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Abstract

We have developed an optogenetic technique for the activation of diaphanous related formins. Our

approach is based on fusion of the Light-Oxygen-Voltage 2 domain of Avena sativa Phototrophin1

to an isolated Diaphanous Autoregulatory Domain from mDia1. This “caged” diaphanous

autoregulatory domain was inactive in the dark, but in the presence of blue light rapidly activated

endogenous diaphanous related formins. Using an F-actin reporter we observed filopodia and

lamellipodia formation as well as a steady increase in F-actin along existing stress fibers, starting

within minutes of photo-activation. Interestingly, we did not observe the formation of new stress

fibers. Remarkably, a 1.9 fold increase in F-actin was not paralleled by an increase in myosin II

along stress fibers and the amount of tension generated by the fibers, as judged by focal adhesion

size, appeared unchanged. Our results suggest a decoupling between F-actin accumulation and

contractility in stress fibers and demonstrate the utility of photoactivatable diaphanous

autoregulatory domain for the study of diaphanous related formin function in cells.
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Introduction

The actin cytoskeleton organizes the cell interior, maintains its shape, and connects it with

its exterior via cell-cell and cell-matrix adhesion sites. Through assembly and disassembly
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and through association with myosin motors the actin cytoskeleton can change shape and

generate forces to facilitate many important cellular processes, such as cell motility,

cytokinesis, endocytosis, and wound closure (Pollard and Cooper 2009). The dynamics and

architecture of actin networks in the cell are tightly controlled by dozens of actin-binding

proteins, which bind monomers and/or filaments of actin and catalyze one or more of the

following: filament nucleation, branching, elongation, capping, severing, stabilization, and

cross-linking (dos Remedios et al. 2003; Paavilainen et al. 2004; Revenu et al. 2004).

Nucleation of actin is an energetically unfavorable step that is overcome by the activity of

the Arp2/3 complex, Formins or Spire, each of which, due to its unique features, is

responsible for the polymerization of a specialized actin structure. Arp2/3-driven nucleation

forms a dendritically branched network (Mullins et al. 1998), which is capable of pushing

membranes, such as the leading edge of a migrating cell (Pollard and Borisy 2003). Formins

nucleate and promote long unbranched actin filaments (Watanabe and Higashida 2004) that

can combine with non-muscle myosin II to form contractile bundles, such as the cytokinetic

ring (Tolliday et al. 2002). There are seven sub-families of formins, two of which appear to

be neuronal specific and five are widely expressed (Chesarone et al. 2010). Of these, the

family of Diaphanous-related formins (DRFs), consisting of mDia1, mDia2 and mDia3, has

established roles in lamellipodial and filopodial protrusion (Sarmiento et al. 2008;

Schirenbeck et al. 2005), stress fiber formation (Hotulainen and Lappalainen 2006), cell-cell

adhesion (Carramusa et al. 2007), cytokinesis (Tolliday et al. 2002; Tominaga et al. 2000),

phagocytosis (Brandt et al. 2007), endosomal trafficking (Fernandez-Borja et al. 2005),

golgi organization (Zilberman et al. 2011), synaptic growth and stability (Pawson et al.

2008), microtubule stabilization (Palazzo et al. 2001) and transcriptional activation

(Tominaga et al. 2000). Structurally, DRFs can be divided into a catalytic C-terminal half,

containing the formin homology 1 (FH1), formin homology 2 (FH2), and Diaphanous auto-

regulatory domain (DAD) domains, and a regulatory N-terminal half, containing a Rho

GTPase-binding domain (RBD), Diaphanous inhibitory domain (DID), dimerization domain

(DD), and coiled coil (CC) domain (Higgs 2005). An interaction between the DAD and DID

domains keeps the protein locked in a folded state, in which the activity of the FH1 and FH2

is turned off (Li and Higgs 2003). DRFs are turned on by active Rho; binding of Rho-GTP

to the RBD of the DRF releases the auto-inhibitory interaction between DAD and DID and

frees the FH2 and FH1 domains to bind and polymerize actin (Watanabe et al. 1999).

To date, the study of DRF function in cells has primarily relied on the use of deletion

mutants that create constitutively active forms of the DRF, either by deleting the DAD

domain or by truncating the N-terminus, leaving only the FH1/FH2 and DAD domains

(Watanabe et al. 1999). These constructs have two major caveats, the first being that they

involve overexpression of exogenous active DRF at levels that are much higher than

endogenous DRF, and secondly, they remove domains that normally interact with other

proteins and may regulate the localization of DRF within the cell (Chesarone et al. 2010).

Expression of a constitutively active form of RhoA has been used as a means to activate

DRFs in cells (Carramusa et al. 2007). This method has the advantage of activating

endogenous DRFs, but the obvious drawback is that RhoA has other effectors in the cell,

such as Rho-associated protein kinase (ROCK) (Amano et al. 1997; Ishizaki et al. 1997) and

PIP5K (Weernink et al. 2004), thus complicating any interpretation of results. Yet another
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method to activate endogenous DRFs is the exogenous expression of DAD domains (Alberts

2001; Palazzo et al. 2001; Dong et al. 2003). DAD expression has been shown to induce

actin polymerization and SRF activation (Alberts 2001). This method is the cleanest of the

three, as it only activates endogenous DRFs and no other pathway. However, it takes from

minutes to hours for the DAD protein to accumulate post- injection/transfection and thus the

exact timing of DRF activation is not known.

In recent years optogenetic tools have been devised to activate proteins within cells using

light (Toettcher et al. 2011). These techniques make use of conformational changes

occurring in proteins after light is absorbed. One such protein is the Light-Oxygen-Voltage

(LOV) protein from Avena sativa Phototropin1 (Christie et al. 1999). Here, we demonstrate

that by fusing the LOV domain to the DAD domain of mDia1 we have generated a novel

tool that allows photo-activation of endogenous DRF activity in cells. We use this tool to

show immediate and sustained actin polymerization all along existing stress fibers (SFs) in

serum-starved HeLa cells in response to DRF activation. Furthermore, we found that the

1.9-fold increase in F-actin in SFs was not accompanied by an increase in non-muscle

myosin II along the SF and did not change the average size of focal adhesions at the ends of

SFs. Thus, our novel tool was able to decouple between F-actin content and contractility in

actin stress fibers.

Materials and Methods

Plasmids/DNA Cloning

The cDNA encoding the light, oxygen, and voltage (LOV2-Jα) protein domain of Avena

sativa (oat) Phototropin1 (404–546) was a gift from Keith Moffat, University of Chicago.

Chimeric fusion constructs consisting of LOV2-Jα fused to the DAD domain of mouse

Diaphanous-related formin-1 (mDia1) were generated using an overlapping PCR approach,

and the fluorescent protein mVenus was inserted, with a short linker (GS3), at the N

terminus of the LOV2-Jα domain to monitor expression and subcellular localization. A short

flexible linker (GGS2) that permits light-induced unfolding of the protein was then inserted

between the LOV2-Jα and DAD domains using an overlapping PCR approach. Photo-

activatable DAD (PA-DAD) was thus constructed as follows: mVenus-(GS)3-LOV2-Jα

(404–546)–(GGS)2-DAD (1177–1222). The QuickChange (Stratagene) site-directed

mutagenesis protocol was used to introduce additional point mutations in the LOV2-Jα

domain, including I539E for constitutive activation (lit mutant), and C450M to mimic the

dark state of the LOV2-Jα domain. A separate construct with a point mutation in the DAD

domain (PA-DAD-M1182A) was also generated using the QuickChange mutagenesis

strategy. All the aforementioned constructs were inserted into a pTriEx-4 (Novagen) vector

for transient expression in mammalian cells. BFP-tagged PA-DAD was cloned by PCR-

amplifying the LOV2-Jα–(GGS)2-DAD cassette and inserting it into pTag-BFP (Evrogen,

Russia) using BglII and BamHI sites.

Cloning for the constitutively active full-length mDia1 (CA-mDia1) was performed using

the QuickChange site-directed mutagenesis protocol. Mutations V161D and N165D in the

GTPase-binding domain and M1182A and L1185A in the DAD domain were introduced
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into full-length GFP-tagged mDia1 using primers containing the respective point mutations.

The novel plasmids described here will be available through Addgene (www.addgene.org).

Plasmids for alpha-actinin and focal adhesion proteins paxillin, zyxin, and integrin-alpha-V

(all tagged with mCherry fluorescent tag) were gifts from Michael Davidson, Florida State

University. F-Tractin (comprising amino acids 9–52 of rat ITPKA), an F-actin marker,

tagged with tdTomato was a gift from Michael Schell, Uniformed Services University,

Bethesda MD (Johnson and Schell 2009). Plasmids encoding myosin regulatory light chain

(eGFP-MRLC1) and its phospho-mimetic mutant (pEFGP-MRLC1 T18D, S19D) (Beach et

al. 2011) were obtained from Addgene (Tom Egelhoff, Addgene plasmids 35680 and 35682

respectively).

Cell Culture

HeLa (human cervical adenocarcinoma) and NIH3T3 (mouse fibroblasts) were cultured at

37°C and 5% CO2 atmosphere, in Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen)

supplemented with 10% FBS (Invitrogen), 2mM L-Glutamine (Invitrogen), and 1%

Penicillin-streptomycin (Invitrogen).

Immunofluorescence and Phalloidin staining

Cells for immunofluorescence and/or phalloidin staining were seeded on glass coverslips,

followed by transfection with the desired plasmids using Lipofectamine 2000 (Invitrogen) as

per manufacturer’s instructions. Samples were processed for immunostaining 22–24hr post-

transfection. Briefly, cells were fixed for 15 minutes in warm 4% paraformaldehyde

followed by permeabilization with 0.25% Triton X-100 for 3 minutes. Samples were then

stained at room temperature with the appropriate dilution of desired primary antibody for

one hour, followed by secondary antibody and/or Tritc-conjugated Phalloidin (Sigma-

Aldrich) for 30min in dark conditions before mounting them on glass slides using FlourSave

mounting media (Merck Millipore). Primary antibodies used were mouse anti-paxillin (BD

Transduction Laboratories) and rabbit anti-myosin IIA (Sigma-Aldrich). Secondary

antibodies were donkey anti-mouse or anti-rabbit, conjugated to Alexa 568 or Alexa 647

(Invitrogen).

Transfection

Cells for live imaging were seeded on 30mm glass coverslips in DMEM medium

supplemented with 10% FBS at a density of 2x105 cells/ml in a 35mm dish. Typically 0.3µg

of mVenus-LOV-wt-6aa-DAD and 0.2µg of F-Tractin-tdTomato or 0.3µg of MRLC

plasmids or a focal adhesion marker was used for transient transfection with Lipofectamine

2000. Following transfection, cells were serum-starved for ~16hr prior to imaging. Sample

preparation and handling was performed in the dark or under red light, due to the light

sensitivity of the LOV domain. Care was taken to avoid exposure of transfected cells to

ambient light and wavelengths <500nm immediately before imaging experiments.

Live-cell imaging and formin inhibition

Live-cell imaging was carried out at 37°C and 5% CO2 atmosphere in a heated chamber in

DMEM without serum and phenol red, supplemented with 25mM HEPES (Invitrogen).
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Images were acquired using a microscope (Model Ti, Nikon) equipped with a Spinning-Disk

confocal head (Model CSU-X1, Yokogawa Corporation), Laser launch unit (iLas2, Roper

Scientific) and a CCD camera (Evolve Rapid-Cal, Photometrics). A 60X Plan-Apo 1.40NA

objective (Nikon) was used for image acquisition and z-axis movement was controlled by

the Perfect Focus System on the microscope (Nikon). MetaMorph software (Molecular

Devices) was used for image acquisition. Activation of PA-DAD or PA-DAD-M1182A was

carried out using an illumination regime of 500ms exposure with a 405nm laser at intervals

of 3 minutes. Actin and focal adhesion markers were imaged using a 561nm laser at 30-

second time intervals. For experiments involving treatment with the small molecule inhibitor

of FH2 domains (SMIFH2; ChemBridge Corp. San-Diego, USA), sample preparation was

the same as described earlier. Prior to imaging, samples were incubated with SMIFH2

(30µm, prepared in DMSO) for 3hr and imaged using a similar activation regime as

described above, in presence of the drug.

Image analysis

Quantification of fluorescent intensity was performed using standard ImageJ measurement

tools (NIH, USA). Phalloidin or F-Tractin intensity was measured in manually drawn

polygons surrounding either whole cells, individual SFs, segments of SFs or regions inside

the cell devoid of SFs. To quantify FAs, we used the “subtract background” and

“thresholding” functions to create a binary image identifying all FAs in each frame of a

movie. The “analyze particles” function was then applied to calculate size, number and

intensity of each FA. Data were regularly registered using Microsoft Excel 2011 and

statistical analysis and graphs were drawn in Prism 6 software (GraphPad Software, Inc.).

Quantitative datasets were subjected to Student’s t-test using the statistical functions

available in Prism 6. Images were prepared for publication using Adobe Photoshop CS6

v13.0.1x64 (Adobe Systems, San Jose, CA).

Results

Constructing PA-DAD

We sought to generate a tool to activate endogenous DRFs, in particular members of the

Diaphanous family (collectively referred to hereafter as Dia), in a temporally controlled

manner. Dia is held inactive by an intra-molecular interaction between the N-terminal

Diaphanous inhibitory domain (DID) and C-terminal Diaphanous auto-regulatory domain

(DAD) (Li and Higgs 2003). Alberts had shown that it is possible to activate endogenous

mDia by expressing an exogenous DAD domain, which competes with the endogenous

DAD for binding of the DID domain and thus releases the auto-inhibition (Alberts 2001).

Previously, we have used the photo-switchable LOV domain of Avena sativa Phototropin1

to make a Photo-activatable Rac1 (PA-Rac) (Wu et al. 2009). Here, we fused the complete

LOV2-Jα sequence (404–546) to the N-terminus of mDia1 DAD (1177–1222), anticipating

that the LOV domain in its closed conformation would block the binding of the DAD with

endogenous Dia, and that light-induced unwinding of the Jα helix would release steric

inhibition, leading to Dia activation (Figure 1A). We used F-actin polymerization in HeLa

cells, quantified by phalloidin fluorescence intensity, as a measure of Dia activation. As a

positive control we used a GFP-tagged constitutively active full length mDia1 (GFP-CA-
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mDia1) that we generated by mutating the C-terminal DAD domain (M1182A and L1185A)

so that it cannot interact with the DID domain (Gould et al. 2011) and the N-terminal Rho-

GTPase binding domain (V161D and N165D) (Otomo et al. 2005; Rose et al. 2005) so that

it does not sequester active RhoA (Figure 1B). Expression of CA-mDia1 led to a 1.49

(±0.02, n=30 cells)-fold increase in phalloidin staining relative to non-transfected control

cells (Figure 1C). Expression of the mDia1 DAD domain fused to mVenus on its N-terminus

led to a 1.6 (±0.05, n=30)-fold increase in phalloidin staining (Figure 1C). However, the

fusion of either light or dark conformation mutants of the LOV2 domain to the N-terminus

of DAD completely inhibited its effect on endogenous Dia, as evident by the lack of

increase in F-actin accumulation in these cells (Figure 1C). To circumvent this problem we

inserted linkers of varying lengths between the LOV2 and DAD domains. We found that a

six amino acid linker was the optimal length, exhibiting a 1.43 (±0.02, n=30)-fold increase

in phalloidin staining with the LOV2 in the open conformation (lit mutant) and only a

modest increase (1.19±0.05-fold) with the LOV2 in the closed conformation (dark mutant)

(Figure 1C). From here on we refer to the wild-type LOV2 fused to the DAD from mDia1

with a six amino acid linker as Photo-activatable DAD (PA-DAD).

Effects of PA-DAD activation on the actin cytoskeleton

To observe the effects of endogenous Dia activation on actin polymerization in real time, we

expressed mVenus-tagged PA-DAD in HeLa cells along with the F-actin reporter F-Tractin-

tdTomato. Cells were serum-starved after transfection to reduce the overall level of Rho

activity in them. Without photo-activation, cells expressing PA-DAD showed a slight

increase in the number of SFs and filopodial protrusions compared to non-transfected

controls, indicating some degree of “leakiness” of the PA-DAD. However, in the absence of

photo-activation, and imaging only F-Tractin-tdTomato in these cells using a 561nm laser

we did not detect a noticeable change in F-Tractin levels or in cell morphology over a one-

hour period (Figure 2A). By contrast, photo-activating PA-DAD with a 405nm laser resulted

in a steady increase in F-actin content of SFs, resulting, on average, in a 1.9-fold increase in

F-Tractin fluorescent intensity and/or an increase in SF width (Figure 2A and 2B). This

increase in actin polymerization was evidently formin-dependent since activation of PA-

DAD in the presence of a small molecule inhibitor of FH2 domains (SMIFH2; Rizvi et al.

2009) did not result in increased actin polymerization (Figure 2A). Furthermore, a point

mutation (M1182A) in the DAD domain shown to disrupt its interaction with mDia DID

domain, but not to affect its G-actin binding ability (Gould et al. 2011), substantially

abrogated the capacity of PA-DAD-M1182A to induce actin polymerization upon

photoactivation (Figure 2A). Measuring the fluorescence intensity of the mVenus protein

fused to PA-DAD we found a positive correlation between the expression level of PA-DAD

and the degree of increase in actin polymerization reported by F-Tractin (Figure 2C).

In addition to thickening of stress fibers we observed a doubling in the number of filopodia

forming throughout the cell periphery (Figure 3A and 3B) and bursts of actin polymerization

throughout the cell body, appearing as clouds or “worms”, resulting in a 1.5-fold increase in

the level of F-actin in the cell body (Figure 3C and 3D). To verify that F-Tractin is faithfully

reporting on a bona-fide increase in F-actin we co-transfected PA-DAD cells with

fluorescently tagged alpha-actinin, an F-actin binding protein and a component of SFs.
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Following photo-activation mCherry-alpha-actinin showed an increase in intensity along

SFs that resembled the increase observed with F-Tractin (Supplementary Figure 1). Similar

effects of PA-DAD activation were also obtained in NIH3T3 fibroblasts, except that in

addition to filopodia formation, multiple lamellipodial protrusions were observed after PA-

DAD activation (Supplementary Figure 2).

We attempted to locally activate Dia by restricting the 405nm illumination to a small region

within the cell. However, despite the local illumination we observed an increase in F-actin

throughout the cell just as in whole field illumination indicating that the activated PA-DAD

diffused away from the illumination spot faster than its switching to the dark conformation.

Dia activity along SF

Current models of SF assembly postulate that SFs either form by the coming together of pre-

assembled bundles of F-actin and myosin (Cramer et al. 1997; Hirata et al. 2007; Machesky

and Hall 1997; Verkhovsky et al. 1995), or by actin polymerization at the ends of SFs,

where they connect with focal adhesions (Endlich et al. 2007; Hotulainen and Lappalainen

2006; Noria et al. 2004; Okabe and Hirokawa 1989). If actin polymerization only occurs at

the ends of SFs, we reasoned, we should first see an increase in F-Tractin intensity at the

ends of SFs, followed by an increase in intensity at the central region of the SF at a later

time. To test this idea we segmented individual SFs into three equal parts and followed the

changes over time in total fluorescent intensity for each segment. We found that in most

cases the increase in F-Tractin intensity occurred concurrently in the three segments. In

some cases the three segments appeared to change independently of each other and we could

observe an increase in the central region before an increase at the ends of the SF (Figure

4A). Thus, our observations are consistent with actin polymerization occurring all along the

SF and not restricted to either end.

HeLa cells typically assemble two types of SFs: Central SF and Peripheral SF. It has

previously been shown that peripheral SFs are more dependent on Myosin light chain kinase

(MLCK) whereas central SFs are more dependent on Rho-associated protein kinase (ROCK)

(Katoh et al. 2001). In line with this distinction, after 16–18 hours of serum starvation (a

condition of low Rho/ROCK activity) we found that HeLa cells had lost most of their central

SFs while retaining their peripheral SFs. Noting the difference in regulation of peripheral

versus central SFs we wondered whether Dia activation will differentially affect these two

types of SFs. To test this idea we quantified the change in F-Tractin intensity after photo-

activation in individual SFs from either the center or periphery of cells. As shown in Figure

4B, while the level of F-actin in both types of SF increased in response to PA-DAD

activation, the level of F-actin in peripheral SF rose faster and reached a higher level as

compared with central SF.

Interestingly, while PA-DAD activation led to substantial actin polymerization within

existing SFs we did not observe a single instance of de-novo assembly of a SF. As

mentioned earlier, due to serum starvation some cells had few central SF and some had no

central SF at all. In the cells with few SF, upon photo-activation of PA-DAD some SF grew

longer, others branched or diverged to create in the end more SF than at the beginning, but

cells that had no central SF at the beginning failed to polymerize SF till the end of our
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acquisition (Figure 4C). In conditions of no activation, the existing central SFs did not show

any change during the course of imaging.

Dia activation and focal adhesions

The majority of SFs in HeLa cells are ventral SF, which are anchored at focal adhesions

(FAs) on both ends (Small et al. 1998). It is well established that FAs depend on the

actomyosin contractility created by the SF for their assembly, growth and maintenance

(Balaban et al. 2001; Chrzanowska-Wodnicka and Burridge 1996; Oakes et al. 2012). In

fact, thanks to their tensile connection to SFs, FAs function as mechanosensors and rapidly

respond to increases/decreases in tension by assembly/disassembly (Bershadsky et al. 2006;

Riveline et al. 2001). Therefore, we wondered whether the 1.9-fold increase in F-actin in

SFs following Dia activation is accompanied by a corresponding growth of FA. To test this

we co-expressed PA-DAD with several known markers of FAs, namely paxillin, zyxin, and

integrin-alpha-V. Surprisingly, following activation of PA-DAD we did not observe any

significant change in the number, size, shape or intensity of FA visualized by these markers

(Figure 5A and 5B and data not shown).

Dia activation and contractility

The fact that FAs did not grow in response to PA-DAD activation can be taken as an

indication that the growth in SF F-actin density and thickness was not accompanied by an

increase in contractility. This could be because myosin is not being recruited into the new F-

actin structures or because myosin is not being activated. To distinguish between these

possibilities we co-expressed PA-DAD with Myosin Regulatory Light Chain-GFP (MRLC-

GFP) or a phospho-mimetic mutant version (T18D, S19D) of MRLC, pMRLC-GFP, along

with FA markers (mCherry-integrin-alpha-V or mCherry-paxillin). Under the same photo-

activation conditions in which we observed ~90% increase in F-Tractin intensity in SF we

only detect a mild (14%) increase in MRLC recruitment into SF (Figure 6A), indicating that

myosin is not being substantially recruited into the new F-actin structures. In line with this

observation, expression of the phospho-mimetic MRLC, which is presumably constitutively

active (Beach et al. 2011), does not lead to any increase in FA size or intensity (Figure 6B

and 6C). Thus, it appears that actomyosin contractility along the SF does not increase

despite the increase in actin filaments due to the lack of myosin recruitment.

The notion that Dia activation can lead to a substantial increase in F-actin in SF without a

corresponding increase in focal adhesions is supported by the results of long-term

expression of CA-mDia1. Compared to control eGFP-transfected cells, GFP-CA-mDia1

cells have 50% more F-actin organized in SF (Figure 1C), but the level of organized myosin

in the cell is only 22% higher than the control (Supplementary Figure 3A) and the number,

size and intensity of FA is not significantly different than the control (Supplementary

Figures 3B and 3C).

Discussion

We have devised a means to activate endogenous diaphanous related formins in live cells

using light. Our optogenetic tool takes advantage of the natural capability of the Dia DAD
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domain to bind Dia DID domain. This intra-molecular interaction maintains Dia in a folded,

inactive state, but exogenous DAD competes with the intra-molecular DAD for binding to

the DID and thereby releases the inhibition. The DAD domain has been previously used to

activate endogenous mDia (Alberts 2001; Palazzo et al. 2001, Dong et al. 2003). Our

contribution is to add precise temporal control by “caging” the DAD using an LOV domain

so that it can be “uncaged” on demand by illumination with blue light. By monitoring F-

actin polymerization in cells using F-Tractin we were able, within minutes, to detect the

effects of photo-activating PA-DAD. Alberts has shown that the effects of DAD on actin

polymerization and SRF are dependent on endogenous mDia, as they were blocked by co-

injection of anti mDia antibodies (Alberts 2001). We further verified the efficacy and

specificity of PA-DAD by showing that it looses its activity in the presence of the formin

inhibitor SMIFH2 or with a mutation in the DAD that interferes with its binding to mDia’s

DID domain. Although our tool is based on the DAD domain of mouse mDia1, based on

sequence homology it will most likely activate all three DRF. In order to attribute the effect

on actin polymerization we observed in cells to a particular Dia isoform, one would have to

combine photo-activation with knockdown of the other two Dia isoforms or work in cells

that do not express them all. We were unable to use PA-DAD to activate Dia in a spatially

confined region within a cell. This could be due to rapid diffusion of the activated PA-DAD

or the diffusion of the activated PA-DAD-Dia complex or both.

PA-DAD offers significant advantages over existing tools for the study of DRF function in

cells. To date, most of our knowledge on DRFs stems from studies involving overexpression

of a constitutively active deletion mutant of Dia, observed many hours after transfection.

Using PA-DAD we were able, for the first time, to follow in real-time the cellular response

following activation of endogenous Dia in its native localization within the cell.

Dia activity has established effects on microtubules (Gaillard et al. 2011; Palazzo et al.

2001) and transcription (Copeland and Treisman 2002), but in this study, as proof of

principle, we focused our attention on the effects of Dia on actin polymerization. We

observed Dia-induced actin polymerization all over the cell, but in particular we noted a

robust induction of filopodia and robust thickening of existing stress fibers. The appearance

of filopodia is consistent with previous reports showing overexpression of the active form of

mDia2 will produce ectopic filopodia (Block et al. 2008; Schirenbeck et al. 2005). Our

observation of actin polymerization along stress fibers is novel. DRFs have been proposed to

play a role in polymerization of actin at the ends of dorsal SF, in close proximity to focal

adhesions (Hotulainen and Lappalainen 2006), but they haven’t, to the best of our

knowledge, been implicated in actin polymerization along the length of the SF, where we

clearly observe increases in F-actin content upon PA-DAD activation. While the simplest

explanation for our observation is that Dia localizes to the plus ends of actin filaments all

along the SF, we cannot rule out the possibility that actin filaments were first polymerized in

the cytoplasm and then incorporated into the SF.

Interestingly, while we observed thickening and elongation, as well as branching and

splitting of SF, we did not observe any de novo appearance of SF, indicating that factors

other than DRFs are necessary for their formation. Furthermore, while the F-actin content of

SFs increased by 1.9-fold we did not observe an equivalent change in the level of non-
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muscle myosin II in SF, suggesting that the creation of F-actin bundles by themselves is not

sufficient for myosin recruitment and that other factors are needed. Since RhoA activation

results in thicker SFs and increased myosin contractility (Chrzanowska-Wodnicka and

Burridge 1996; Ridley and Hall 1992), as indicated by the size of FA, it is possible that

ROCK activation is responsible not only for activation of myosin, but also for its

recruitment into SF, as has been shown for the cytokinetic furrow (Kosako et al. 2000).

In summary, we demonstrated that PA-DAD provides a powerful new approach to probe

DRF function in live cells, using conventional microscopy techniques, and shed new light on

the involvement of DRFs in SF maintenance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Construction and characterization of photoactivatable-DAD
(A) Cartoon representation of photo-activatable (PA-DAD) design. Exogenous, photo-

activatable DAD is used to activate endogenous DRFs by releasing the intra-molecular auto-

inhibition of DRFs, upon stimulation with blue light (B) Mutations introduced into the

GTPase-binding domain (GBD) and Diaphanous Autoregulatory Domain (DAD) of full-

length wild-type mDia1 to construct constitutively active-mDia1 (CA-mDia1) (C)
Quantification and representative images of HeLa cells transfected with GFP-CA-mDia1,

mVenus-DAD, mVenus-tagged LOV-DAD fusion constructs with the LOV in lit (open) and
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dark (closed) conformations, and with the insertion of a 6aa linker (transfected cells marked

with asterisks). Cells were stained with TRITC-conjugated phalloidin to visualize actin.

GFP-CA-mDia1 and mVenus-DAD were used as positive controls to demonstrate activation

of endogenous Dia and production of stress fibers. Average intensity of phalloidin staining

in cell body was measured for 30 cells from two separate experiments in each case. Error

bars represent s.e.m. Bar, 10µm.
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Figure 2. Effects of PA-DAD activation on the actin cytoskeleton of HeLa cells
HeLa cells transfected with mVenus-PA-DAD and the F-actin reporter F-Tractin-tdTomato

were subjected to periodic photo-activation with a 405nm laser at intervals of 3 minutes (A)
Quantification of increase in F-Tractin intensity at peripheral SFs during repeated photo-

activation (PA). Change in intensity of individual SFs was followed by drawing polygons

around them. Each colored line in the graph represents an individual SF while the black

broken line indicates the average increase in intensity of several SFs analyzed (n=11 SFs for

No PA, 21 SFs for PA at 405nm). Inhibition of endogenous formins using the small
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molecule inhibitor of formin activity, SMIFH2, abolishes the ability of PA-DAD to

stimulate actin polymerization (n=9 SFs). Mutation M1182A introduced into the DAD

domain of PA-DAD does not induce actin polymerization upon photo-activation (n=9 SFs).

(B) Images taken from a time-lapse movie of HeLa cells transfected with mVenus-PA-DAD

and F-Tractin-tdTomato. Photo-activation of PA-DAD leads to a steady increase in the

intensity of both peripheral SFs (representative example marked with yellow arrow at time

-3 and 60) and central SFs (white arrow in -3 and 60). Time shown in minutes. Bar, 10µm.

(C) Correlation between the level of PA-DAD expression, as measured by mVenus

fluorescence intensity, and the increase in F-actin along stress fibers, as measured by F-

Tractin intensity.
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Figure 3.
(A) Example of a cell edge taken from a time-lapse movie showing the formation of

multiple transient filopodia (arrows) following repeated photo-activation at 405nm. Time

shown in minutes, 0 indicates start of photo-activation. Bar, 10µm. (B) Quantification of

filopodia before and 30 minutes post-activation (n=10 cells). Error bars indicate s.e.m.

(Student’s t-test, p<0.05) (C) PA-DAD activation stimulates an increase in F-Tractin

intensity not only along SFs but also in the cell body, as illustrated by images taken just

before and 60 minutes after photoactivation at 405nm. The boxed area within the cell

illustrates the type of region used for quantification. Bar, 10µm. (D) Quantification of the

increase in F-Tractin intensity in the cell body after activation of PA-DAD was done by
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marking a box inside the cell in an area devoid of SFs and measuring total intensity over

time (n= 12 cells for No PA and 15 cells for PA at 405nm). Error bars indicate s.e.m.
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Figure 4. F-actin polymerization along existing SF following PA-DAD activation
(A) Actin polymerization occurs all along SFs and is not necessarily initiated at FAs.

Examples from four different peripheral SFs (I, II, III and IV) are shown here. Each SF was

segmented into three equal parts A, B and C and change in fluorescent intensity of each

segment was followed over time, as illustrated for SF-I. Yellow asterisks indicate points of

anchorage of SFs at FAs in segment A and C. (B) Comparison of central and peripheral SFs

(n=11 and 13 respectively) after photo-activation, showing increase in intensity of both

kinds of SFs. Error bars represent s.e.m. (C) PA-DAD activation leads to actin
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polymerization within existing central SFs in cells, with cases of branching, divergence

(white arrows) and coalescence (yellow asterisks) of SFs observed. Note that in conditions

of no photo-activation (No PA), central SFs do not change during the course of imaging.

Time indicated in minutes, 0 represents start of photo-activation. Bar, 10µm.
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Figure 5. Photo-activation of PA-DAD does not lead to an increase in the size, number or
intensity of FA
(A) Representative images from a time-lapse movie of paxillin-labeled focal adhesions

during repeated photo-activation of PA-DAD; time indicated in minutes, 0 represents start of

photo-activation. Bar, 10µm. (B) Quantification of size, number and fluorescent intensity of

paxillin or zyxin-labeled focal adhesions from HeLa cells co-transfected with mVenus-PA-

DAD and the respective focal adhesion marker tagged with mCherry (n>500 FAs from 7–9
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cells for No PA and repeated PA conditions for both paxillin and zyxin). Error bars

represent s.e.m.
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Figure 6. Myosin recruitment into SFs is not significantly increased following PA-DAD photo-
activation
(A) Quantification of GFP-tagged Myosin Regulatory Light Chain levels in SF following

photoactivation of PA-DAD. (n=11 cells for No PA, 12 cells for PA at 405nm). Error bars

represent s.e.m. (B) Representative images from a time-lapse movie of HeLa cells

expressing phosphomimetic MRLC, mCherry-Paxillin and eBFP-PA-DAD, subjected to

repeated photo-activation. Note that there is no significant change in either pMRLC or

paxillin-labeled FAs. Both cells shown here express eBFP-PA-DAD. Time indicated in
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minutes, 0 represents start of photo-activation. Bar, 5µm. (C) Quantification of FA size and

intensity in HeLa cells expressing a constitutively active form of myosin (phosphomimetic

MRLC), mCherry-Paxillin and eBFP-PA-DAD, subjected to repeated photo-activation

(n>500 FAs from 7 cells for no PA and with PA at 405nm). Error bars represent s.e.m.
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