up data on already enrolled patients. The method of Ivanova et al. (8) and its 

variations have been used in a number of trials at the Lineberger Comprehensive Cancer 

Center (LCCC) (10).
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Dose-finding with Multiple Agents

It is common in oncology to treat patients with drug combinations. A method in Thall et al. 

(11) was one of the first dose-finding methods for drug combinations and has the ambitious 

goal of finding the whole contour of maximum tolerated drug combinations. The method is 

based on parametric functions that characterize each single agent's dose-DLT relationship 

and a model for the interaction. Other methods have a goal of finding several maximum 

tolerated drug-combinations, one for each dose of one of the agents (12,13), or a single 

maximum tolerated combination by searching over a grid of possible combinations 

(14,15,16). Though a number of methods have been developed for finding at least one 

maximum tolerated combination, nevertheless the method of choice to date has been to 

specify the sequence of drug combinations such that the MTD rate is monotonically 

increasing and use a single dimensional method, such as the 3+3 design or the CRM (2), to 

find the MTD.

Dose-finding Based on Toxicity Score

Toxicity in oncology is measured on a scale from 0 to 5. The DLT is typically defined as 

study drug related non-hematological toxicity of grade 3 or higher or study drug related 

hematological toxicity of grade 4 or higher. Bekele and Thall (17) used a sophisticated 

weighting system and ordinal toxicity variables with up to four categories. They proposed a 

Bayesian design for such trials. Some authors extended this idea and proposed to define a 

measure of toxicity called the toxicity index. The MTD is then defined as the dose with the 

toxicity index equal to a certain value (18,19). We are not aware of trials that used complex 

toxicity scoring. Our examples, two trials conducted at the LCCC (20,21), used a simpler 

approach where the MTD was defined based on DLT rate as well as on the rate of dose 

reductions. At the request of the investigators a rather simple method similar to the 3+3 

design was used for assignment (22). Dose reduction rate was included in the definition of 

the MTD because the investigators did not want to recommend a dose that is likely to be 

reduced later in a cycle. The outcome of each patient was classified as DLT or toxicity that 

was not a DLT but caused a dose reduction or no toxicity. Since DLTs are more detrimental, 

they were scored twice as much compared to toxicities that cause dose reductions. The MTD 

was defined as the dose where

Safety Monitoring for Expansion Cohorts

Commonly, phase I studies in cancer include expansion cohorts. These are groups of 

patients who receive the putative recommended phase II dose or MTD after the dose 

escalation part of the study has determined the recommended dose. The goal of treating this 

group of patients may be to evaluate the drug in more patients and estimate the risk more 

precisely, to examine differences between men and women, or to get preliminary efficacy 

information. As long as the patients enrolled in the expansion cohort are roughly similar to 

the patients who participated in the dose-escalation part of the study (i.e., the expansion 
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patients satisfy the same eligibility criteria), it is reasonable to consider the information from 

the prior patients to apply to the expansion cohort.

Of particular relevance for the expansion cohort is the safety information from the dose-

escalation part of the study. Since patients in this cohort will receive the MTD determined 

earlier in the study, one has preliminary information about the risk of a DLT. One can use 

this preliminary information as a basis for safety monitoring rules for the expansion cohort. 

For example, we might consider that six patients received the MTD prior to starting the 

expansion phase. Assuming a uniform prior (i.e., beta(1,1)) for the risk of DLT, one DLT 

out of six patients leads to a beta(2, 6) posterior probability distribution for the risk of DLT. 

If the target risk of DLT during dose escalation was 30%, then a reasonable safety 

monitoring rule would stop treating patients if it appears that the risk is higher than that 

target. Following this logic, one might want to stop treating patients if the posterior 

probability is 75% or more (i.e., 3:1 odds or more) that the risk of DLT is 0.3 or higher. This 

probability is easy to compute, since the posterior probability follows a beta distribution, and 

most statistical software packages have functions for evaluating probabilities for a beta 

distribution.

Phase II Methods in Oncology Trials

Review of Methods for Phase II Trials in Oncology

The general purpose of phase II studies in oncology is to get an early indication of activity 

of the treatment. In the past, the primary endpoint in oncology was related to tumor 

shrinkage. That is, if the treatment would lead to reduction in the size of the tumor within a 

short period of treatment, then the treatment might provide long-term benefit. Ultimately, 

the goal is to extend life, and tumor shrinkage is an early sign that the treatment might help 

eradicate disease. Unfortunately, tumor shrinkage does not always correlate with extended 

survival, and newer targeted agents may slow tumor growth—at least initially—rather than 

shrink tumors within a couple of months. As a result of these considerations, especially in 

the era of evaluating agents that target specific molecular pathways thought to be involved 

in cancer growth, many phase II studies use other endpoints than tumor shrinkage. For 

example, delaying disease progression may indicate drug activity, so the primary endpoint 

may be the probability of being alive and free of progression (i.e., progression-free survival) 

at some specific time after starting treatment, such as six months. Mick et al. (23) consider 

the ratio of the current time to progression to the patient's previous time to progression as a 

measure of benefit. Rosner et al. (24) propose the use of randomized discontinuation designs 

when tumor growth rates exhibit heterogeneity and the proposed treatment may slow or stop 

tumor growth but not shrink the tumors immediately.

Many patients, including some with metastatic disease, experience slow growth of their 

tumors. Heterogeneity in tumor growth across patients may make it difficult to tell if longer 

than expected times-to-progression are a result of the treatment or disease heterogeneity. 

Thus, phase II studies with progression-free survival as the primary endpoint should be 

randomized. A subcommittee of the U.S. National Cancer Institute has proposed guidelines 

for phase II study designs in oncology, in an effort to improve the state of the science (25). 

Ivanova et al. Page 5

Ther Innov Regul Sci. Author manuscript; available in PMC 2015 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These guidelines focus on phase II endpoints and reflect the committee's opinions regarding 

endpoint-appropriate designs.

Most of the oncology phase II trials are single arm and use either Simon's two stage design 

(26) or Gehan's design (27). Evidence shows (28) that, in recent years, Simon's design is the 

most frequently used design for phase II trials. Simon's design is a two-stage design with the 

possibility to stop for futility after stage one. Usually the design that yields the minimum 

total sample size, the minimax design, or the design that yields the smallest sample size 

under the null hypothesis, the optimal design, is used. Jung et al. (29) recommended 

considering not only the minimax and the optimal design, but all designs that minimize the 

weighted average of the total sample size and the expected sample size under the null 

hypothesis. This method yields a number of useful designs for an investigator to choose 

from, in particular, they offer a wider selection of stage one sample sizes. Other extensions 

of Simon's design include the three stage design (30), the Fleming's two-stage design (31) 

that allows stopping for either efficacy and futility, the two-stage design with ordinal 

outcomes (32, 33), and a two-stage design with two arms (34). Table 1 displays various 

extensions of the Simon's two-stage design that have been proposed for phase II oncology 

trials.

Two-stage Design with Ordinal Outcomes

As the goal of a phase II trial is to quickly screen new agents, the concept of looking at 

several outcomes at the same time is very appealing. Some investigators proposed looking at 

complete and partial responses (32), some proposed looking at tumor response and disease 

control (33) (defined as tumor response or stable disease), some at tumor response (or 

disease control) and progression free survival (35, 36). The treatment is considered 

promising if it improves at least one of the outcomes. To give more details, let pT and pD, pT 

≤ pD, denote the probability of tumor response and disease control in the population, 

respectively, and p0T and p0D, p0T ≤ p0D, denote the null probabilities of tumor response and 

disease control. Define the two null hypothesis H0T: pT ≤ p0T versus H1T: pT > p0T, and H0D: 

pD ≤ p0D versus H1D: pD > p0D. Consider testing the intersection of these two hypothesis:

The treatment is considered promising if either tumor response rate or disease control rate is 

promising. The treatment is not considered promising if both tumor response and disease 

control rates are low. Lu et al. (32) and Ivanova et al. (33) describe how to construct Simon-

like two-stage designs for testing two components of the ordinal outcome, e.g. tumor 

response and disease control. Zee et al. (35) and Sun et al. (36) describe how to test a binary 

endpoint and a survival endpoint simultaneously in a two-stage trial.

Stopping Rules for Phase II Trials

While the purpose of phase II studies is to determine if the treatment has some activity 

against the disease, there may not be a lot of experience treating patients with the therapy. 

Thus, monitoring the phase II patients for safety is often appropriate. Monitoring toxicity on 
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a continuous basis, that is, being able to stop the study at any point, provides the best 

protection against observing an excessive number of toxicities and therefore is preferable to 

multi-stage stopping rules. Ivanova, Qaqish, Schell (37) illustrated that the Pocock-type (38) 

stopping boundary allows stopping the trial as early as possible, if the toxicity rate is high, 

and therefore prevents treating too many patients on a regimen that is not safe.

Geller et al. (39) proposed a Bayesian continuous stopping rule for phase II trials. Bayesian 

stopping rules for toxicity monitoring in phase II are similar to the Bayesian monitoring 

rules discussed earlier in the section relating to phase I studies. These rules would call for 

stopping the treatment if more patients are experiencing serious adverse events than one 

might have anticipated before starting the study. Of course, the procedure we discussed in 

the phase I section assumed that one has reduced the safety outcome to a simple yes or no 

event and that one has a target risk one does not want to exceed. For example, one might 

assume, based on earlier phase I studies, that the risk of serious adverse events is around 

30%. Since phase I studies typically treat relatively few patients, there is likely uncertainty 

about the true risk. One might characterize this uncertainty with a prior distribution for the 

risk, such as a beta(6, 14) distribution. This prior corresponds to a mean risk of serious 

adverse events of 30%, with 90% probability that the risk is between 15% and 48%. If one 

has greater certainty about the risk, one should use a different prior distribution. The next 

step is to decide on the level of certainty that one requires to stop treating future patients. 

For example, one might want to be at least 80% certain that the risk of a serious adverse 

event is greater than 30%, corresponding to 4:1 odds. Often, the protocol will contain tables 

that illustrate the stopping rules and the average behavior of the rules under different 

scenarios corresponding to different underlying “true” risks. The final rules should reflect 

the concerns and judgment of the clinical investigators and the statisticians.

Phase II Trials with Two Arms

Kepner (34) described how to compute two-stage designs with the possibility of stopping for 

efficacy and/or futility after stage one when the outcome is binary. As it is time consuming 

to search for all possible designs, Kepner (34) proposed to search for designs with the first 

stage sample size that is the closest to one half of the total sample size.

Bayesian Phase II Designs

Phase II designs have typically been based on a frequentist, hypothesis-testing framework. 

For example, the Simon two-stage design seeks to minimize the sample size under the null 

hypothesis while achieving pre-specified size under the null and power to detect some 

alternative hypothesis. Several investigators have proposed phase II designs that rely on 

Bayesian computation. Cook and Johnson (40) proposed designs for comparing two 

hypotheses but from a Bayesian perspective. They use the Bayes factor, a measure of the 

strength of evidence in the data in favor of one hypothesis over another, for comparing the 

two hypotheses of interest. They develop this procedure using prior distributions based on 

alternatives that yield efficient designs.

Other designs in the literature consider stopping the study when there is high posterior 

probability that a key parameter, such as the probability of tumor shrinkage, exceeds a pre-
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specified threshold. For example, Thall and Simon (41) propose a single-arm design that sets 

up decision rules based on posterior probabilities relating a new treatment to the assumed 

efficacy of a current standard treatment. Aside from attaching uncertainty to the measure of 

efficacy (e.g., response probability) of the experimental treatment, they also allow for 

uncertainty about the efficacy of the standard. Even though patients in the study only receive 

the new treatment and no new information regarding the current standard will arise from the 

study, accounting for uncertainty about the standard's efficacy via a prior distribution adds 

more variation and improves the frequentist characteristics of the design. Tan and Machin 

(42) describe a two-stage design that uses posterior probabilities to decide whether to 

proceed from the first stage to the second. Sambucini (43) modifies the Tan and Machin 

design to use predictive probabilities rather than posterior probabilities. By using predictive 

probabilities, the design accounts for variation in future observations. Furthermore, 

Sambucini considers a range of alternatives, via a design prior, rather than fixing the “true” 

underlying response probability at a single point.

Lee and Liu (44) proposed a related procedure that also bases decisions on predictive 

probabilities, rather than posterior probabilities. Their design will ensure control of Type I 

and Type II error probabilities. Furthermore, unlike the Tan and Machin approach, Lee and 

Liu's proposal allows one to monitor the study as often as one needs. Continual monitoring 

has the potential to lead to smaller expected sample sizes under the null hypothesis, 

compared to a design with just one or two interim futility analyses.

Confirmatory Oncology Trials

Traditionally, phase III in oncology drug development has been the first randomized 

controlled study phase. Some of the reasons for this phenomenon include the dose-

dependent nature of toxicity for most oncology agents, the acceptance of toxic treatments by 

oncologists and by patients, and belief that small trials with an observed response rate as a 

primary endpoint have sufficient information to guide further development of a clinical 

program. Insufficient exploration of safety and efficacy of cancer drugs in early phases of 

development together with the complex life-threatening nature of the disease has led 

oncology drug development to have a high rate of failure in confirmatory trials (45). In order 

to compensate for some oncology development shortcuts, to improve the chance of a 

success, and to expedite time-to-market, some phase III trials have been employing designs 

with adaptive features such as the possibility to stop early for futility or efficacy, sample size 

re-estimation, implementation of enrichment strategies, etc. Stopping for efficacy during an 

interim analysis is not commonly considered because the full sample size is usually required 

in order to satisfy regulatory requirements for the adequacy of the safety database in the 

overall development program. But if the treatment effect is very strong, ethical 

considerations may warrant early termination of the study (46). Bretz et al. give a nice 

overview of adaptive designs used in confirmatory clinical trials (47).

Seamless phase II/III designs have become more popular in oncology drug development 

(48,49,50,51). Such designs aim to reduce the overall sample size by allowing the data from 

phase II patients to be used in phase III analysis (inferentially seamless) (48,49) or/and 

eliminating the time between phases, which results in a shorter total drug development time 
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(operationally seamless). Just as there are a number of phase II designs, there are a number 

of corresponding phase II/III designs. More on different seamless designs in oncology and 

design efficiency in phase II/III trials can be found in Korn et al (52).

Available Software

MD Anderson Comprehensive Cancer Center provides a site with software to implement a 

number of designs for oncology trials: https://biostatistics.mdanderson.org/

SoftwareDownload/. All admissible Simon's (26) and Fleming's (31) designs can be 

generated using the software available at the Lineberger Comprehensive Cancer Center site 

at http://cancer.unc.edu/biostatistics/program/ivanova/. This software can also generate the 

two-stage designs with ordinal outcome (33) and the Pocock boundary for continuous 

toxicity monitoring in a single arm phase II study (37). Two-stage, two-arm study designs 

for binary outcomes can be generated using software at www.cryptnet.net/kepner.

Discussion

Oncology drug development has been a tremendous challenge. Cancer clinical studies are 

typically lengthy and costly; yet, the failure rate is high. For example, only 34% of phase III 

oncology trials with results reported from 2003 through 2010 were successful (45). While 

insufficient understanding of the disease (such as pathway targets) and effective candidate 

therapeutics certainly contribute to the high failure rate, it has been argued by many that 

more robust clinical development strategies need to be in place to increase the probability of 

success in oncology drug development.

In recent years, a considerable amount of scientific work has focused on early phase 

oncology development. While the “3+3” design remains the most used phase I design, 

according to a literature search by Rogatko et al. (53) and Le Tourneau et al. (54), the CRM 

design and its modifications are making their way to trials run by pharmaceutical industry 

(55,56). The 3+3 design is inefficient in establishing the dose that meets a specific target 

toxicity level and may involve an excessive number of escalation steps, leading to a large 

proportion of patients treated at sub-therapeutic doses. Additionally, the 3+3 design has a 

low probability of selecting the true MTD (57) and yields high variability in MTD estimates 

(58). Model-based methods that use all toxicity information accumulated during the trial 

achieve better estimates of the target probability of dose-limiting toxicity at the 

recommended dose without treating too many patients at sub-therapeutic doses, but 

implementation of these designs is not as simple as for the 3+3 design. There is a need for 

upfront planning, expedited collection of data from each patient or cohort to fit the model, 

biostatistics expertise, and software to perform model fitting in real time. Following the 

considerable amount of criticism received by the original version of the CRM, the algorithm 

has since been substantially modified and refined, both in its theoretical development and in 

its practical implementation. Seamless designs including phase I/II (mostly operationally 

seamless) have become more popular in the pharmaceutical industry. The first part (phase I) 

uses a model-based design to find the MTD, and the second part (phase II) treats a cohort of 

additional patients at the MTD to evaluate efficacy and further study safety in the same 

population or in a particular indication proposed for further development. The setting is 
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similar to safety monitoring for expansion cohorts. Drug combination studies are common in 

oncology and require special consideration for identifying an optimal dose combination. 

Phase I trials with drugs expected to produce delayed or cumulative toxicities should 

incorporate specific dose-finding methods and account for delayed or cumulative toxicities.

A paradigm shift in the past decade from traditional cytotoxic agents to molecular targeted 

therapies (from drugs primarily targeting DNA to those primarily targeting cellular 

signaling) has occurred. Given the different mechanisms and toxicities of these agents, drug 

development methodology may need to change. The Task Force on Methodology for the 

Development of Innovative Cancer Therapies (MDICT) was appointed by the NDDO 

Research Foundation (www.nddo.org) for the purpose of addressing methodological issues 

created by this shift. The MDICT published its recommendations on Phase I and II studies 

of targeted anticancer therapy but has not provided guidance on statistical methods specific 

for molecularly targeted compounds, acknowledging that “toxicity remains the most 

commonly used information upon which decisions are made for the recommended Phase II 

dose of targeted agents” (59,60). The phase II study design is a critical component of the 

clinical development strategy and has been one of the focal points in recent literature of 

oncology clinical development strategy. In this article, we reviewed some of the recent 

developments in Phase II study designs in oncology. Traditionally, single-arm study designs 

have been the mainstream in phase II oncology development, but because of patient 

selection and other biases associated with single-arm studies there has been a gradual shift to 

randomized designs for phase II. Yet, for certain mono-therapy trials with tumor response 

rate as the primary endpoint, single-arm designs are still acceptable (25). For single-arm 

studies, Simon's two-stage design and its various extensions have been commonly used due 

to its simplicity and its built-in mechanism to stop early due to futility. Assuming the same 

Type I and II errors, the design is optimal in the sense of minimizing the expected sample 

size under the null hypothesis. In practice, however, to achieve the optimal expected sample 

size, the sponsor will need to put the enrollment on hold after the first stage patients are 

enrolled until their data are available for analysis. One approach to avoid halting enrollment 

with a two-stage design was given by Herndon (61).

Because of the inherent drawbacks of single-arm designs, randomized designs are now being 

increasingly used in phase II oncology development, particularly when a time-to-event 

outcome, such as progression-free survival, is the primary endpoint. Randomized designs 

offer more objective and robust comparisons between experimental and control regimens, 

thus enabling better commercial decision making (so called Go/No-Go decision making). 

The price, however, is that the size of phase II may be much larger than single-arm studies 

to achieve reasonable study power, which could be a challenge for the “speed to market” 

strategy pursued by many sponsors in the increasingly competitive oncology market. On the 

other hand, there are rich historical data on the control regimen in many situations that could 

and should be leveraged when designing randomized phase II studies. Bayesian methods 

that incorporate historical control data into randomized studies have been proposed in phase 

II oncology development (62). In phase II development, there remains a huge unmet need 

for better, more efficient designs that could enable better and faster Go/No-Go decision 

making while controlling the cost. Some have advanced the idea of incorporating decision 

theory into the design of phase II studies of cancer therapies (63,64). Potential areas for 
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research include better, faster, and cheaper surrogate endpoints for survival, treatment-

selection biomarkers that predicts a large treatment effect, etc.

While adaptive designs have become more popular in every stage of drug development, 

phase III designs are more conservative, given the regulatory requirements for confirmatory 

trials. Seamless phase II/III trials are getting some recognition and gaining popularity in 

oncology drug development. Because the regulatory issues are similar for seamless phase 

II/III trials as for phase III adaptive trials, the FDA guidance does not distinguish them. 

While regulators suggest limiting the use of adaptive designs at the confirmatory stage, they 

encourage further exploration of new methods, including adaptive designs in early phase of 

drug and biologic development (46).

Heterogeneity of disease is a widely acknowledged problem in cancer, and very difficult to 

address in the course of a clinical trial. It is the “next big problem” that oncology trial design 

has to tackle; perhaps designs used in BATTLE (65), I-SPY 1 (66), and I-SPY 2 (67) trials 

(www.ispy2.org) that pair oncology therapies and biomarkers point the way. Many newer 

designs, while superior in some ways to currently used designs, do not find their way into 

common usage right away. There are various reasons, including the need for specialized 

software, difficulty for non-statisticians to understand the methods, and reluctance on the 

part of government agencies to accept novel designs. In this paper, we have presented many 

new innovations in the design of clinical studies to hasten their acceptance and adoption.
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Table 1
Extensions of the Simon's two-stage design for phase II oncology trials

Simon's two stage design Extensions of the Simon's design

Two-stage Three-stage (30)

Stopping for futility only Stopping for futility and efficacy (31)

Binary endpoint Ordinal outcome (32, 33)

Minimax or optimal All admissible designs (29)

Single arm Two-arm (34)

Ther Innov Regul Sci. Author manuscript; available in PMC 2015 May 04.


