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Abstract

In the past decade, investigations from several different fields have revealed the critical role of
cilia in human health and disease. Because of the highly conserved nature of the basic axonemal
structure, many different model systems have proven useful for the study of ciliopathies,
especially the unicellular, biflagellate green alga, Chlamydomonas reinhardltii. Although the basic
axonemal structure of cilia and flagella is highly conserved, these organelles often perform
specialized functions unique to the cell or tissue in which they are found. These differences in
function are likely reflected in differences in structural organization. In this work, we directly
compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to
identify similarities and differences that potentially play key roles in determining their
functionality. Using transmission electron microscopy and 2D image averaging techniques, our
analysis has confirmed the overall structural similarity between these two species, but also
revealed clear differences in the structure of the outer dynein arms, the central pair projections,
and the radial spokes. We also show how the application of 2D image averaging can clarify the
underlying structural defects associated primary ciliary dyskinesia (PCD). Overall, our results
document the remarkable similarity between these two structures separated evolutionarily by over
a billion years, while highlighting several significant differences, and demonstrate the potential of
2D image averaging to improve the diagnosis and understanding of PCD.
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Introduction

Cilia and flagella are complex organelles that can serve as both sensory structures and
contribute to cell motility. Primary cilia, or nonmotile cilia, can be found on nearly every
cell in the human body; they perform principally a sensory function. Motile cilia and flagella
are found on diverse cell types and are responsible for a variety of movements ranging from
the swimming of single cells to the transport of fluids over specialized epithelia (Silflow and
Lefebvre 2001; Vincensini et al. 2011). For example, sperm cells use a single flagellum for
propulsion, while ciliated cells in the ventricles of the brain use hundreds of coordinated
cilia to drive the circulation of cerebrospinal fluid. Most motile cilia and flagella are built
upon a common structure, the 9+2 axoneme constructed from nine outer doublet
microtubules, a central pair of microtubules with associated projections, and two rows of
dynein arms that serve as the molecular motors for motility. However, although there is a
high degree of structural conservation between e.g., a sperm flagellum and an ependymal
cilium, it is clear that these structures have evolved to perform specific functions in these
different cell types.

Defects in the structure and function of cilia have recently been shown to result in a wide
spectrum of human diseases. “Ciliopathy” is the allinclusive term used to describe any
disease that can be caused by defects in cilia structure or function. These diseases range
from autosomal dominant polycystic kidney disease, caused by mutations in polycystin-1 or
polycystin-2, that localize to the primary cilium of renal epithelial cells, to primary ciliary
dyskinesia (PCD), in which defects in the motile cilia in the airways cause repeated
pulmonary infections (Badano et al. 2006; Fliegauf et al. 2007; Ostrowski et al. 2011). PCD
is a genetically heterogeneous disease in which biallelic mutations cause a defect in one of
the many proteins required for the assembly and function of cilia (Bush et al. 2007; Kennedy
and Ostrowski 2006; Leigh et al. 2009a; Noone et al. 2004; Zariwala et al. 2011). This
defect results in impaired or absent mucociliary clearance, and leads to sinusitis, otitis
media, chronic airways infection, and bronchiectasis that in some cases is so severe a lung
transplant is the only available treatment option. PCD is difficult to diagnose, and it is likely
that some people with PCD are not identified and consequently, do not receive proper
treatment (Leigh et al. 2011; Leigh et al. 2009b; Olin et al. 2011; Wodehouse et al. 2003).
The current method for diagnosing PCD relies on a compatible clinical phenotype and
subjective evaluation of transmission electron micrographs of cross sections of cilia to
identify defects in the axonemal structure (i.e., missing inner and/or outer dynein arms).

Because of the highly conserved nature of ciliary structure, many different organisms have
been useful to investigate the pathogenesis of ciliopathies (Badano et al. 2006; Fliegauf et al.
2007; Hildebrandt et al. 2011; Ostrowski et al. 2011). In particular, the unicellular alga,
Chlamydomonas, has been a useful model organism to study PCD. Biochemical, molecular
and structural approaches have been used to identify a large number of mutations in
Chlamydomonas that affect the assembly or function of specific axonemal structures
including those that affect the inner and outer dynein arms, the central pair microtubules,
and the radial spokes (as reviewed in (Porter and Sale 2000)). Comparative genomic and
proteomic studies have shown that the axoneme contains ~600 proteins, many of which are
highly conserved (Avidor-Reiss et al. 2004; Li et al. 2004; Ostrowski et al. 2002; Pazour et
al. 2005). To date, only about ~200 of the proteins have been correlated with a specific
structure, and most of that work has been done using Chlamydomonas as a model system.
These studies have shown that very small defects in axoneme structure can have profound
effects on motility. The first PCD causing mutations were identified in a dynein intermediate
chain gene, DNA/Z, using a candidate gene approach based on similar structural
abnormalities observed in mutant strains of Chlamydomonas and PCD patients (Pennarun et
al. 1999).
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Even though the basic structure of human ciliary and Chlamydomonas flagellar axonemes
are extensively conserved, there are functional differences between these organelles. For
example, the 12 um Chlamydomonas flagella can beat with two different waveforms at
frequencies of up 60 Hz, enabling propulsion in opposite directions, while human
respiratory cilia are approximately 7 um long and beat with a single waveform at much
lower frequencies (10-15 Hz) to transport mucus out of the airways (Silflow and Lefebvre
2001; Wanner et al. 1996). Further, the regulation of axonemal activity is very different
between these two species. For example, an increase in CAMP stimulates ciliary beat
frequency in human cilia, while causing a decrease in Chlamydomonas (Wanner et al.
1996). Similarly, an increase in Ca++ stimulates ciliary beat frequency in human cilia, while
causing Chlamydomonas flagella to change from an asymmetric waveform to a symmetric
waveform (Silflow and Lefebvre 2001; Wanner et al. 1996). It is likely that these functional
differences are also reflected in structural differences between these two axonemes.
However, even though advanced techniques for imaging biological structures have been
applied to the analysis of simple biological systems, e.g., flagella from Chlamydomonas
(Mastronarde et al. 1992; Nicastro et al. 2011; Nicastro et al. 2005; O’Toole et al. 1995; Sui
and Downing 2006) these same procedures have not yet been applied to human cilia, in part
because of the limited availability of material. Advances in the methods used to culture
human airway epithelial cells (Fulcher et al. 2005; Gray et al. 1996) and the development of
methods to reproducibly isolate human cilia have now made these studies possible
(Ostrowski 2006).

Here, we describe the application of a 2D image averaging technique to analyze isolated
human ciliary axonemes to determine the structure of this important organelle in greater
detail. Recently, several elegant studies using cryoelectron tomography have revealed
organization of the dynein arms, radial spokes, and central pair complexes in a number of
organisms at unprecedented resolution (Bui et al. 2011; Hoog et al. 2012; Pigino et al.
2011). However, while cryoelectron tomography has significantly improved resolution and
provided new information, it is extremely time consuming and expensive, and it has not yet
been applied to human material. The combination of standard thin section EM and 2D image
averaging is a more accessible, lower cost alternative method that could be more readily
applied to better define the structure of human ciliary axonemes, and can be used to confirm/
complement the results of other studies. We show here how this approach can provide new
insights into the organization of human cilia and identify both similarities and differences
between human cilia and Chlamydomonas flagella. We also demonstrate how 2D image
averaging can be used to clarify structural defects in cilia from a PCD patient. These studies
suggest that 2D image averaging could be a useful tool in the diagnosis of more subtle PCD
mutations and also lay the groundwork for future studies using higher resolution approaches.

Results and Discussion

Overall structural similarity of the human ciliary and Chlamydomonas flagellar axoneme

The goal of this study was to directly compare the structure of the axoneme from human
respiratory cilia with the axoneme from Chlamydomonas flagella. We have previously used
transmission electron microscopy and image averaging techniques to understand the
diversity and organization of dynein arms and other structures in Chlamydomonas (reviewed
in (Porter and Sale 2000)). Image averaging procedures improve the signal-to-noise ratio to
better visualize repeating elements of axonemal structure. Further, the programs allow
statistical comparisons between axonemes from wild-type and mutant samples. Ciliary
axonemes were isolated from well-differentiated cultures of human airway epithelial cells in
the presence of a detergent to remove the membrane and soluble matrix components for
improved resolution of the axonemal structure (Kultgen et al. 2002; Ostrowski 2006).
Flagella were isolated from wild-type Chlamydomonas cells by pH shock and
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demembranated with detergent as previously described (Porter et al. 1992). Both
preparations were processed in parallel for electron microscopy with the identical fixative
solution (2% glutaraldehyde / 4% tannic acid) to improve contrast and eliminate
fixationinduced differences between the samples.

Routine cross-sections obtained by transmission electron microscopy (TEM) demonstrated
the expected overall similarity between these two structures, including the nine outer
microtubule doublets surrounding the central pair microtubule complex (Figure 1 A, B). As
previously reported, Chlamydomonas flagella have several unique structures located in the
proximal portion of the axoneme that have not been observed in the human axoneme; these
include the bridge structure between doublets 1 and 2 and the Btubule projections (“beak’)
in doublets 1, 5, and 6 (Hoops and Witman 1983) (not shown). In addition, Chlamydomonas
lacks an outer dynein arm on outer doublet microtubule 1 (Figure 1A;*). Thus although the
overall similarity of the two axoneme preparations is apparent, structural differences are also
present that likely reflect differences in function.

of human and Chlamydomonas outer doublet cross-sections

To compare the structure of the human and Chlamydomonas axonemes in greater detail, we
employed the technique of 2-D image averaging (Mastronarde et al. 1992; O’ Toole et al.
1995). While this procedure has been useful for examining axoneme organization in
Chlamydomonas, and similar procedures have been applied to human axonemes (e.qg.,
(Carson et al. 2000; Escudier et al. 2002)), to our knowledge, a direct comparison between
axonemes from these two species has not been performed. For this study, images of isolated
axonemes in cross section were digitized and averaged as detailed in Methods. Increasing
the number of images included in the average increases the signal-to-noise in order to
resolve the individual protofilaments that comprise the microtubule doublets and the
attached inner and outer dynein arm structures. Doublets that contained protofilaments
visible in cross section were selected, rotated into a common orientation, aligned and
averaged. The resulting averages from Chlamydomonas (Figure 1C) and from human cilia
(Figure 1D) show remarkable similarities. However, comparisons between the two sets of
averages revealed a major difference in the structure of the outer dynein arm with
Chlamydomonas having an extra region of density on the ODA not present in the human
(Figure 1 C, D; arrow). This difference can be explained by the fact that, while the
Chlamydomonas outer dynein arm is a three-headed structure containing three dynein heavy
chains (a, B, y), the human outer dynein arm is believed to be a two-headed structure
containing two dynein heavy chains. This is based partly on the lack of a human homologue
of the a heavy chain (Pazour et al. 2006) and evidence from other mammalian species of a
two-headed outer dynein arm (Hastie et al. 1988; Hom et al. 2011; Nicastro et al. 2006;
Pazour et al. 2006). The presence of a third dynein heavy chain is a common feature of outer
arm dyneins in protists (Wickstead and Gull 2007). Chlamydomonas mutants lacking the a
dynein heavy chain show reduced motility and beat frequency /in vivo (Sakakibara et al.
1991), while /n vitro, isolated outer dynein arms lacking the a subunit showed increased
ATPase activity but reduced microtubule gliding (Furuta et al. 2009). Interestingly, in
Chlamydomonas, the outer dynein arms are identical along the length of the axoneme,
whereas in human cilia, the composition of the outer arm dynein heavy chains varies
between the proximal and distal regions (Fliegauf et al. 2005). Thus while the overall
structure and organization of the outer dynein arms is remarkably similar between human
ciliaand Chlamydomonas flagella, there exist distinct structural differences that are clearly a
reflection of the differences in the underlying molecular composition of outer arm dynein
complexes (reviewed in (Hom et al. 2011)).
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Comparison of human and Chlamydomonas central pair structures

Defects in the structure of the central pair complex have also been shown to affect the
motility of cilia and flagella (reviewed in Mitchell, (Mitchell 2004; Mitchell and Smith
2009)). Several central pair mutations and polypeptides have been identified in
Chlamydomonas ((Adams et al. 1981; Dutcher et al. 1984), reviewed in Mitchell, (Mitchell
and Smith 2009)), but less is known about the organization of the central pair microtubules
in human cilia. Figure 2A shows an average of the Chlamydomonas central pair complex.
As reported previously (Goodenough and Heuser 1985; Mitchell and Smith 2009), the C1
and C2 microtubules are connected by a bipartite bridge and a diagonal link (Figure 2B; b,
dl, respectively). Each central pair microtubule is associated with a distinct set of projections
that repeat in a characteristic fashion along its length (Figure 2A, B).

To obtain comparable images of the central pair microtubules and projections from human
cilia, profiles of axonemes from human cilia were digitized in a standard orientation with
dynein arms pointing clockwise and an imaginary line drawn through the central pair that
would intersect doublet number one on the top and bisect doublets 5 and 6 on the bottom. A
model point was then placed between the CP microtubules and complexes from multiple
axonemes were extracted, aligned and averaged. Interestingly, the positions of the nine
radial spokes are enhanced in the human average because the central pair does not rotate
within the axoneme as it does in Chlamydomonas (Silflow and Lefebvre 2001). As shown in
Figures 2C and 2D, the CP microtubules in human cilia are also connected by a bipartite
bridge and diagonal linker. In addition, many of the projections associated with each central
pair microtubule in Chlamydomonas appear to be conserved in human axonemes, with
projection domains that vary slightly in length and/or shape (Figure 2D). Most notably, the
projections from the C2 microtubule appear enhanced in the human axoneme compared to
the Chlamydomonas axoneme, much like that reported for the CP projections in mouse
(Lechtreck et al. 2008), while the Cla projection of Chlamydomonas is enhanced compared
to human (Figure 2; *). However, some of the central pair projections appear different
between the two species with an additional density detected adjacent to the C1c domain in
human (Figure 2D; *).

Analyses of mutations in Chlamydomonas that disrupt the assembly of specific projections
have identified discrete subsets of axonemal polypeptides associated with each projection
(reviewed in Mitchell, (Mitchell and Smith 2009)). As shown in Table 1, many of these have
human orthologues that show a high degree of identity/similarity with the Chlamydomonas
protein. For example, SPAG6 is 65% identical with 82% sequence coverage to PF16 and has
been identified in human cilia by proteomic analysis (Ostrowski et al. 2002). Hydin is 44%
identical with 87% sequence coverage, and mutations in hydin cause hydrocephalus in mice
(Lechtreck et al. 2008). Similarly, Pcdpl is 38% identical with 50% sequence coverage to
FAP221, and deletion of this C1d projection protein causes PCD in mice (Lee et al. 2008).
In contrast, FAP46 is only 28% identical with 7% sequence coverage to C100rf93, and
FAP54 is only 30% identical with 13% sequence coverage with C120rf55. Thus the
structural similarities and differences in the central pair are reflected in the presence of both
conserved and unique proteins.

Comparison of inner dynein arms and radial spokes between human cilia and
Chlamydomonas flagella

To compare the structural organization of the inner dynein arms and the radial spokes, we
averaged longitudinal sections of both Chlamydomonas and human axonemes. In
Chlamydomonas, the outer row of dynein arms repeat every 24 nm but the inner arm region
is more complex, consisting of at least ten densities that repeat every 96 nm along the length
of the microtubule when viewed by thin section TEM and 2D image averaging (Porter and
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Sale 2000). The complexity of inner arm organization is revealed as one compares the raw
images to the averages of individual axonemes, and then compares the individual averages
from many axonemes to grand averages from multiple samples (Figure 3). Longitudinal
sections of human cilia that have clearly visible outer dynein arms and a central pair
microtubule were chosen for analysis (Figure 3 A). Several images of the 96 nm repeats
were selected by placing a model point in the center of the 96 nm repeat (Figure 3A; black
dots), and averages were obtained along individual axonemes (Figure 3B;). Averages from
separate axonemes were then aligned to each other and averaged to obtain a grand average
from many axonemes (Figure 3C; average contains 13 axonemes, total of 120 repeats) and
from multiple individuals (Figure 3D; grand average contains total of 25 axonemes, 223
repeats).

We have previously used 2D averaging to characterize several different mutations in
Chlamydomonas that affect the assembly of various inner arm isoforms as well as the
dynein regulatory complex (DRC) located above the second radial spoke (Gardner et al.
1994; Mastronarde et al. 1992; Porter and Sale 2000; Rupp and Porter 2003). As several of
the dynein polypeptides associated with these structures have been identified in both
Chlamydomonas and humans (Hom et al. 2011), we were interested in determining how
well these structures might be conserved in human axonemes. Comparing the averages
obtained from the longitudinal images of Chlamydomonas flagella (Figure 4A) with the
average obtained from human cilia (Figure 4B) reveals a remarkable degree of similarity in
the organization of the inner dynein arms. This can be seen more clearly in the difference
map between the two averages (Figure 4C). For example, the trilobed 11 dynein located
proximal to the first radial spoke is clearly present in both images, as well as the smaller
single-headed dynein isoforms located at discrete positions within the 96 nm repeat(Gardner
et al. 1994; Mastronarde et al. 1992; Porter and Sale 2000). However, some of the densities
present in Chlamydomonas axonemes appear different in human ciliary axonemes. For
example, human cilia have a reduced density in one of the lobes above RS3, and an
additional density between S3 and S1. These differences may reflect the greater complexity
of inner arm isoforms necessary to produce different waveforms (Hom et al. 2011; Porter et
al. 1996).

Slight differences in density are also apparent in the region associated with the dynein
regulatory complex (Figure 4D; DRC) (Gardner et al. 1994; Mastronarde et al. 1992; Rupp
and Porter 2003). In particular, the density of the dynein regulatory complex appears to be
slightly increased in Chlamydomonas relative to the human axoneme, with an increased
density adjacent to the DRC in human cilia. CryoET has recently demonstrated that the DRC
is part of the extended nexin link (N-DRC) that connects the adjacent outer doublet
microtubules (Heuser et al. 2009). The thin section images shown here only include a
portion of the N-DRC; further imaging of human axonemes using cryoET will be required to
understand the organization of this structure at higher resolution and in three dimensions.
Additional work is also needed to determine how the subunit composition of the DRC might
vary between these two species.

In contrast with the conserved structure of the inner dynein arms, human axonemes contain a
third radial spoke that is clearly seen in the difference map (Figure 4C), and a slightly
reduced density in the head region of radial spoke 1The presence of a third radial spoke is
common in most other species, and has been previously examined in detail, for example, in
mussel gill cilia and rat sperm flagella (Olson and Linck 1977; Warner and Satir 1974).
Recent cryoET studies have demonstrated that while radial spoke 1 and 2 in
Chlamydomonas are very similar, the third radial spoke in Tetrahymena and
Strongylocentrotus is unique (Barber et al. 2012; Lin et al. 2012; Pigino et al. 2011). The
human average also shows that the third radial spoke is different in shape with a wider spoke
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head and a faint diagonal linker compared with spokes 1 and 2 (Figures 4B, D). Because the
majority of molecular and biochemical investigations of radial spokes have used
Chlamydomonas, it is not known if the third radial spoke contains unique proteins, or if its
unique structure represents a different organization of proteins present in radial spokes 1 and
2. Table 2 lists the known radial spoke proteins of Chlamydomonas and the closest human
orthologue. Interestingly, Chlamydomonas has been shown to contain a short structure
(known as the radial spoke stand-in) that localizes to the position of the third radial spoke
(Barber et al. 2012; Lin et al. 2012; Pigino et al. 2011). This structure corresponds to the
base of the third radial spoke in human cilia, as only the spoke head is observed in the
difference map (Figure 4C).

Application of 2D image averaging to analyze structural defects in PCD

To demonstrate the usefulness of 2D image averaging to resolve potential inner arm defects
associated with PCD, which are difficult to resolve by standard TEM (Escudier et al. 2002;
O’Callaghan et al. 2011), we also generated averages of human ciliary axonemes from cells
isolated from a patient previously diagnosed as missing inner dynein arms, in particular,
DHCY7 (Zhang et al. 2002). Comparing the image averages between controls (Figure 5A) and
the patient (Figure 5B) clearly demonstrates the absence of the inner dynein arms in this
patient. As a disease control, we also processed cilia isolated from human airway epithelial
cells cultured from a cystic fibrosis (CF) patient in parallel. As expected, cilia from the CF
cells demonstrated an intact inner arm structure (Figure 5C). Examining longitudinal
sections from the PCD cilia further demonstrates the almost complete absence of inner
dynein arms, including the 11 dynein, indicating that the mutation in this patient disrupts the
assembly of most, if not all, inner dynein arms. This is consistent with genetic studies that
have identified mutations in CCDC39 in this patient (unpublished observation, M. Knowles
and M. Zariwala). CCDC39 is the human orthologue of Chlamydomonas FAP59, and has
been reported to be essential for the formation of inner dynein arms and the dynein
regulatory complex, and mutations in CCDC39 have been shown to cause PCD (Merveille
et al. 2011). CCDC39 mutations have also been reported to result in significant axonemal
disorganization (mislocalized peripheral doublets with displacement or absence of the
central pair). It has been difficult to determine if these latter effects are secondary
consequences of the defects in inner arm assembly or reflect a role for CCDC39 in the
organization of the outer doublets. The results shown here, although obtained from selected
images, suggest that CCDC39 is critical for the assembly of the inner dynein arms and
portions of the DRC, but may not be absolutely required for axoneme integrity.

Conclusion

While several studies have examined the structure of human cilia by conventional EM, the
use of advanced image analysis techniques to examine the structure of human cilia in detail
has not been previously reported. In an effort to improve the diagnosis of PCD, two prior
studies took advantage of the radial symmetry of axonemes to average the outer doublets
(Carson et al. 2000; Escudier et al. 2002). While this procedure improved the resolution of
the inner and outer dynein arms, it completely obscured the central pair. Similarly, Afzelius
et al. applied the technique of image averaging to cross-sections of sperm from normal
individuals and to a patient with PCD and demonstrated the absence of dynein arms in the
PCD patient (Afzelius et al. 1995). In this work, we have used 2D image analysis programs
developed in our lab to study the axonemal structure of human cilia and compare the results
with those obtained from Chlamydomonas flagella. Overall, these structures are remarkably
conserved. However, averages from human axonemes show distinct differences in structure
that likely reflect the differences in motility of these two organelles. Major differences
include the presence of a two-headed outer dynein arm and three radial spokes in human
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cilia, consistent with previous work on metazoan cilia. The central pair complex in human
also contains C2 projections that are larger relative to those seen in Chlamydomonas, and an
additional density located adjacent to the C1c domain. Longitudinal averages revealed that
the overall arrangement of inner dynein arms within the 96 nm axoneme repeat is
remarkably similar, but some inner arm structures as well as portions of the DRC in human
axonemes appear to be reduced in density and differ slightly from Chlamydomonas in size
and shape. It should be pointed out that while image averaging techniques improve the
resolution of regularly repeated structures, these same procedures will average out structures
that occur irregularly. For example, structures that are only present in the proximal or distal
region of the axoneme may not appear in the averaged image. Further detailed studies will
be required to fully define the structure of human cilia.

We also applied 2D image averaging to compare the organization of the inner dynein arms
in normal patients with that observed in a PCD patient and a CF disease control. Averages
from cross sections and longitudinal views suggest that the assembly of most of the inner
dynein arms is significantly disrupted in the PCD patient compared with both the normal
human average and the disease control. Difference images confirm that most of the inner
arm dyneins and a portion of the DRC are not assembled in the PCD patient. In summary,
this work has documented similarities and differences between the structure of the axoneme
from human cilia and Chlamydomonas flagella. The approach described here should also be
useful in the diagnosis and further studies of PCD, particularly those cases with more subtle
structural defects.

Materials and Methods

Preparation of Chlamydomonas flagella

Wild-type Chlamydomonas reinhardtii were cultured as previously described and flagella
were isolated using the pH-shock procedure (Porter et al. 1992). Chlamydomonas axonemes
were extracted with 0.1% NP-40 and prepared for electron microscopy by fixation in 2%
glutaraldehyde, 4% tannic acid (Porter et al. 1992).

Preparation of human cilia

Human airway epithelial cells obtained from lung transplant or donor tissues under protocols
approved by the University of North Carolina Institutional Review Board were cultured at
an air/liquid interface on collagen coated membranes using established techniques (Fulcher
et al. 2005; Gray et al. 1996). After the cultures had differentiated into a wellciliated
epithelium, ciliary axonemes were isolated using a buffer containing 0.1% Triton X-100 and
10 mM calcium (Ostrowski 2006) and fixed in the identical fixative solution used for the
Chlamydomonas flagella (above). Cilia from two control (not CF; not PCD) donors were
used for the comparison to Chlamydomonas and the longitudinal average. Cilia from a
different control donor were used for the comparison to the individual PCD and CF samples
in cross-section.

Electron Microscopy and Image Analysis

Fixed samples of Chlamydomonas flagella and human cilia were postfixed in 1% OsO4,
embedded in Epon-Araldite, and processed for TEM using standard procedures (Porter et al.
1992).

Negatives were scanned using a Microtek ScanMaker 1900 at a pixel size of 1 nm and the
digital images were analyzed using programs in the IMOD software package developed in
the Boulder 3D lab (Mastronarde et al. 1992; O’Toole et al. 1995). These programs are
freely available to download (http://bio3d.colorado.edu/imod). Briefly, 60nm sections were
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used for cross section analysis. Images of axonemes containing outer doublets in cross
section were chosen for analysis if they had a complete set of 9 outer doublet microtubules,
an intact central pair and protofilaments that were visible in at least one outer doublet
microtubule. Approximately 50-100 outer doublets were selected for a given sample. The
individual outer doublets were extracted, rotated into approximate alignment, aligned by
applying a general linear transformation, and averaged to obtain a sample average. The
doublet sample average for Chlamydomonas contained 140 doublets. The doublet average
for the normal human contained 110 doublets. The doublet average for the PCD and CF
patient contained 132 and 109 doublets, respectively. Averages of CP complexes from
Chlamydomonas were obtained by digitizing axonemes in standard orientation as described
(Mitchell and Smith 2009). Central pair complexes from human cilia were obtained with
axonemes oriented with doublet number one in the 12 o’clock position. A total of 45 CP
complexes and 46 CP complexes were used for the Chlamydomonas and human averages,
respectively. Longitudinal averages were computed from 40nm thin sections containing
profiles of axonemes that contain two outer doublets separated by the central pair
microtubules. Individual 96 nm inner arm repeats were extracted and aligned to obtain a
sample average. Axoneme averages were then aligned to obtain the grand average. A total
10 axonemes (82 repeats), 25 axonemes (223 repeats) and 8 axonemes (65 repeats) were
used to compute the longitudinal average for Chlamydomonas, normal human and PCD
patient, respectively. Difference images were computed using an ANOVA at each pixel with
differences not significant to 0.0025 confidence level set to zero.
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Figure 1. Axoneme cross sections from Chlamydomonas flagella and human ciliareveal
similarities and differ ences.

(A) Typical cross section of a Chlamydomonas axoneme shows the typical 9 +2
arrangement of outer microtubule doublets surrounding a central pair complex. Doublet
microtubules contain attached inner and outer dynein arms with doublet number one missing
the outer arm (*). (B) Axonemes isolated from human respiratory cilia also contain the
classic 9+2 arrangement of microtubules with all outer doublets containing an outer dynein
arm. Central pair projections and radial spokes surround the central pair microtubules. (C)
Chlamydomonas average containing 140 outer doublet cross sections. The outer dynein arm
contains distinct lobes including an outer density (arrow). (D) Human ciliary average
containing 110 doublets shows outer dynein arm density is reduced compared to
Chlamydomonas (arrow). Bar = 50 nm A,B and 25 nm C,D.
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Figure 2. Central pair (CP) complex averages from Chlamydomonas and human cilia.

(A) Chlamydomonas average from 45 CP complexes. (B) Schematic of CP complex
organization in Chlamydomonas based on the densities present in the Chlamydomonas
average (modified from Lechtreck et al. 2008; Mitchell and Smith 2009). The CP
microtubules (C1 and C2) are connected by a bipartite bridge (B) and diagonal linker (DL).
CP projections extend out from the CP microtubules and the density of Cla is enhanced
relative to human (*). (C) Human cilia average from 46 central pair complexes. Radial
spokes are enhanced in the average. (D) Schematic of CP complex organization in human
cilia based on the densities present in the human average. CP microtubules are connected by
a bipartite bridge (B) and a diagonal linker (DL) is present. C1 and C2 projections are
present. The density of the C2 projections is enhanced relative to Chlamydomonas (*). An
additional density adjacent to C1c projection is present (*). Bar = 25 nm.
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Figure 3. The complexity of inner arm organization isrevealed in longitudinal averages from
human cilia.

(A) Axonemes in longitudinal view are selected that contain two doublets separated by the
central pair microtubules. The top doublet contains outer and inner dynein arms and radial
spokes. Model points (black dots) show the center of the 96nm inner dynein arm repeat used
for averaging. (B) Individual average containing the 12 repeats shown above. (C) Grand
average from 13 axonemes and a total of 120 repeats. (D) Combined grand average from 2
people containing a total of 25 axonemes and 223 repeats. Bar = 100 nm (A); 25 nm (B-D)
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Figure 4. Analysis of axoneme longitudinal averages from Chlamydomonas flagella and human
cilia.

(A) Averages from Chlamydomonas flagella based on a 96 nm repeating unit centered
around 2 radial spokes. 2D averages resolve at least 10 densities in the inner dynein arm
region. (B) Averages from human cilia show remarkable similarity in inner arm
organization. Three radial spokes are present. (C) Diagram of densities within the
Chlamydomonas 96 nm repeat and difference plots showing statistically significant
differences between Chlamydomonas and human. Inner dynein arm organization is similar
but human cilia have a reduced density corresponding to the dynein regulatory complex and
a reduced density corresponding to a lobe distal the DRC. (D) Composite diagram showing
inner arm organization along the 96 nm repeat with structures unique to Chlamydomas
shaded in light gray and structures unique to human in dark gray (model modified from
Porter and Sale 2000). Bar = 25 nm.
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Figure 5. Image averaging is useful for analyzing defectsin human ciliary axonemes.

(A) Average of 110 microtubule doublets imaged in cross section from axonemes of a
normal individual. (B) An average of 132 doublet microtubules observed in cross-section
from axonemes of a PCD patient. The density of the inner dynein arm is clearly reduced. (C)
Average from a patient with cystic fibrosis (disease control, containing 109 doublets) shows
dynein organization similar to the average from the normal individual. (D) Average of
longitudinal sections from normal axonemes (25 axonemes/ 223 repeats) and (E) average of
longitudinal sections obtained from the PCD patient (8 axonemes/ 65 repeats. (F) Difference
image between normal and PCD axonemes shows the reduced inner dynein arm density in
the axonemes from the PCD patient.
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Compilation of central pair proteins identified in Chlamydomonas, their structural location, and the most
likely human orthologue, based on a Blast search of NCBI. The expected value and the maximum identity are
presented, along with references indicating a role in mammalian cilia or flagella. Table is modified and
updated from Mitchell, 2009 (23).

Central Pair
Structure

Polypeptides identified
in Chlamydomonas
(Accession number)

Best blast hit in Homo
sapiens (Accession
number)

Properties

References

Cl-microtubule

le-11, 56% identity

rich; ASH domain

PF16 (AAC49169) SPAG6 (NP_036575.10) Armadillo repeat Dutcher et al., 1984,(1) Smith and
63% identity Lefebvre, 1996;
(2)Neilson et al., 1999, (3)
PP1c(AAD38856.1) PP1-gamma catalytic Phosphatase Yang et al., 2000, (4),
subunit (NP_002701.1) Han et al., 2007(5)
83% identity
Claprojection PF6 (AAK38270) SPAG17 (NP_996879) Alanine-proline Rupp et al., 2001;

(6)Wargo et al., 2005;(7)
Zhang et al., 2005(8)

Cla-86 (AAZ31187)

Weak homology to Tctel

PKA RIl-like LRR

Wargo et al., 2005

Cla-32

(FAP101) (EAX04266.1) domain
Cla-34 (AAZ31186) C160rf93 (AAH9249.1) Coiled-coil, Wargo et al., 2005
(FAP119) 5e-18, 27% identity dimerizes with

Cla-32 (AAZ31185)
(FAP114)

Same as above

Similar to Cla-34

Wargo et al., 2005

Cla-18 (AAZ31184)

MORN repeat 2
(NP_001138922.1)
le-14, 40% identity

MORN domains

Wargo et al., 2005

Calmodulin (AAA33083)

Calmodulin (NP_001734.1)
3e-94, 89% identity

EF hand Ca++
binding protein

Wargo et al., 2005

Clb projection

CPC1 (AAT40992.1)

Sperm flagellar protein 2
/KPL2 (NP_079143.3)
3e-49, 29%7identity

CH, adenylate
kinase domains

Zhang and Mitchell, 2004; (9)
Mitchell et al., 2005 (10)

Ostrowski et al, 1999,(11) Sironen et
al, 2006 (12)

C1b-350 (FAP42)
(EDP00757.1)

GUK1 (NP_00849.1)
3e-34, 38% identity

Guanylate and
adenylate kinase
domains

Mitchell et al., 2005

C1b-135 (FAP69)
(EDP06190)

C70rf63 (AAI41835.1)
7e-40, 21% identity

Armadillo repeat

Mitchell et al., 2005

HSP70 (P25840.2)

HSP70-1L (NP_005518.3)
0.0, 74% identity

Chaperone

Bloch and Johnson, 1995;
(13)Mitchell et al., 2005

Enolase (XP_001702971)

Enolase (NP_001966.1)
0.0, 68%

Glycolytic enzyme

Mitchell et al., 2005

Clc projection unknown
C1d projection FAP221 (ADD85929.2) Pcdpl CaM binding DiPetrillo and Smith, 2010;(14)Lee et
(EAW95222.1/Q4GOU5.2) al., 2008(15)
6e-58, 38%
FAP74 (ADD85930.1) EAW56139.1
2e-85, 30%
FAP46 (EDP06555.1) C100rf93 (AAH44661.1) TTC40
3e-18, 28%
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Central Pair Polypeptidesidentified Best blast hit in Homo Properties References
Structure in Chlamydomonas sapiens (Accession
(Accession number) number)
FAP54 (EDP00642) C120rf55
(XP_001718035.3)
le-21, 30%
C2-microtubule
C2aprojection unknown
C2b projection Hydin (EDP09735) Hydin (NP_116210.2) ASH domains Lechtreck & Witman, 2007; (16)
0.0, 44% identity Davy and Robinson, 2003 (17)
C2c projection KLP1(P46870/EDP06592) | KIF9 (NP_878905) Kinesin-like Bernstein et al., 1994,
2e-127,34% identity protein (18)Yokoyama et al., 2004 (19)
C1-C2bridge PF20 SPAG16 (NP_078808.3) WD-protein Smith and Lefebvre, 1997; (20)
(P93107/AAB41727)) 2e-140, 39% identity Pennarun et al., 2002(21),
Zhang et al., 2007(22)
Diagonal link unknown
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