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Abstract
The principles of self-assembly and self-organization are major tenets of molecular and cellular
biology. Governed by these principles, the eukaryotic nucleus is composed of numerous
subdomains and compartments, collectively described as nuclear bodies. Emerging evidence
reveals that associations within and between various nuclear bodies and genomic loci are dynamic
and can change in response to cellular signals. This review will discuss recent progress in our
understanding of how nuclear body components come together, what happens when they form,
and what benefit these subcellular structures may provide to the tissues or organisms in which they
are found.

The spatial arrangement of chromatin within the nuclear volume entails a complex interplay
between factors involved in chromosome maintenance and those involved in gene
expression. Understanding how genomes actually function in vivo has been termed the
“Holy Grail” of genome biology and a logical next step after the sequencing projects
(Misteli, 2007). To accomplish this lofty goal, we must learn in detail how the Central
Dogma is applied in three dimensions over developmental time. Fundamental to this
understanding will be knowledge of the relationship between the chromatin and the
interchromatin space, i.e., the genome and its immediate environment.

The cell nucleus is a complex organelle whose dynamic architecture consists of numerous
subcellular compartments, collectively referred to as nuclear bodies (Figure 1; Matera,
1999). These structures include nucleoli, Cajal bodies (CBs), histone locus bodies (HLBs),
splicing factor compartments (a.k.a. speckles or interchromatin granule clusters),
paraspeckles, promyelocytic leukemia (PML) bodies, Gemini bodies (gems), perinucleolar
compartments (PNCs), polycomb group (PcG) bodies, heat shock factor 1 (HSF1) foci,
SAM-68 bodies, GATA-1 foci, and many more. Important nuclear processes, such as DNA
replication and repair (Hozak et al., 1993; Jackson et al., 1994; Lisby et al., 2003; Nakamura
et al., 1986; Nakayasu and Berezney, 1989) or RNA transcription and processing (Carmo-
Fonseca et al., 1992; Fu and Maniatis, 1990; Jackson et al., 1993; Matera and Ward, 1993;
Wansink et al., 1993), are organized in discrete subdomains. One of the emergent principles
of nuclear organization is that certain subnuclear domains are associated with specific gene
loci. Another important rule is that associations between these subdomains and loci are
dynamic and can change in response to cellular signals.

As suggested in the title of this review, nuclear bodies might simply be a reflection of a
propensity for certain proteins to form macromolecular aggregates. Indeed, many of the
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signature proteins of nuclear bodies are known to self-interact (Hebert and Matera, 2000 and
references therein). Protein aggregation and misfolding are cardinal features of numerous
devastating diseases, including Alzheimer’s, Huntington’s, cystic fibrosis, Creutzfeldt-Jakob
syndrome, and type II diabetes. However, overexpression of nuclear body signature proteins
does not typically induce the formation of aberrant nuclear foci or result in an increase in the
number or the size of their respective nuclear bodies. Nuclear body proteins are not known
to be associated with protein folding diseases, and, in fact, there may even be a negative
correlation. Comparative genome analyses have shown that natural selection acts against the
aggregation of essential or self-interacting proteins (Chen and Dokholyan, 2008). Thus, if
nuclear bodies are not simply aggregates of sticky proteins, what functional roles do they
play? This review will focus on studies that are beginning to elucidate the molecular
mechanisms underlying nuclear body assembly and function, using nucleoli, Cajal bodies,
and histone locus bodies as paradigms.

Assembly of Nuclear Bodies
Historically, the term “nuclear bodies” has been reserved for structures that were
characterized morphologically in the electron microscope. More recently, however, nuclear
foci observed in the light microscope by immunocytochemistry have often been termed
“bodies” without prior morphological evidence at the ultrastructural level. Although we are
still far from understanding why most nuclear bodies form, recent progress has been made in
elucidating how they are assembled in the cell.

Two distinct assembly models have been considered, both of which involve recruitment of
individual subunits (or small sub-complexes thereof) from a soluble nucleoplasmic pool
(Cook, 2002; Misteli, 2001, 2007). The main difference is that one model holds that the
subunits are assembled in an orderly fashion, built around a central scaffolding factor,
whereas the other model posits that structures are built up essentially randomly (Figure 2).
Using an approach similar to the one taken by the Misteli laboratory for the study of DNA
double-strand break repair foci (Soutoglou et al., 2007), Dundr and colleagues showed that
essentially any Cajal body protein can nucleate formation of the entire CB structure de novo
(Kaiser et al., 2008). By tethering a given CB component to a specific site in the genome
using the lac repressor/operator system, the investigators showed that the tethered protein or
RNA was able to recruit most, if not all, of the other CB components (Kaiser et al., 2008).
The structures formed de novo had similar size to their endogenous counter-parts, and the
components of the tethered structures had similar dissociation kinetics to those of
endogenous CBs (Dundr et al., 2004; Kaiser et al., 2008). Moreover, the tethered CBs could
be disassembled (or reassembled) by interfering with (or restoring) the lac repressor’s ability
to bind to the operator (Kaiser et al., 2008). Finally, tethering non-CB components to the lac
operator array failed to nucleate CB formation, whereas tethering of PML body components
resulted in formation of de novo PML bodies (Kaiser et al., 2008). Taken together, these
data strongly support a stochastic assembly model and argue against an ordered or
hierarchical nuclear body assembly pathway (Figure 2).

The Kaiser et al. (2008) study represents a kind of cellular “Field of Dreams” experiment—
if you tether it, will they come? Though certainly a major step forward, the lac repressor
tethering system essentially creates an artificial scaffold, raising the question of whether or
not the system faithfully reflects the formation of nuclear bodies in vivo. One argument to
the positive is that the de novo CBs formed by tethering are of a similar size and shape as
the endogenous CBs (Kaiser et al., 2008). However, we do not know whether the size is a
function of the number of lac operator repeats. What happens if you change the length of the
tethering chromatin? Does it change the size of the resultant CB? Does a single component
truly seed the formation of a nuclear body on its own, or must it assemble some kind of
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subcomplex prior to its arrival at the lac operator targeting site? A more basic question is
whether or not CBs require a tether in the first place. In other words, do CBs require specific
DNA or RNA sequences in order to nucleate, or can they form independently (Matera,
1998)? Previous studies can shed some light here.

In amphibian oocytes, CBs (a.k.a. “spheres”) are known to associate with the histone gene
clusters at sites termed “sphere organizers” (Callan et al., 1991; Gall et al., 1981). Similarly,
in interphase human cells, histone and small nuclear (sn)RNA genes associate nonrandomly
with CBs (Frey and Matera, 1995; Gao et al., 1997; Jacobs et al., 1999; Shopland et al.,
2001; Smith et al., 1995), and these sites have been termed “CB organizers” (Frey and
Matera, 1995; Gao et al., 1997). The association of CBs and snRNA genes is not
coincidental, as ectopically expressed snRNA genes can function as CB organizers (Frey et
al., 1999; Frey and Matera, 2001). However, unlike the well-known rRNA genes that act as
nucleolus organizers, CBs are not nucleated at snRNA gene loci following induction of
transcription; rather, the snRNA genes are recruited to extant CBs (Dundr et al., 2007).
Other lines of evidence against a requirement for tethering at a specific genomic locus are
the findings that CBs can be assembled in vitro using Xenopus egg extracts that are
completely devoid of genomic frog DNA (Bauer et al., 1994) or that microinjection of U7
snRNA can nucleate formation of mini-CBs in frog oocytes (Tuma and Roth, 1999). Thus,
at least in certain circumstances, CBs can be formed independently.

Immobilization of components to a specific site in the genome can nucleate formation of a
body. Alternatively, it is possible that the clustering of factors at their normal sites of action
might also lead to formation of a nuclear body. We assume that the downstream,
postnucleation assembly events will proceed by the same molecular mechanisms (e.g.,
stochastic self-organization) regardless of whether or not nuclear body formation was
initiated by immobilizing a given component. However, in the absence of an appropriate
assay, we cannot say for sure that the tethered bodies are functional. Experiments on another
kind of nuclear body, DNA repair foci, suggest that the tethered, de novo structures are
functional. Soutoglou and Misteli (2008) showed that DNA repair factors could be tethered
to specific sites that could not only nucleate formation of DNA repair foci, but could also
elicit the cellular DNA damage response, even in the absence of DNA lesions. These data
argue strongly that the formation of subcellular compartments is governed by stochastic self-
organization and that, once a nuclear body is formed, it is functional.

Nucleoli and HLBs: Where Function Meets Form
Unlike most of the nuclear bodies shown in Figure 1, which are not constitutively associated
with a specific chromosomal locus, the nucleolus is intimately associated with the genes that
encode the 35S preribosomal RNA. More than two decades ago, elegant work in Drosophila
showed that RNA polymerase I-mediated transcription of rRNA transgenes directed
formation of ectopic nucleoli, whereas expression of transgenes lacking pol I promoters did
not (Karpen et al., 1988). Given that nucleolar morphology has long been shown to correlate
with the relative transcriptional activity of the endogenous rRNA genes (Haaf et al., 1991;
Scheer et al., 1984), it is clear that nucleoli form as a consequence of rRNA transcription
and the downstream processing and ribosomal subunit assembly steps. Notably, ectopic
insertion of an array of upstream binding factor (UBF, a pol I transcription factor) binding
sites results in sequestration of UBF and other pol I transcription factors to the ectopic sites,
although a full-blown nucleolus is not formed (Mais et al., 2005). It would be interesting to
see whether lac repressor fusions of other nucleolar components might generate nucleolus-
like subcompartments on lac operator arrays. Self-organization notwithstanding, given the
complex nature of the pol I transcription and rRNA-processing machineries, it seems
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doubtful that tethering any given nucleolar protein would nucleate assembly of an entire
nucleolus.

The HLB is another example of a chromatin-associated nuclear body (Figure 3). Metazoan
genomes typically contain a set of histone genes that are expressed only during DNA
replication (S phase) and another set of “replacement” histone genes that are constitutively
expressed (reviewed in Marzluff et al., 2002). The genes encoding the replication-dependent
histones are typically clustered, whereas the replacement histone genes are interspersed
(Marzluff et al., 2002). HLBs associate specifically with the replication-dependent histone
gene clusters and are thought to coordinate the transcription and 3′ end processing of histone
pre-mRNAs (for details, see Figure 3 legend).

Factors required for histone gene expression, including NPAT, HiNF-P, FLASH, and the U7
snRNP, all are concentrated within the structure we now refer to as the HLB (Barcaroli et
al., 2006; Bongiorno-Borbone et al., 2008; Ghule et al., 2009; Liu et al., 2006; Yang et al.,
2009; Zhao et al., 2000). Previous studies in human cancer cells had shown that the U7
snRNP primarily accumulates in CBs (Frey and Matera, 1995; Pillai et al., 2001; Shopland
et al., 2001). However, in Drosophila, the U7 snRNP typically colocalizes with the histone
gene cluster in HLBs, structures that are distinct from but often adjacent to CBs (Liu et al.,
2006, 2009). The peculiar localization of the U7 snRNP to CBs in most human cancer cell
lines (Figure 3) has therefore caused some confusion.

The recent availability of monospecific antibodies targeting Lsm10 and Lsm11 (components
of U7 snRNP) has allowed investigators to reconcile work in the mammalian and
invertebrate systems. The emerging picture is that, in human primary cells, U7 snRNP
components colocalize precisely with the HLB marker proteins NPAT and FLASH (Ghule
et al., 2009). Due to hyperphosphorylation of coilin (Hearst et al., 2009), CBs are not
typically observed in human primary fibroblasts (Spector et al., 1992) but are prominent
features of other primary cells such as neurons (Cajal, 1910). Thus, it remains an open
question as to why U7 snRNP becomes delocalized from HLBs in cancer cell lines.

Interestingly, Duronio and coworkers have shown that at least some of the components of
HLBs can form nuclear foci in the absence of the histone gene cluster (i.e., in a strain
carrying an appropriate deletion; White et al., 2007). These findings are somewhat
reminiscent of the “residual” Cajal bodies that form in coilin knockout cells (Tucker et al.,
2001; Jady et al., 2003) and suggest that stochastic self-organization is also an important
factor in the assembly of HLBs. However, unlike CBs, HLBs can be viewed as nuclear
subdomains that are dedicated to the expression of replication-dependent histone genes.

Cajal and PML Bodies: Where the Ends Begin
Although they are not thought to be constitutively bound to particular chromosomal regions,
two prominent nuclear subdomains (Cajal and PML bodies) are known to associate
transiently with specific genomic loci. As discussed above, CBs have been shown to
associate with histone, snRNA, and small nucleolar (sno)RNA genes in various human
cancer cell lines (Frey and Matera, 1995; Gao et al., 1997; Jacobs et al., 1999; Schul et al.,
1998; Shopland et al., 2001; Smith et al., 1995). CB association with snRNA genes requires
active snRNA transcription (Frey et al., 1999; Frey and Matera, 2001) and is inhibited by
over-expression of a nonpolymerizable isoform of nuclear actin (Dundr et al., 2007).

Illustrating the plurifunctionality of this nuclear organelle, CBs have also been shown to
play a role in telomere length regulation. Vertebrate telomerase RNAs contain a domain that
is very similar to a class of small Cajal body (sca)RNAs, which typically guide the
posttranscriptional modification of other small RNAs (Darzacq et al., 2002; Kiss et al.,
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2002; Tycowski et al., 2004; Xie et al., 2007). During S phase, human telomerase RNA and
the reverse transcriptase component hTERT colocalize within telomere-proximal CBs (Jady
et al., 2004; Tomlinson et al., 2008; Zhu et al., 2004). During the gap phases of the cell cycle
(G1 and G2), hTERT does not localize to CBs (Jady et al., 2006; Tomlinson et al., 2006).
Targeting of a variety of scaRNAs, including telomerase RNA, to CBs requires the activity
of a WD repeat protein called WDR79/TCAB1 (Tycowski et al., 2009; Venteicher et al.,
2009). This protein is part of the telomerase holoenzyme, and depletion of WDR79/TCAB1
by RNAi (Venteicher et al., 2009) or mutation of its binding site on telomerase RNA
(Cristofari et al., 2007) not only disrupts trafficking of telomerase and other scaRNAs to
CBs, but also inhibits telomerase function. Because localization of telomerase RNA to CBs
is not cell-cycle dependent, whereas hTERT accumulates in CBs only during mid-S phase,
these findings strongly suggest a mechanism whereby CB-mediated RNP assembly drives
the activity of the telomerase holoenzyme complex.

Of interest, in the absence of functional telomerase, another type of nuclear body appears to
play a role in maintaining telomere length. Certain tumors and immortalized cell lines are
telomerase negative and maintain their telomeres using a recombination-mediated
alternative lengthening of telomeres (ALT) mechanism (Bryan et al., 1995; Dunham et al.,
2000). In addition to the lack of telomerase activity, ALT cells share a number of common
features, including a unique pattern of telomere length heterogeneity (Bryan et al., 1995) and
the presence of ALT-associated PML bodies (APBs) that contain telomeric DNA sequences
as well as telomere-specific binding proteins (Yeager et al., 1999).

The formation of APBs is induced by DNA damage (Fasching et al., 2007) and/or
upregulation of the p53/p21 pathway and requires the heterochromatin binding protein HP1
(Jiang et al., 2009). Furthermore, live-cell imaging experiments suggest that APBs are
formed in two steps. A preexisting PML body is first thought to bind to the telomere,
followed by recruitment of additional PML (and presumably other proteins) from the
nucleoplasm until the typical APB structure is assembled (Jegou et al., 2009). Ample
evidence suggests that, when telomere repeat length is reduced below a critical threshold,
the normal telomeric chromatin structure (the telosome) is disrupted, perhaps resulting in an
increased mobility of the chromosome end. A current model of APB formation holds that
the shortened telomere then associates with a PML body to form an APB (Jegou et al.,
2009). Subsequently, telomere length is increased, allowing the telosome to reassemble.
Although APBs may not be required for the recombination-mediated repair event, per se
(Jiang et al., 2009), they are thought to function to protect ALT cells from the apoptotic
consequences of DNA damage-induced signaling.

Heterogeneity of Nuclear Bodies: A Signature of Plurifunctionality?
The nucleolus has long been thought to carry out multiple functions (reviewed in Pederson,
1998; Pederson and Tsai, 2009), so the potential plurifunctionality of nuclear bodies is not a
new idea. However, proving that a given biochemical reaction is taking place in a particular
nuclear subcompartment and not in another closely related one is not an easy task. The
studies of ALT-associated PML bodies outlined above suggest that, upon receipt of the
appropriate cellular signal, a garden variety PML body can morph into a different type of
nuclear subcompartment—or, at least, it can perform a different function. Caution must be
used when interpreting such transformations, as oftentimes, a limited number of markers are
monitored, and it is not always clear whether the nuclear body itself is morphing or whether
one or a few of its components simply relocalize to a different structure.

The structural heterogeneity among nuclear bodies of the same class is an underexplored
topic. Alternative pre-mRNA processing of PML is thought to create different binding
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interfaces and thereby modulate functional diversity among PML bodies (reviewed in
Bernardi and Pandolfi, 2007). With regard to heterogeneity among Cajal bodies, are the CBs
that appear to be floating free in the nucleoplasm structurally distinct from those located
adjacent to snRNA genes, histone gene clusters, nucleoli, or telomeres? Static images of
human cancer cell lines suggest that most CB components are shared among all of the CBs
in a given cell (reviewed in Matera, 1999). In living cells, CB components display
reasonably tight retention time profiles. In other words, there is little variation in the
dissociation kinetics of a given component from one CB to another (Dundr et al., 2004). The
fact that individual CBs are capable of associating with multiple DNA loci at the same time
(Frey et al., 1999) also suggests an equivalency between CBs. However, a study of CB
motility and dynamics provided clear evidence of unequal partitioning of components to
daughter CBs upon splitting (Platani et al., 2000). A clearer understanding will require not
only the identification of multiple marker proteins for a given structure, but also their
simultaneous use in an experiment. Furthermore, because most of the above studies were
carried out in a single human cell line (HeLa), additional studies in other cells and
organisms will be needed in order to better understand how these intranuclear leopards
might change their spots.

Crucibles of Macromolecular Assembly
The eukaryotic nucleus is a congested place. Macromolecular crowding is thought to play an
important role in increasing the relative concentration of nuclear proteins and accelerating
the rates of biochemical reactions (Hancock, 2004; Richter et al., 2008; Zhou et al., 2008).
Based on the principle of mass action, higher concentrations of reactants can drive a given
reaction forward. In situ hybridization and digital imaging microscopy experiments have
shown that the highest concentration of spliceosomal snRNPs in a HeLa cell nucleus is in
the CB (Carmo-Fonseca et al., 1992; Matera and Ward, 1993). What kinds of reactions take
place within CBs? Do they slow down if the CB is disassembled? What are the cellular and
organismal consequences of the loss of this structure? These and other questions are
considered below.

A relatively large body of evidence points to a role for CBs in the assembly and
modification of a variety of different small RNPs (Sleeman and Lamond, 1999; Darzacq et
al., 2002; Jady et al., 2003; Boulon et al., 2004; Nesic et al., 2004; Schaffert et al., 2004;
Shpargel and Matera, 2005; Stanek et al., 2003; Stanek and Neugebauer, 2004; Tanackovic
and Kramer, 2005; Jady et al., 2006; Li et al., 2006; Tomlinson et al., 2006, 2008; Li et al.,
2008). These macromolecular assembly processes apparently do not strictly require the
presence of CBs, as mutations in coilin result in the disassembly of CBs, and the
homozygous mutants are at least partially viable (Collier et al., 2006; Liu et al., 2009;
Tucker et al., 2001). Of note, loss or depletion of coilin leads to reduced growth rates in
human cultured cells (Lemm et al., 2006) and reduced viability, fertility, and fecundity in
mice (Walker et al., 2009). Thus, though certain organisms can do without coilin, the protein
has been conserved since before the divergence of plants and animals (estimated at > 1.5
billion years ago).

Cajal bodies have been described as waystations, meeting places, and assembly factories for
RNPs (Matera and Shpargel, 2006; Stanek and Neugebauer, 2006). The developmental need
for a given class of RNP may not be the same in one species as it is for another. The
emerging evidence suggests that CBs have taken on different functions throughout evolution
(Matera, 2006; Pontes and Pikaard, 2008). For example, the acquisition of a snoRNA-like
domain in mammalian telomerase RNAs (Mitchell et al., 1999) is likely an important
feature, enabling telomere length to be regulated by an RNP assembly mechanism
(Tomlinson et al., 2008; Venteicher et al., 2009). Similarly, the presence of an additional
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Argonaute protein (Ago4) has enabled plant cells to create nuclear siRNA “processing
centers” (Li et al., 2006; Pontes et al., 2006) for RNPs involved in RNA-directed DNA
methylation. A related but distinct activity also exists in another type of nuclear “dicing”
body (Fang and Spector, 2007; Fujioka et al., 2007; Li et al., 2008; Song et al., 2007). Thus,
in addition to localizing a particular biochemical reaction to a specific genomic locus (e.g.,
the telomere), nuclear bodies might also function to accelerate the assembly of
macromolecular complexes.

What is the evidence for this other general function? Recently, Neugebauer and colleagues
carried out an important study that illustrates how a structure such as the CB can facilitate a
key step in gene expression, namely the assembly of U4/U6 spliceosomal di-snRNPs (Figure
4). Using a combination of in vivo measurements and in silico modeling, these investigators
showed that U4 and U6 snRNP concentrations are up to 20-fold higher in the CB than in the
surrounding nucleoplasm, leading to a dramatic (11-fold) increase in the rate of U4/U6 di-
snRNP assembly in cells that contained CBs versus those lacking them (Klingauf et al.,
2006). The optimum number of CBs was calculated to be between three and four per cell
(Figure 4); there are apparently decreasing marginal returns on the investment of more than
four CBs per cell (Klingauf et al., 2006). Interestingly and perhaps not coincidentally, the
number of CBs in a typical mammalian cell line is between three and five (Matera, 1999).
Collectively, the experiments suggest that coilin expression and CB formation greatly
facilitate RNP assembly reactions that are rate limiting for cellular proliferation.

Conclusions and Prospectus
In a broader context, it is tempting to speculate that subcellular compartments (i.e., those
that are bound by membranes as well as those that are not) may generally function to
concentrate reactants and thereby enhance the rates of association of various
macromolecular complexes contained within their borders. Indeed, nuclear Cajal bodies
have many of the same molecular features and experimental challenges as cytoplasmic
processing bodies (P bodies). Both are membrane-less, RNP-rich, steady-state structures that
are assembled from sets of dynamic components (Aizer et al., 2008; Dundr et al., 2004;
Kedersha et al., 2005). Like CBs, P bodies can be found in close association with other
compartments or foci, such as stress granules and U bodies (Buchan et al., 2008; Liu and
Gall, 2007; Kedersha et al., 2005). Also, like their nuclear brethren, P bodies are not
essential structures, although they contain many essential components (Anderson and
Kedersha, 2009; Eulalio et al., 2007a; Parker and Sheth, 2007). Thus, CBs and P bodies are
not obligate structures; molecular processes thought to take place in these domains are
ongoing in the absence of the structures themselves (Eulalio et al., 2007b; Jady et al., 2003).
These and other results suggest that cellular structures such as the CB or P body contribute
to the overall fitness of the organism by allowing additional layers of regulation and fine-
tuning.

How do cells and organisms coordinate the regulation of multiple macromolecular assembly
reactions? What are the feedback mechanisms? The past few years have seen a tremendous
amount of progress in elucidating the molecular mechanisms underlying the assembly and
function of nuclear subcompartments. However, the examples above highlight the need for
combined approaches involving genetic, cellular, and organismal studies in order to better
understand how the machinery in nuclear (and cytoplasmic) bodies interfaces with various
assembly and/or signaling factors to regulate gene expression. The prediction is that a given
nuclear body component might localize to distinct subcellular compartments based on
differential affinities for factors in those compartments. Future studies will thus require the
use of biosensors that function in living cells and can give readouts of molecular states.
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Figure 1. Diversity of Nuclear Bodies
The cartoon in the center of the figure depicts the nucleus of a higher eukaryote. Interphase
chromosomes occupy distinct territories (large irregular shapes). The interchromatin space
contains numerous subdomains or bodies (colored dots).
(A) The nucleoli of a mouse embryonic fibroblast were stained with anti-fibrillarin (red) and
counter-stained for DNA using DAPI (blue). Note that fibrillarin localizes primarily to
nucleoli (large blobs) but is also found in Cajal bodies (asterisks).
(B) Antibodies targeting the U2B″ protein were used to identify the Cajal body (bright dot)
in this Arabidopsis nucleus. Note that the nucleolus shows up as a negatively stained region
within the nucleoplasmic U2B″ signal.
(C) Anti-FLASH antibodies highlight the two histone locus bodies (bright foci) within this
Drosophila S2 cell.
(D) Mammalian nuclei, as illustrated by this mouse NIH 3T3 cell, typically contain 10–30
PML bodies, stained here with anti-PML.
(E) The perinucleolar compartment (PNC) is shown in this human (HeLa) cell hybridized
with an oligo-nucleotide probe targeting hY1 RNA (green). The nucleus is counterstained in
blue with DAPI. Note that this RNA localizes to the PNC as well as to the cytoplasm.
(F) This human U2OS cell was transfected with YFP-tagged Bmi1, a Polycomb group (PcG)
protein that is used as a marker for PcG bodies (green). Counterstaining was performed
using Hoechst (blue).
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Figure 2. Mechanisms of Nuclear Body Formation
(A) Biological systems are thought to be governed by the principle of self-organization
(Camazine et al., 2001), which is distinct from the concept of self-assembly (Worrall et al.,
2007). Self-assembly involves formation of stable complexes that essentially reach
thermodynamic equilibrium (left). In contrast, self-organization operates on steady-state
systems—those that are far from equilibrium (right). As outlined by Misteli (2001), in cell
biological terms, self-organization can be defined as: “the capacity of a macromolecular
complex or organelle to determine its own structure, based on the functional interactions of
its components.” Through this mechanism, which requires a continuous exchange of
materials, the cell is capable of generating a stable (steady-state) structure from a set of
dynamic components. In the cartoon, the steady-state approximation is met because a
constant flux of components is maintained. Factors enter the body from the newly
synthesized pool and can exit the structure, perhaps in a modified form (sunbursts). Note
that the modifications do not necessarily preclude a given component from rebinding to the
structure.
(B) The assembly of a nuclear body can follow a hierarchically ordered assembly pathway
(top), or components can assemble stochastically by a number of individual pathways
(bottom). Note that components can enter singly or as large complexes. Although the order
of assembly is random in the stochastic model, it is still predicated on molecular
interactions. Thus, loss of a given component could lead to failure to incorporate another
component or complex.
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Figure 3. Components of Cajal and Histone Locus Bodies
The replication-dependent histone genes are typically clustered in metazoan genomes. The
histone locus body (HLB) can be viewed as a nuclear subdomain dedicated to the
transcription and processing of histone pre-mRNA. In the Venn diagram above, factors
known to localize to HLBs in both primary and cancer cell lines are shown. Factors that
localize to Cajal bodies (CBs) are also listed. Note that the U7 snRNP, which is essential for
processing of histone pre-mRNA 3′ ends, is localized to the CB in human cancer cell lines
but to the HLB in primary cells.
Although the term HLB was only recently coined (Liu et al., 2006), the structure was
probably first identified in 1981, when Gall and coworkers showed that the “sphere
organelle” is bound to the histone gene clusters in the newt, Triturus (Gall et al., 1981).
These structures were later termed CBs. The presence of extrachromosomal sphere
organelles (also termed CBs) in amphibian oocytes and the absence of markers to
distinguish between these two types of structures has also been a hindrance. In 1998,
Spradling and coworkers (Calvi et al., 1998) showed that an unknown cyclin E-dependent
phosphoepitope (MPM-2) localized to a nuclear domain that was subsequently identified as
the HLB (White et al., 2007). The first clear demonstration of a structure located at the
mammalian histone gene cluster was by Zhao and coworkers, who found that NPAT, a
CDK2-cyclin E substrate, colocalized with the mammalian histone genes (Zhao et al., 2000).
Subsequently, another HLB protein, called FLASH, was shown to colocalize with NPAT
(Barcaroli et al., 2006).
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Figure 4. Modeling Macromolecular Assembly
(A) Formation of the U4/U6 di-snRNP requires extensive base-pairing interactions between
U4 and U6 snRNAs. The assembly of U4/U6 di-snRNPs is a necessary step that takes place
prior to spliceosome formation. Proteins that bind to these snRNAs are not shown in the
reaction scheme.
(B) Three-dimensional projection of a HeLa cell nucleus showing a single nucleolus and
four Cajal bodies (CBs) within its interior (reprinted with permission from Klingauf et al.,
2006). Dimensions are in microns.
(C) Through the use of simulated random walks within the nuclear space (excluding the
nucleolus), Klingauf et al. (2006) showed that the time for productive assembly of U4/U6
di-snRNPs was greatly accelerated by the presence of one or more CBs; optimal assembly
rates were achieved when cells contained three to four CBs.
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