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OBJECTIVE

To evaluate whether treatment of mild gestational diabetes mellitus (GDM) con-
fers sustained offspring health benefits, including a lower frequency of obesity.

RESEARCH DESIGN AND METHODS

Follow-up study of children (ages 5–10) of women enrolled in amulticenter trial of
treatment versus no treatment of mild GDM. Height, weight, blood pressure,
waist circumference, fasting glucose, fasting insulin, triglycerides, and HDL cho-
lesterol were measured.

RESULTS

Five hundred of 905 eligible offspring (55%) were enrolled. Maternal baseline
characteristics were similar between the follow-up treated and untreated
groups. The frequencies of BMI ‡95th (20.8% and 22.9%) and 85th (32.6% and
38.6%) percentiles were not significantly different in treated versus untreated
offspring (P = 0.69 and P = 0.26). No associations were observed for BMI z score,
log waist circumference, log triglycerides, HDL cholesterol, blood pressure, or log
HOMA estimated insulin resistance (HOMA-IR). The effect of treatment was
different by sex for fasting glucose and log HOMA-IR (P for interaction = 0.002
and 0.02, respectively) but not by age-group (5–6 and 7–10 years) for any
outcomes. Female offspring of treated women had significantly lower fasting
glucose levels.

CONCLUSIONS

Although treatment for mild GDM has been associated with neonatal benefits, no
reduction in childhood obesity ormetabolic dysfunction in the offspring of treated
women was found. However only female offspring of women treated for mild
GDM had lower fasting glucose.

Gestational diabetes mellitus (GDM), defined as carbohydrate intolerance first rec-
ognized during pregnancy, affects up to 14% of pregnancies and appears to be
increasing in frequency in concert with the rising prevalence of adult obesity (1).
Childhood obesity has also become amajor public health problem as evidenced by a
nearly fourfold increase over a 30-year period ending in 2000 (2). Freinkel (3) first
suggested that even the mildest forms of diabetes complicating pregnancy could
have long-range effects on offspring by affecting behavioral, anthropometric, and
metabolic functions. Emerging evidence suggests that the intrauterine environment
of maternal diabetes can have significant influence on health in later life. Longitu-
dinal studies of the offspring of women with diabetes during pregnancy
demonstrate a link between maternal hyperglycemia and the development of obe-
sity and altered carbohydrate metabolism during childhood and adolescence that is
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independent of both maternal obesity
and birth weight (4,5). In utero exposure
to hyperglycemia as measured by amni-
otic fluid insulin levels has been found to
be a strong predictor of insulin resis-
tance during childhood (6), and these
effects of maternal diabetes on off-
spring appear to extend into adult life
(7). Thus, fetal programming in the set-
ting of maternal diabetes affecting fetal
islet function can lead to the develop-
ment of subsequent obesity, diabetes,
and insulin resistance, which may create
an intergenerational cycle of diabetes (8).
After decades of uncertainty, results

from randomized treatment trials now
confirm that treatment of mild GDM is
associated with immediate benefits, in-
cluding reductions in birth weight, mac-
rosomia, and neonatal fat mass, among
other outcomes (9,10). There is, how-
ever, insufficient evidence regarding
whether treatment confers long-term
metabolic benefit in offspring. The re-
sults of an observational study and lim-
ited follow-up from one treatment trial
remain inconsistent about whether
treatment of GDM is a modifiable risk
factor for childhood obesity (11,12). Be-
cause of concerns about potential long-
term effects of maternal diabetes on
the developing fetus, we conducted a
follow-up study of the offspring from a
randomized treatment trial for mild
GDM to determine whether treatment
influences child health outcomes.

RESEARCH DESIGN AND METHODS

Between February 2012 and September
2013, we conducted an unplanned
follow-up study of the offspring of
women who participated in a Eunice
Kennedy Shriver National Institute of
Child Health and Human Development
Maternal-Fetal Medicine Units (MFMU)
Network randomized clinical trial (RCT)
for mild GDM (10). Mild GDM was de-
fined as a fasting glucose ,95 mg/dL
and two of three timed measurements
that exceeded established thresholds
(1 h, 180 mg/dL; 2 h, 155 mg/dL; 3 h,
140 mg/dL). Eligibility for the follow-up
study included enrollment in the RCT at a
center still participating in theMFMUNet-
work at the time of the follow-up study
(12 of 16 centers; 94% of the original
RCT patients). Following mother informed
consent and child assent, when appropri-
ate, children ages 5–10 years of the index
pregnancy were enrolled in the follow-up

study. At the study visit, trained nursing
personnel obtained height and weight
measurements using a calibrated scale
and stationary stadiometer. Blood pres-
sure measurements were performed in
the sitting position using standardized
methodology. In addition, waist circum-
ference measurements were obtained at
the position horizontal to the uppermost
lateral border of the right ilium of the
pelvis per the National Health and Nutri-
tion Examination Survey anthropometry
procedures manual (13). The study visit
took place after an overnight fast, and
blood samples were collected and sent
to the Northwest Lipid Metabolism and
Diabetes Research Laboratories for fast-
ing glucose, insulin, HDL cholesterol, and
triglyceride levels. The mothers were
administered a questionnaire concerning
demographic information, breast-feeding
history, child health, diet, and physical
activity. Mothers were asked whether
their child showed any signs of pubertal
changes using drawings and descriptions
of the five Tanner stages (14), and their
responses were coded as no (Tanner = 1)
or yes for any (Tanner .1) without re-
quiring the mothers to specify the stage.
The study was approved by the institu-
tional review board of all participating
centers.

The primary outcome of the study was
defined as a BMI $95th percentile for
child age and sex per 2000 Centers for
Disease Control and Prevention growth
charts (15). Secondary outcomes were
waist circumference $90th percentile
for age, sex, and race/ethnicity (16);
BMI $85th percentile for child age
and sex; diabetes defined as fasting
glucose $126 mg/dL or impaired fast-
ing glucose of 100–125 mg/dL (17); ele-
vated triglyceride levels $100 mg/dL
in the children aged 5–9 years and
$130 mg/dL in the children aged 10
years (18); low HDL cholesterol ,40
mg/dL (18); and hypertension $95th
percentile for child age, sex, and height
(19). These outcomes were also as-
sessed as continuous outcomes, as
was HOMA-estimated insulin resis-
tance (HOMA-IR) calculated as (fasting
glucose [mmol/L] 3 fasting insulin
[mU/mL]) / 22.5 (20). Continuous vari-
ables were assessed to determine
whether they were normally distributed
and log-transformed when appropriate;
BMI percentile for child age and sex was
converted to a z score.

Estimation of the required sample
size for the follow-up study was based
on a two-sided type I error of 5%. Given
the race/ethnicity distribution of the
children eligible for this study and the
reported prevalence of BMI $95th per-
centile (21), we estimated that 20% of
the treated offspring would be obese.
Assuming a one-third reduction in obesity
(30% untreated vs. 20% treated), a sam-
ple size of ;600 was required for 80%
power. If the children of the mild GDM-
treated group were one-half as likely to
be obese (e.g., 20% in the untreated and
10% in the treated), a sample size of
;550 would provide 90% power.

Because we previously reported sex dif-
ferences in neonatal outcomes from the
original trial (22), we assessed whether
the association between treatment and
childhoodoutcomesvariedby sex. Further-
more, we assessed whether the associa-
tions varied by age and neonatal adiposity.

The x2 and Wilcoxon rank sum tests
were used to assess differences be-
tween treatment groups and baseline
characteristics and birth outcomes as
well as to assess differences in baseline
characteristics and birth outcomes be-
tween those eligible who did and did
not participate in the follow-up study.
When examining the primary and sec-
ondary binomial outcomes, we used
multivariable log-binomial regression
to estimate relative risks and 95% CIs,
adjusting for race/ethnicity and log ma-
ternal baseline BMI. For continuous
outcomes, we used multivariable gen-
eralized least squares to estimate
adjusted means and 95% CIs. Tests for
interaction between treatment group
and age (5–6 years, 7–10 years) and be-
tween treatment group and sex were
determined a priori and assessed by in-
cluding an interaction term in the mul-
tivariable model. Post hoc analyses also
assessed the association between treat-
ment group and child BMI by neonatal
adiposity. SAS statistical software (SAS
Institute, Cary, NC) was used for the
analyses. All tests were two-tailed, and
P , 0.05 was used to define statistical
significance without adjustment for
multiple comparisons. No imputation
for missing data was performed.

RESULTS

Baseline Characteristics
A total of 666 of 905 eligible women
(74%) from the RCT were successfully
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contacted, and 500 (55%) consented to
have their children enrolled in the
follow-up study; 390 children provided
fasting blood samples for glucose, insu-
lin, and lipid measurements. A compar-
ison of maternal baseline characteristics
between treated and untreated groups
revealed no difference in 50-g glucose
screening value, diagnostic oral glucose
tolerance test results, BMI, or gestational
age at entry into the trial (Table 1). Treat-
ment was associated with lower birth
weight, fat mass .90th percentile, fre-
quency of large-for-gestational age
(LGA), and birth weight .4,000 g. How-
ever, these associations were observed
only in male offspring (Table 2). The ma-
ternal baseline characteristics and birth
outcomes were generally similar in
eligible children who did and did not
participate in the follow-up study, al-
though some differences were observed
(Supplementary Tables 1 and 2). For
example, a higher percentage of the chil-
dren of non-Hispanic white women par-
ticipated in the follow-up study. Among
those who participated in the follow-up
study, and similar to the full trial cohort,
the maternal glucose values during the
intervention in the treated group indi-
cated that target glycemic thresholds
were achieved (Supplementary Table 3).

Follow-up Data
In the cohort of enrolled children over-
all, no significant difference was found
between treated and untreated groups
in terms of sex (53.0% vs. 51.3% males,
P = 0.69), frequency of breast-feeding

.1 month (72.4% vs. 72.5%, P = 0.98),
Tanner stage .1 (20.5% vs. 26.3%, P =
0.12), or age at follow-up (7.0 6 1.3 vs.
7.2 6 1.4 years, P = 0.40). Additionally,
no differences were noted among off-
spring of treated versus untreated
women with respect to reported diet
or physical activity levels (data not
shown).

Overall, 21.8% of the children were
obese, and 6.4% had impaired fasting
glucose; none had diabetes. We found
no difference in the primary outcome,
as 20.8% vs. 22.9% (P = 0.69) of offspring
of treated compared with untreated
mothers were found to have a BMI
$95th percentile at follow-up (Table 3).
Additionally, no significant differences
existed with respect to any secondary
measures of obesity or metabolic dys-
function between the treatment groups
(Tables 3 and 4).

Significant interaction was observed
between treatment group and sex for
fasting glucose and log HOMA-IR (P for
interaction 0.007 for impaired fasting
glucose, 0.002 for fasting glucose, and
0.02 for log HOMA-IR). No treatment
group-by-sex interaction was observed
for measures of obesity (Tables 3 and
4). Female offspring of treated women
had a decreased frequency of impaired
fasting glucose, lower fasting glucose,
lower log HOMA-IR, but higher diastolic
blood pressure than female offspring of
untreated women. However, lipid levels
were similar between treatment groups
(Tables 3 and 4). In male offspring, mean
fasting glucose and log HOMA-IR were

not significantly affected by treatment.
No interaction was observed between
treatment group and age for any of the
outcomes.

Supplementary Fig. 1 shows the rela-
tionship between treatment group and
childhood BMI z score stratified by neo-
natal adiposity. In the high neonatal ad-
iposity stratum, treatment was associated
with a significantly lower childhood BMI z
score in female offspring (Supplementary
Fig. 1B) but not in male offspring (Supple-
mentary Fig. 1A).

CONCLUSIONS

In this follow-up study of the offspring of
women participating in an RCT for the
treatment of mild GDM, we observed no
difference in the overall frequency of
obesity or metabolic dysfunction at
ages 5–10 years according to whether
treatment was undertaken.We did, how-
ever, observe sex-specific differences
according to treatment with respect to
childhood blood glucose levels. Mild
GDM treatment was associated with a
decreased frequency of impaired fasting
glucose, lower fasting glucose, and lower
log HOMA-IR in female offspring at ages
5–10 years but not in male offspring.

This follow-up study represents the
largest of its kind in offspring from a ran-
domized treatment trial for mild GDM.
The follow-up rate of 55% in those
eligible from the original RCT was ac-
complished despite this being an un-
planned study at the time we conducted
the RCT. However, enrollment of 500
children fell short of our goal of 600
needed to observe at least a one-third
reduction in childhood obesity with
treatment with 80% power, which
means that we were underpowered to
observe a more modest treatment ef-
fect. Although the study also included
assessment of several metabolic out-
comes in addition to measures of child-
hood obesity, a limitation of this study
was the use of BMI as the primary mea-
sure of obesity. Furthermore, although
we collected anthropometric data,
more-precise measures of body compo-
sition, such as DEXA or air densitometry,
may have more accurately assessed rel-
ative obesity. We also limited glucose
measurements to the fasting state such
that the full spectrum of carbohydrate
intolerance in the offspring could not
be assessed. Thus, a greater number of
children with carbohydrate intolerance

Table 1—Maternal baseline characteristics by mild GDM treatment group

Characteristic Treated (n = 264) Untreated (n = 236) P value†

Age (years) 29.2 6 5.2 28.7 6 5.5 0.31

Glucose after 50-g glucose-loading
test (mg/dL) 158.2 6 15.3 158.4 6 15.4 0.90

Glucose in 3-h OGTT (mg/dL)

Fasting glucose 86.9 6 5.7 86.5 6 5.6 0.30
1-h OGTT 191.0 6 21.2 192.9 6 19.1 0.13
2-h OGTT 172.5 6 21.4 172.5 6 18.5 0.79
3-h OGTT 138.2 6 29.1 133.7 6 31.6 0.15

BMI at entry (kg/m2) 30.2 6 5.1 30.6 6 5.4 0.44

Gestational age at entry (weeks) 28.8 6 1.6 29.0 6 1.4 0.34

Race/ethnicity 0.53
Non-Hispanic black 28 (10.6) 27 (11.4)
Non-Hispanic white 84 (31.8) 65 (27.5)
Hispanic 144 (54.6) 132 (55.9)
Other 8 (3.0) 12 (5.1)

Data are mean 6 SD and n (%). OGTT, oral glucose tolerance test. †Based on the x2 test for
categorical variables and Wilcoxon rank sum test for continuous variables.
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might have been identified if a glucose
tolerance test had been performed.

A large prospective analysis of
mother-infant pairs enrolled in the
National Collaborative Perinatal Project
revealed that infants of GDM mothers
were more likely to have a higher
BMI z score at 7 years of age (23). In
contrast, a retrospective cohort study
of 2,093 women-and-toddler pairs dem-
onstrated that the risk for childhood
obesity was not associated with GDM
but was associatedwith highermaternal
prepregnancy BMI and LGA birth weight
status (24). These authors suggested
that because their GDM population
was well controlled, GDM management
could be a modifiable risk factor for
childhood obesity. Whether treatment
of GDM is a determinant of offspring
outcomes can only be assessed from
follow-up studies of treatment trials.
Both the MFMU Network GDM and the
Australian Carbohydrate Intolerance
Study in Pregnant Women (ACHOIS) tri-
als demonstrated a reduction in birth
weight and macrosomia with treatment
of mild GDM (9,10). These combined re-
sults led the U.S. Preventive Services
Task Force to acknowledge for the first
time that treatment of GDM is beneficial
(25). To date, however, there has been
a paucity of information regarding
whether treatment of GDM conveys
long-term benefits to offspring (12,26).
Gillman et al. (12) reported follow-up
data on 199 (or ;20%) 4–5-year-olds
who participated in the ACHOIS trial.
Unlike the present study in which spe-
cific study follow-up visits occurred, the
ACHOIS follow-up was limited to pre-
school height-and-weight measure-
ments obtained through data linkage
analysis. These investigators found no
difference in the BMI z score or fre-
quency of BMI .85th percentile in the
intervention group compared with the
control group (12). A smaller and under-
powered follow-up study of 89 children
aged 9 years from an unblinded RCT for
the treatment of GDM revealed an over-
all greater-than-expected rate of impaired
glucose tolerance with no difference in
treated versus control subjects (26). There
were fewer children with BMI.85th per-
centile in the group treated forGDM;how-
ever, this difference was not significant.

Notwithstanding the concern that
some researchers have raised regard-
ing the inconsistent evidence of an
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association of GDM and childhood obe-
sity due to failure to consider important
factors such as maternal and paternal
obesity, there may be several explana-
tions for the results of the present study
(27). Of note, the present study included
women with mild GDM (fasting glucose
,95 mg/dL) of whom only 7% required
insulin therapy. Inclusion of women with
more-pronounced hyperglycemia during
pregnancy might have demonstrated a
long-term treatment effect on obesity in
their offspring. Alternatively, although
treatedwomenmet conventional glucose
targets for control, these maternal glu-
cose levels may actually exceed those
required to affect later outcomes, such
as childhood obesity.

The appropriate offspring follow-up
period for assessing the effects of ma-
ternal diabetes is debatable. An analysis
of the Hypoglycemia and Adverse Preg-
nancy Outcomes study in offspring 2
years of age found no relationship be-
tween maternal glucose levels and child
obesity (28). We followed children ages
5–10 years, yet the emergence of both
obesity and metabolic dysfunction in
the offspring of diabetic women may
not occur until adolescence or early
adulthood (6,29). Overweight infants
of diabetic mothers may have normali-
zation of their weight in the first few
years of life and then develop obesity
later in childhood. Crume et al. (29) re-
ported that the effects of maternal di-
abetes on offspring BMI may not be
apparent until age 9 or until puberty.
Because most of the children in the
present study were prepubertal (aver-
age age 7 years), we acknowledge that
the development of obesity and any po-
tential treatment benefit may not yet be
apparent in this cohort. A follow-up
study of Indian children born to GDM
mothers also revealed that differences
in adiposity compared with control sub-
jects diminished during infancy and then
increased through childhood (30).

Social and environmental factors
could also be significant confounders
affecting the results of a childhood follow-
up study for which obesity is an outcome.
Breast-feeding, for example, may be as-
sociated with a reduction in childhood
obesity in offspring of diabetic women
(29). We collected data on physical activ-
ity and nutrition, including breast-feeding
practices, and did not observe significant
differences between groups.
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Because metabolic differences exist
betweenmale and female neonates, dif-
fering sensitivities to hyperglycemia in
utero may also result in long-term sex-
specific programming (31). We previ-
ously reported that male offspring of
treated women from this RCT had lower
birth weight and neonatal fat mass,
which was not apparent in female off-
spring (22). In agreement with these
findings, Lingwood et al. (31) also re-
ported that males appear more immedi-
ately sensitive to maternal glycemia as it
relates to the development of neonatal
adiposity. In contrast, female offspring
may be more likely to exhibit the effects
of in utero exposure to maternal diabe-
tes later in childhood. At 5 years of age,
female offspring of diabetic mothers ex-
hibited increased skinfold thicknesses
and higher insulin concentrations and
were more likely to develop impaired
glucose tolerance than control subjects
(30). The present follow-up metabolic
data further support the concept of
sex-specific programming because we
found higher glucose levels and a trend
toward increased insulin resistance in
untreated female offspring. Females
have been shown to have similar cord
glucose to males yet increased insulin
levels at birth. Together with lower birth
weight and increased neonatal adiposity
compared with males, in females, this
might suggest increased insulin re-
sistance (32). In female offspring, the
present results indicate that the devel-
opment of such insulin resistance might
be modifiable with treatment of mild
GDM. We found no evidence of such
an effect in males. Because neonatal ad-
iposity has been determined to be pre-
dictive of subsequent childhood obesity,
we stratified subjects according to neo-
natal fat mass percentile in our analysis
and found a relationship with subse-
quent BMI. In female offspring exhibit-
ing the highest neonatal fat mass,
treatment of mild GDM was associated
with a lower childhood BMI z score. In-
fants with the greatest degree of fat
accumulation in utero in the untreated
arm might represent those most sus-
ceptible to the effects of maternal
hyperglycemia, which might be particu-
larly true in the setting of mild maternal
hyperglycemia found in subjects partici-
pating in the present RCT. The long-term
offspring effects of maternal diabetes
may be partly mediated by neonatal
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body composition. Whereas the devel-
opment of childhood obesity has been
reported to be increased across the
spectrum of birth weight in offspring
of GDM women, Boney et al. (33) re-
ported that only LGA offspring of dia-
betic mothers are at significant risk for
the development of childhood meta-
bolic syndrome.
In conclusion, although this study did

not demonstrate an overall effect on
childhood obesity with treatment of
mild GDM, our observations with re-
spect to the metabolic differences ac-
cording to sex among the offspring
remain intriguing. The association be-
tween neonatal adiposity and childhood
obesity in this study is also apparent,
and a potential treatment effect was
suggested in female offspring with the
highest neonatal fat mass. Thus, the pos-
sibility that fetal programming of meta-
bolic function in GDM can have an
intergenerational effect that may in turn
be modified by treatment remains open
to question. Larger follow-up studies of
pregnancy randomized trials are neces-
sary to provide evidence that the vicious
cycle of intergenerational diabetes and
obesity can in fact be interrupted.
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