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Abstract

Phase-change contrast agents (PCCAs) for ultrasound-based applications have resulted in novel 

ways of approaching diagnostic and therapeutic techniques beyond what is possible with 

microbubble contrast agents and liquid emulsions. When subjected to sufficient pressures 

delivered by an ultrasound transducer, stabilized droplets undergo a phase-transition to the gaseous 

state and a volumetric expansion occurs. This phenomenon, termed acoustic droplet vaporization, 

has been proposed as a means to address a number of in vivo applications at the microscale and 

nanoscale. In this review, the history of PCCAs, physical mechanisms involved, and proposed 

applications are discussed with a summary of studies demonstrated in vivo. Factors that influence 

the design of PCCAs are discussed, as well as the need for future studies to characterize potential 

bioeffects for administration in humans and optimization of ultrasound parameters.
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INTRODUCTION

The relatively recent concept of designing diagnostic and therapeutic phase-change contrast 

agents (PCCAs) based on an ultrasound triggered phase-transition has provided medical 

researchers with a ‘middle-ground’ between the inert liquid emulsion and gas-based 

microbubble contrast agent (MCA) platforms. PCCAs can be generated in a wide range of 

useful sizes and, once activated, show high echogenicity (Fig. 1). The ability to 

ultrasonically induce activation with temporal and spatial specificity has resulted in the 

emergence of a diverse set of techniques for in vivo and in vitro applications.

Perfluorochemicals and perfluorocarbons (referred to collectively here as PFCs), in both the 

liquid and gaseous state, have proven to be favorable compounds for inert liquid emulsions, 

MCAs, and PCCAs due to their unique properties. When administered in-vivo, liquid 

emulsions of high boiling-point PFCs are inert, non-toxic in small doses, and can have 

relative stability in circulation due to high molecular weight, immiscibility in water, and low 

surface tension [1, 2]. Depending on the choice of PFC, the emulsions may persist stably in-
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vivo for hours to days [3], which is attractive for applications involving gradual 

accumulation at a target site and/or sustained release of drugs. Applications are not strictly 

intra-vascular because liquid PFC emulsions can be generated with a broad range of sizes, 

including the hundred-nanometer range. A number of applications have been proposed, 

including molecular imaging and therapy of thrombi, tumor angiogenesis, and 

atherosclerosis-related diseases [4–8], quantitative in vivo imaging and contrast 

enhancement [1, 3, 9], and cell tracking [10, 11]. The ability to solubilize large amounts of 

gas into liquid PFCs has resulted in the development of oxygen delivery applications that 

may be useful for extending tissue viability during hypoxic events (such as cardiac bypass 

and hemorrhagic shock), enhancement of tumor radiation therapy, and liquid breathing [12–

17]. Although some PFCs exhibit echogenicity due to a lower speed-of-sound and higher 

density than water [18–20], the contrast provided is much lower than that of MCAs. Some 

studies have shown that once bound to a surface, a liquid PFC-core agent can increase the 

acoustic reflectivity of the target, and that the reflectivity may be optimized by the choice of 

PFC [18, 21]. Additionally, liquid PFC-based agents are convenient for multimodal imaging 

beyond ultrasound either through endogenous PFC properties or through the inclusion of 

other agents. PFCs, particularly those with higher boiling points, carry a high number of 

fluorine atoms that can be used for 19F MR spectroscopy [22, 23]. Inclusion of paramagnetic 

nanoparticles, fluorescent nanoparticles, and/or radioisotopes enable these PFC emulsions to 

be extended to 1H MR T1-weighted imaging, SPECT-CT [4, 5, 8, 22, 23], and optical 

fluorescence imaging [10, 11]. Particular PFCs may also serve as radiopaque blood pool 

agents for CT due to the long intravascular half-life [1, 3, 9].

MCAs for diagnostic and therapeutic ultrasound have provided a promising platform for 

addressing a number of issues, including applications in echocardiography, microvascular 

perfusion imaging, thermal ablation enhancement, molecular imaging, drug and gene 

delivery, and thrombolysis [24–41]. PFCs have been favored for the gaseous core for more 

than a decade because of low solubility compared to other gases [42, 43]. MCAs are 

typically produced with diameters in the 1–5 µm range, which is a compromise between 

enabling free passage through capillary beds, and maximizing ultrasound imaging 

sensitivity. When excited by ultrasound energy, highly compressible microbubbles exhibit 

nonlinear behavior. This has led to microbubble-specific imaging modalities that enable 

contrast imaging with high sensitivity and low background signal from tissue [44–50]. 

However, sizes optimal for contrast enhancement limit passage to within the vascular space 

[38], and microbubble persistence in vivo is typically only on the order of minutes [43].

Preclinical studies have suggested that, in contrast to MCAs, PCCAs can be designed to 

have relative stability in circulation prior to ultrasound-induced vaporization. Once 

vaporized, they exhibit contrast enhancement similar to what MCAs provide [51–55]. 

Several reviews on MCAs [35, 56, 57], liquid PFC contrast agents [58], and methods of 

drug/gene delivery [59] have included discussions of PCCAs. In this review, a brief survey 

of the history of phase-change contrast agents and the multiple environmental, design, and 

ultrasound-based factors that influence droplet vaporization is presented. The many 

proposed applications at both the microscale and nanoscale are discussed with a summary of 

the in vivo studies performed to date that show promising results for future use in humans. 
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Issues involved with PCCA design as well as possibilities for future studies and applications 

are addressed.

PHASE-CHANGE CONTRAST AGENTS: HISTORY AND INFLUENCING 

FACTORS

Although the general physics of droplet vaporization has been well-described in the 

literature, phase-transition as a result of ultrasound energy and the range of diagnostic and 

therapeutic possibilities for PCCAs have only begun to emerge in the past two decades. 

Phase-change colloids for ultrasonic imaging were first proposed by Quay in 1996 [60], 

resulting in development of the contrast agent EchoGen™ (Sonus Pharmaceuticals, Inc., 

Bothell, WA), although clinical trials were ultimately discontinued. EchoGen™ was 

fundamentally different in application than most PCCAs being developed currently in that 

stable emulsions of dodecafluoropentane (DDFP) were pre-conditioned to induce phase-

transition into gas-filled contrast agents in the 2 – 5 µm diameter range prior to intravenous 

injection [61–63], rather than activation while in circulation. In 1998, Apfel proposed 

superheated droplets that, while circulating in vivo, could be activated with a degree of 

spatial specificity by ionizing radiation or ultrasound for enhanced diagnostic capability, 

drug delivery, and targeted vessel occlusion [64].

Perfluorocarbons and perfluorochemicals have been particularly attractive compounds in 

conjunction with PCCAs – not only due to the properties stated earlier, but also because 

many have boiling points near physiological temperatures, which allows for the design of 

droplets in or near a superheated state. Table 1 lists selected PFCs that have been used for 

inert liquid emulsions, MCAs, and PCCAs along with their physical properties, if available, 

gathered from several sources of literature [18, 20, 65]. DDFP, in particular, has been the 

most often-used compound because its boiling point of 29°C allows for the possibility of 

droplet generation at room temperature, and exposure to physiological temperatures results 

in a superheated droplet - although in practice, droplet size becomes a factor due to the 

effects of surface tension.

Surface tension plays a large role in both the threshold of vaporization for a droplet and the 

subsequent volumetric expansion. Beyond ambient pressure, a PFC droplet will experience 

an additional Laplace pressure as a result of surface tension effects over a defined radius [53, 

66]:

(Equation #1)

where PInside represents the pressure inside the droplet, POutside represents the pressure 

outside the droplet, σ represents surface tension, and r represents radius. Although liquid 

PFCs have characteristically low interfacial surface tension with air, their hydrophobicity 

may lead to relatively high interfacial surface tension when dispersed in water [67, 68], and 

therefore the pressure exerted on the liquid core at the microscale and nanoscale may reach 

several atmospheres above ambient pressure. Through encapsulation in a lipid or polymer 
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shell, Kandadai and colleagues showed that the interfacial surface tension of DDFP droplets 

may be modified by the choice of emulsifier to provide more favorable properties for 

dispersion in aqueous media [68]. The relationship between the ambient pressure a 

compound experiences and the temperature required to induce phase-transition is 

approximated by the Antoine vapor-pressure equation, which is a derivation of the Clausius-

Clapeyron relation. The Antoine vapor-pressure equation is defined as:

(Equation #2)

where T is the ambient temperature, P is the ambient pressure exerted on the droplet, and A, 

B, and C are experimentally derived constants observed for a particular temperature range. 

The relation shows that as the pressure is raised on the droplet core, the energy (in the form 

of temperature and/or ultrasound) required to induce phase transition increases. Because the 

Laplace pressure is an inverse function of radius, this effect becomes more pronounced for 

droplets in the nanometer range. By ideal gas laws with surface tension included, once a 

PFC droplet is vaporized, the resulting bubble will theoretically expand approximately 3 – 6 

times in diameter, depending on initial droplet size, ambient pressure, and the density of the 

PFC selected [66, 69]. Bubbles resulting from droplets at the nanoscale will experience a 

greater Laplace pressure than those resulting from droplets at the microscale, which will 

serve to compress the gas core to a greater extent. Therefore, expansion of droplets in the 

nanometer range is expected to be less than that of droplets in the micrometer range. As 

droplet size diminishes, the expansion factor will theoretically be dominated by the effect of 

surface tension/Laplace pressure, while the expansion factor for very large droplets 

(negligible Laplace pressure) becomes dominated by ambient pressure (Fig. 2). A recent 

experimental study by Wong and colleagues aimed at elucidating the dynamics of bubble 

evolution suggested that, for micron-sized droplets of dodecafluoropentane, the phase 

transition may occur in stages following the initial vaporization event [70]. Once vaporized, 

the bubbles approached theoretical expansion predictions on a microsecond timescale, 

although this may differ with other PFC selections and encapsulations. Several studies have 

shown in vitro that bubbles may expand beyond ideal gas law predictions due to the influx of 

dissolved gases present in the surrounding media [66, 71, 72]. In theory, this additional 

expansion is likely to be more pronounced for larger bubbles than smaller bubbles, as the 

internal pressure of the gas core due to surface tension is less.

The exact mechanisms that cause a droplet to undergo a phase change as a result of 

ultrasonic energy – termed acoustic droplet vaporization (ADV) – are the subject of much 

discussion in the literature. Because the phase-transition boundary of a pure compound is 

governed by the relationship of temperature and vapor pressure, one hypothesis is that the 

phase-transition occurs due to acoustic heating of the droplet. Were this the sole mechanism, 

then increasing ultrasonic pulse duration should increase the degree of acoustic heating and 

trigger phase-transition of droplets. However, most studies have shown that increasing pulse 

duration at clinically relevant ultrasound frequencies results in no significant decrease in the 

vaporization pressure needed to achieve ADV, unless the duration is on the order of 1 

millisecond or greater [73–76]. For these longer pulse lengths, a decrease in the ultrasound 
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pressure needed to induce vaporization has been observed. Although this may seem to be 

indicative of acoustically-induced heating, Lo and colleagues found that by using shorter 

periodic pulses unlikely to cause heating, but with an equivalent total ‘on-time’ as the longer 

pulses, a similar decrease in required ultrasound pressure resulted – indicating heating may 

not be the primary mechanism at work [74]. Other studies have provided convincing 

evidence that acoustic droplet vaporization may be initiated primarily by mechanical effects 

such as acoustic and hydrodynamic cavitation. Kripfgans and colleagues used high-speed 

optical microscopy to observe droplet deformations due to acoustic pressure, and showed 

that droplets with diameters in the micrometer range vaporized once a deformational 

threshold was reached, independent of original size [77]. More recent studies have shown 

vaporization can be induced independently of inertial acoustic cavitation, which has a 

number of implications for safety in vivo [75, 76].

Although the primary mechanism of ADV has not been completely revealed, a number of 

mathematical and physical models have been developed to simulate various properties of 

droplet vaporization. Ye and Bull have developed several models to describe the possible 

effects of post-vaporization expansion on wall stress to determine potential for damaging 

blood vessels [78, 79]. Other models have investigated the effect of surface tension on 

boiling point elevation, freezing point depression, volumetric expansion, and the oscillatory 

evolution of bubbles [69, 80]. Regardless of the primary mechanism, a large number of 

factors have been shown to influence the ultrasound pressure needed to induce vaporization 

of a droplet. These can be separated into three principle categories: environmental factors, 

droplet design, and ultrasound parameters (Table 2). Many of the applications proposed for 

PCCAs stem from the numerous factors that influence their vaporization.

The stability of circulating PCCAs in vivo is not well-characterized to date, although a few 

studies have suggested that certain PCCAs show greater circulation times than their 

counterpart perfluorocarbon-filled MCAs. Rapoport and colleagues have published several 

in vivo studies using polymer-coated, drug-loaded DDFP nanodroplets suggesting that a 

significant amount of nanodroplets were still in circulation as much as 4–5 hours after 

intravenous injection in mice [52, 53, 81]. When subjecting these droplets to ultrasonic 

energy, a substantial reduction in tumor growth was achieved over controls. Recent studies 

from this group using higher boiling-point perfluorocarbons have suggested that the 

residence time may also be significantly influenced by the design of the encapsulating shell 

[54]. Zhang and colleagues recently published results showing that micron-sized droplets of 

DDFP were able to achieve an equivalent effect when activated 30 minutes after intravenous 

injection in a canine model compared to those activated immediately after injection, 

although they did not test timepoints beyond 30 minutes [55]. In general, it is likely that 

longevity in circulation will be a function of PFC boiling point, design of the encapsulating 

shell, and droplet size, although many preclinical studies are needed to characterize these 

effects in vivo.

PCCA APPLICATIONS

Phase-change contrast agent applications can be roughly divided into two categories – those 

with droplets in the micrometer range and those with droplets in the nanometer range. While 
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droplets in both size categories have been proposed as drug delivery agents, droplets at the 

microscale, which are confined to vascular flow, hold unique possibilities for applications 

such as targeted vessel occlusion, ultrasound aberration correction, enhancing cavitation 

activity, and creation of internal markers for intraoperative guidance. Droplets at the 

nanoscale are primarily designed to take advantage of the well-studied enhanced 

permeability and retention (EPR) effect of solid tumors. As tumors grow and recruit new 

vasculature, the rapidly-formed vessels often exhibit a degree of ‘loose’ organization. Inter-

endothelial gaps that normally prevent passage of large molecules into interstitial space are 

characteristically wider depending on tumor type, and can allow for extravasation of 

particles well in to the hundreds of nanometers in size.[86, 87] PCCAs that can take 

advantage of the EPR effect have been proposed for applications such as ultrasound-

mediated drug delivery, diagnostic imaging, and enhanced thermal ablation. In both size 

ranges, droplets can be administered intra-arterially, intravenously, or through direct intra-

tumoral injection and then vaporized [51, 88–90]. In a few cases, the applications proposed 

for nanoscale droplets are similar to those for microscale droplets – such as drug delivery to 

solid tumors and enhancing the effects of HIFU therapy. Future in vivo work will be needed 

to develop an understanding of the tradeoffs inherent in choosing to pursue these techniques 

with microscale vs. nanoscale droplets. The specific applications are discussed below.

Microscale Applications

Vascular Occlusion Agents—Beginning with some of the earliest literature available on 

ADV, there has been significant interest in designing droplets in the micrometer size range 

for the purpose of vessel occlusion [51, 71]. Once vaporized, droplets near 5 µm in diameter 

will result in microbubbles that are on the order of 30 µm – sufficient to occlude 

microvasculature. By using focused ultrasound transducers, vaporization can be induced in 

the feeder arteries of kidneys (and by extension, tumors), resulting in the ability to occlude 

with a high degree of spatial specificity (Fig. 3) [88, 90]. This type of occlusion may be 

especially beneficial in enhancing thermal therapy of tumors, such as in radio-frequency 

ablation. Often the blood supply of the tumor can act as a heat sink - dissipating the heat and 

reducing the efficacy of the treatment. By occluding nearby vasculature, thermal delivery 

may be more successful [88]. Reduced blood flow by occlusion may also be used to induce 

hypoxia in tumors, although future studies will be needed to determine whether the 

influence of PFC oxygen solubility reduces the degree of induced hypoxia in practice [51]. 

ADV-based occlusion appears to provide significant opportunity with regard to drug 

delivery. Residence time of drugs could be increased through reduced blood flow, allowing 

for enhanced diffusion into a targeted region. Drugs may be co-injected systemically or in 

the form of drug delivery vehicles such as liposomes, or alternately could be incorporated 

into the ADV occlusion agent through a dual-phase emulsion or multiple emulsions. Perhaps 

the most promising portrait for the potential of ADV-based occlusion was proffered by 

Fabiilli and colleagues [91]:

1. Through drug-incorporated emulsions, targeted occlusion can coincide 

with release of a chemical embolic agent – thus sustaining embolization.

2. The resulting ischemia may increase the residence time of a therapeutic 

agent locally, enhancing efficacy of therapeutic delivery.
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3. Hypoxia as a result of prolonged ischemia may be useful for activation of 

bioreductive prodrugs – which potentially can be encapsulated in the 

emulsion process.

Although no in vivo validation is available to date, Fabiilli and colleagues have shown 

preliminary in vitro proof-of-concept of encapsulation of thrombin and chlorambucil in 

PCCA emulsions, followed by release with ultrasound-triggered vaporization [91, 92]. These 

studies also demonstrate the need for further optimization of formulation and drug loading 

as well as control over non-US-induced drug release and droplet size prior to preclinical 

studies. How these emulsion techniques perform compared to alternative platforms, such as 

microscale PFC droplets co-injected with drug-loaded liposomes or micelles, will also need 

to be characterized.

Ultimately, the success of ADV-based occlusion techniques depends on the dynamics 

involved in the transport and lodging of microbubbles generated from PCCAs. Due to a 

number of influencing factors, these bubbles may become lodged in the microvasculature 

near the site of vaporization, may slide along the vascular space, or may interact in a 

complex manner with vessel bifurcations downstream. It is also important that the occlusive 

bubbles not be so large as to damage or rupture the vessel wall. Several physical models 

have been developed by the University of Michigan group to simulate these dynamics [78–

80, 93–96]. Although some experimental studies are available on non-ADV microbubble 

embolization [97, 98], further experimental results from ADV-generated microbubbles are 

needed to validate these models as they extend to pulsatile blood flow in the 

microvasculature.

Aberration Correction—Phase aberration of reconstructed ultrasound images is a result 

of cumulative error in estimating the speed-of-sound in the tissue the ultrasonic wave travels 

through. On the transmit side, this leads to the transducer not focusing as desired, and on the 

receive/reconstruction side results in poor, blurry images [51]. Aberration becomes 

especially prominent when imaging through dense tissue or bone – such as the skull, and 

worsens as ultrasound frequency increases. One proposed mechanism for aberration 

correction is to use disperse point targets in the form of echogenic gas bubbles at defined 

locations in the volume-of-interest. Using iterative methods, the ‘brightness’ of the point 

target can be used as a measure of aberration correction, and transducer timing can be 

adjusted to create optimal focusing and image reconstruction. Phase-change contrast agents 

present a unique opportunity for aberration correction in that low-concentration droplets can 

be vaporized with a degree of spatial specificity, lodge in a vessel, and create a stationary 

point beacon for iterative methods [51, 71, 99]. Preliminary results using acoustic droplet 

vaporization have been promising for focusing on transmit (Fig. 4), but have not yet been 

extended to image reconstruction [99].

Cavitation Nucleation Agents—Bioeffects caused by ultrasound-induced cavitation in 
vivo range from cell sonoporation (increasing permeability of the cell wall) to cell lysis and 

tissue homogenization [100]. In addition, beyond certain pressure thresholds significant 

heating can occur [101]. These phenomena can be harnessed for both hyperthermic and non-

thermal tumor treatments – such as cell lysis in combination with enhanced gene 
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transfection due to sonoporation. However, optimal tumor treatment would require precise 

spatial and temporal control of the cavitation events [82]. Cavitation nuclei are relatively 

sparse in blood and tissue, but it has been shown that microbubble contrast agents can act as 

cavitation nuclei and lower the energy needed to induce bioeffects [102–104]. As mentioned 

previously, microbubbles exhibit low circulation times in vivo, and so phase-change contrast 

agents may present a novel means of producing more stable cavitation nuclei with control of 

spatial and temporal activation for therapeutic applications. Early studies by Miller and 

colleagues have shown that hemolysis by lithotripter shock waves was more pronounced in 

the presence of PCCAs in vitro than for MCAs [82]. An in vivo study resulted in enhanced 

cell transfection of DNA plasmids and growth-rate reduction similar to that produced by 

MCAs and macroscopic air bubbles when all were injected intra-tumorally [105]. Lo and 

colleagues proposed that spatial control of droplet vaporization could be used to create 

predictable lesion formation and demonstrated the concept in tissue-mimicking phantoms 

[106]. A recent study by Zhang and colleagues showed that microscale droplets of DDFP 

significantly enhanced lesion formation in vitro as well as in vivo [55]. When droplets were 

introduced to tissue-mimicking phantoms, the exposure time needed to create similar lesions 

as controls was decreased by a factor of 2.5. When equal exposure times were used, the 

average lesion volume was 7-fold greater than phantoms without droplets. In vivo results 

proved even more promising, resulting in a 15-fold increase in volume for lesions formed in 

the canine liver at equal exposure time to controls without droplets.

Internal Markers for Intraoperative Guidance—One of the most recently-developed 

applications for PCCAs involves harnessing their sensitivity to heat and ultrasound pressure 

to create internal markers that may assist during therapeutic or surgical procedures. Huang 

and colleagues proposed a method where PCCAs designed to vaporized at a specific 

temperature are injected near the periphery of a tumor site and activated once the tissue 

reaches a lethal thermal dose - providing real-time feedback on intraoperative ablation 

margins [107]. They demonstrated this concept in vitro using micron-sized PLGA-

encapsulated PCCAs. More recently, Couture and colleagues proposed ‘internal tattooing’, 

where PCCAs loaded with payloads of fluorescent markers are activated to release the 

fluorescent payload at the transducer focus [108]. This could be used to label areas of 

interest and delineate regions preoperatively with a high degree of spatial specificity that 

would then be visible intraoperatively through fluorescence imaging. They demonstrate 

proof-of-concept in vivo by ultrasonically activating PCCAs and labeling tissues at different 

locations in a chicken embryo.

Nanoscale Applications

Intra-tumoral Diagnostics and Therapeutic Delivery—Phase-change contrast agents 

provide a novel means of addressing diagnostics and drug delivery of solid tumors. 

Kawabata and colleagues, who published some of the earliest studies of nanoscale PCCAs 

activated by ultrasound, showed successful vaporization of nanodroplets consisting of 

mixtures of liquid perfluorocarbons [84]. Through the EPR effect, droplets generated in the 

nanometer size range may diffuse out of the vascular space before undergoing phase-change 

triggered by ultrasound. By ideal gas laws with surface tension effects taken into account, 

droplets 200 nm or larger should result in gas microbubbles on the order of 1 µm [66, 69], 
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which would provide significant contrast enhancement of tumor interstitium. This would 

effectively extend microbubble-based imaging beyond the vascular space and create new 

opportunities for tumor detection and treatment. Rapoport and colleagues have proposed a 

multi-faceted imaging and treatment platform using nanoscale PCCAs with drug-loaded 

polymer shells in conjunction with drug-loaded micelles where ultrasound combined with 

droplet vaporization enhances local drug delivery (Fig. 5) [109]. The resulting microbubbles 

(as well as larger secondary bubbles formed by coalescence) can be used as real-time 

delivery confirmation. Over a wide range of studies, her group has demonstrated the promise 

of PCCAs for delivery of paclitaxel and doxorubicin in vitro and in vivo for various cancer 

models using DDFP droplets encapsulated in a polymer shell [52, 53, 81, 89, 109–111]. The 

group has recently begun to explore the use of much higher boiling-point PFCs for increased 

stability, reversible bubble formation, and co-registration with 19F MRI, although they 

conclude that the temporary bubbles observed in the study may be due to gases dissolved in 

the PFC rather than actual vaporization of the PFC itself [54]. Matsuura and colleagues have 

provided promising preliminary evidence that incorporated nanoparticles such as quantum 

dots may act as additional cavitation nuclei within the core, and appear to decrease the 

ultrasound vaporization threshold significantly [85]. They suggest that PCCAs with 

incorporated nanoparticles may offer a means of spatially and temporally controlling 

nanoparticle deposition, and could produce a means to extend ADV-based agents to other 

therapeutic and imaging modalities.

Thermal Ablation Therapy and Therapeutic Bioeffects—PCCAs that have diffused 

into tumor interstitial space could also be used to aid in HIFU tumor ablation or to produce 

therapeutic bioeffects such as those that Miller and colleagues showed for microscale 

droplets. Once vaporized, the resulting bubbles can act as extravascular cavitation nuclei that 

enhance tissue heating and lesion formation from HIFU therapy. Although no published 

studies to date have explored the ability of nanoscale droplets to produce the bioeffects that 

Miller and colleagues observed at the microscale [82, 105], it is possible that nano-PCCAs 

may be similarly used to produce cell lysis, sonoporation, and enhanced gene transfer. 

Zhang and Porter have recently reported on the ability of PCCA nanodroplets to 

significantly enhance thermal delivery in the region of focus once vaporized in gel phantoms 

(Fig. 6) [83]. They suggest that resulting interstitial bubbles in vivo, which would 

theoretically be in the low micrometer range, would have resonance frequencies similar to 

MCAs used in HIFU [112], and therefore would be uniquely suited for tumor ablation and 

lesion formation. Future studies are needed to characterize how interstitial bubbles produced 

by PCCAs interact with the HIFU beam, and the resulting effect on cavitation activities.

Other Applications—Nanoscale PCCAs were used by Mohan and Rapoport to aid in the 

study of intracellular delivery of doxorubicin, including factors that influence penetration 

into the cell nucleus [113]. Their results suggest that ultrasound in the presence of 

microbubbles, including those created by vaporized nanodroplets, transiently permeabilizes 

the cell nucleus and allows penetration of therapeutic drugs into the nucleus. Asami and 

colleagues have also proposed that nanoscale PCCAs could be used to characterize 

viscoelastic properties of tumors by analyzing the waveforms received post-vaporization 

[114].
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SELECTION OF PFCS

When designing phase-change contrast agents, the choice of which PFC comprises the core 

will create inherent trade-offs. As the energy needed to vaporize droplets of a certain size 

increases, the likelihood of inducing unwanted bioeffects for certain applications also 

increases. However, some applications may place a premium on high droplet stability over 

how easily the droplets can be vaporized. The optimal choice of PFC can largely be 

determined by considering:

1. The ideal size-regime of the droplets (nanoscale vs. microscale)

2. The ultrasound frequency used

3. Whether intended for diagnostic or therapeutic ultrasound machines

4. Whether ultrasound-induced bioeffects are acceptable

Droplets in the micrometer range require substantially less ultrasound pressure to induce 

vaporization than droplets in the nanometer range, presumably due to less Laplace pressure 

on the droplet core by interfacial surface tension. Additionally, the pressure required to 

vaporize decreases as the compound boiling point decreases. While increasing the 

ultrasound frequency has been shown to decrease the pressure needed to vaporize, higher 

frequencies will provide less penetration depth into tissues and will therefore limit the ability 

to successfully vaporize droplets in deep-tissue targets. Studies are needed to examine 

optimization of droplet vaporization as a function of frequency for deep-tissue targets in 
vitro and in vivo. For some applications, the ability to vaporize droplets from the lowest 

possible pressures would be ideal. In these cases, the droplets should be made from the PFC 

with the lowest possible boiling point that allows for stable circulation at physiological 

temperatures. For some therapeutic applications, the pressures used are already relatively 

high to create desired bioeffects, and droplets should remain stable until a desired ‘activation 

pulse’ is delivered. For these applications, PFCs with a higher boiling point may be more 

suitable.

Most studies have shown that for applications such as vascular occlusion and aberration 

correction, microscale dodecafluoropentane-based droplets appear to be sufficiently stable 

and are able to be vaporized in vitro at pressures within what diagnostic imaging machines 

typically provide [75, 76], although the pressures used to vaporize in vivo can be much 

higher [90]. DDFP and perfluorohexane (PFH) have been the most commonly-studied PFCs 

for use with nanoscale droplets. At these sizes, the optimal PFC choice is chiefly 

application-dependent. In a study with DDFP nanoemulsions for the purposes of enhancing 

thermal delivery to tumors and creating focal lesions, Zhang and Porter suggest that as the 

temperature rises in tissues, the nanodroplets just outside of the focal region may vaporize 

more easily and lead to unpredictable prefocal lesions [83]. A PFC with a higher boiling 

point, such as PFH, may prove better in this case, as it could still be vaporized and would 

lead to more predictable lesion formation. For co-imaging with 19F MR, a PFC with a higher 

number of Fluorine atoms per molecule may be desirable, although PFCs with more 

Fluorine atoms also have higher boiling points [54].
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For some applications in both the nanometer and micrometer size regimes, it might be 

beneficial for the vaporization to occur at lower pressures than DDFP allows. Diagnostic 

image enhancement of tumors by extravasated nanodroplets requires that the droplets can be 

activated with little to no bioeffects, and by parameters within the range of a clinical imaging 

system. In addition, the degree of drug delivery or vascular occlusion from PCCAs is 

dictated partly by the efficiency of vaporization within the focal region, and so lower 

thresholds may lead to a greater number of vaporized droplets and increased drug delivery 

and/or flow reduction. While these issues may be improved by further optimizing ultrasound 

parameters such as frequency and pulse length, it is also possible to choose PFCs with lower 

boiling points than DDFP. A number of the previously mentioned in vitro studies have 

shown that DDFP droplets have remarkable stability at body temperature, even though the 

bulk boiling point of DDFP is much lower than body temperature. Presumably this is due to 

the increased internal pressure on the compound at the small sizes produced, which 

essentially increases the temperature required to vaporize the droplet. A study by Giesecke 

and Hynynen demonstrated that vaporizing micron-sized albumin-coated DDFP droplets by 

heat alone required temperatures as much as 40°C above the typical boiling point of DDFP 

as a bulk fluid [73], and the difference may increase as droplet size is reduced to the 

nanometer range. This increase in ‘effective boiling point’ leads to the possibility for lower 

boiling-point perfluorocarbons to be explored for PCCAs. This concept has been verified in 

two recent studies showing that decafluorobutane (DFB), which is normally a gas at room 

temperature, can be formed into nanoscale and microscale droplets that are stable in vitro at 

room and body temperature [66, 115]. These droplets can be vaporized at pressures 

significantly lower than similar droplets of DDFP and PFH, which is promising for 

applications requiring low acoustic pressures. Because DFB is a gas at room temperature, 

droplet generation techniques involved methods of condensing the gas at reduced 

temperatures and/or increased pressures. In the first study, droplets were produced by first 

condensing DFB gas at reduced temperatures and then encapsulating the resulting liquid 

DFB in lipid shells by membrane extrusion. The second study demonstrated a technique of 

‘microbubble condensation’ to produce sub-micron droplets where lipid coated, micron-

sized DFB microbubbles were generated via standard agitation techniques and then exposed 

to increased ambient pressure and decreased ambient temperature until condensation of the 

gas core occurred. Once condensed, the volumetric decrease resulted in sub-micron droplets 

that remained stable due to the increased internal pressure. Further studies are needed to 

determine overall in vivo stability of decafluorobutane droplets in both size ranges compared 

to previously explored PFCs, as well as to explore the possibility to stabilize droplets of 

lower boiling-point PFCs such as octafluoropropane.

One additional method of droplet design is to alter the amount of energy needed to vaporize 

a specific droplet by creating a mixture of PFCs with different boiling points. This technique 

was first proposed by Kawabata and colleagues, who demonstrated that mixing DDFP (b.p. 

29°C) and 2H,3H-DDFP (b.p. 53°C) resulted in a droplet that required more energy to 

vaporized than if it contained only DDFP, but less than if it contained only 2H,3H-DDFP 

[84]. This technique could be useful in designing PCCAs for an optimal trade-off between 

stability in circulation and pressure required to induce vaporization.
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IN VIVO STUDIES

Although fewer articles are available for phase-change contrast agents compared to 

microbubbles and inert liquid PFC emulsions, a high proportion of the studies have shown 

promising in vivo results for a variety of animal models and anatomical targets – 

summarized in Table 3. In general, researchers have shown that PCCAs are able to be 

vaporized in vivo to produce desired effects such as reduced blood perfusion and therapeutic 

drug delivery (Fig. 7). In a few instances, droplet-induced bioeffects were observed. An 

early occlusion-based study by Kripfgans and colleagues using a rabbit model showed that 

filtering droplet emulsions to transcapillary sizes (99.99% < 6 µm in diameter) and lowering 

doses to approximately 2×107 droplets/kg eliminated instances of pulmonary hyperinflation 

[88]. They suggest that because the rabbit model may be more susceptible to this bioeffect 

[116], it may be possible to use much higher doses for greater embolization in humans. 

Another occlusion-based study in a canine model by Zhang and colleagues noted instances 

of cardiac arrhythmia and one instance of animal death when droplets (99.6% < 10 µm in 

diameter) were administered in doses on the order of 1×108 droplets/kg to 4×108 droplets/kg 

through an intracardiac method [90]. The effect seemed to stabilize once animals were 

placed on forced ventilation. They hypothesized that these effects were a result of droplets 

occluding a coronary arteriole, inducing ischemia. Although no cardiac arrhythmia was 

observed for intravenous administration, doses approaching 2×109 droplets/kg resulted in 

respiratory distress and changes in blood chemistry. A dose of 3×109 droplets/kg of droplets 

this size (a total perfluorocarbon dose of 0.2 g/kg) was determined to be fatal to the canines. 

In a recent study by Zhang and colleagues aimed at assessing microscale DDFP droplets for 

thermal ablation, a dose of 1.2×108 droplets/kg (99% < 8 µm in diameter) was administered 

intravenously in a canine model and no adverse bioeffects were reported [55]. All other 

studies noted no significant undesired bioeffects. Future studies are needed to optimize 

ultrasonic vaporization in vivo – especially with regard to reducing interference caused by 

respiratory motion in some animals [90].

DISCUSSION

While the in vivo studies mentioned earlier have given ample evidence of the breadth that 

the PCCA platform may provide for future use in humans, more preclinical studies are 

needed to evaluate the potential for bioeffects as a result of PCCA administration. 

Characterizing the chemical effects of PFCs, possibility of vascular damage by very large 

bubbles, stability of agents in circulation, and ultrasound-induced effects from PCCAs 

combined with high pressures and/or pulse lengths will be vital in moving the platform 

toward clinical studies. For applications involving droplets extravasated via the EPR effect, 

the impact of diffusion gradients and uneven interstitial pressure within the tumor on the 

accumulation and delivery of drug payloads requires further investigation [89, 117]. Many 

studies have demonstrated that microscale droplets can be generated in sizes small enough to 

pass through human microvasculature without significant embolization until vaporization is 

induced [73, 76, 88]. To ensure safety while in circulation, further control of the droplet 

upper size limit has been demonstrated through filtering or microfluidic sorting [51, 73, 77, 

106, 118, 119]. Current techniques of droplet generation typically result in polydisperse 

droplet sizes, and so developing new methods to generate monodisperse size distributions of 
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droplets may be useful in that droplets would respond more uniformly in the focal region of 

the transducer – both increasing the efficiency of the technique and reducing the chance of 

unwanted effects. Couture and colleagues demonstrated the use of microfluidics to create 

complex monodisperse PCCAs carrying fluorescent payloads [108]. Recent studies by Martz 

and colleagues [120] and Bardin and colleagues [121] have used microfluidics to generate 

monodisperse, microscale DDFP droplets that remain monodisperse for several weeks in 

storage. When vaporized by acoustic pressure, the droplets exhibit a highly uniform 

response – confirming the primary benefit of the production method. Techniques such as 

these may be advantageous for the future production and commercialization of PCCAs at the 

microscale.

Many possible applications of the PCCA platform await additional exploration:

1. Targeting ligands could be incorporated in the encapsulating shell to 

provide a means of PCCA-based molecular imaging similar to that of 

microbubbles and inert liquid PFC emulsions [33, 122–125], although no 

studies have been performed to date. The effect that incorporated ligands 

may have on in vivo aspects such as stability in circulation and clearance 

by the reticuloendothelial system will also need to be carefully addressed. 

Once vaporized, PCCAs may be manipulated to enhance targeting through 

ultrasound phenomena such as acoustic radiation force [126–128].

2. Studies have shown that lipid-coated microbubbles and liquid 

perfluorocarbon droplets can be internalized into neutrophils, 

macrophages, and tumor cells [129–132]. Kang and colleagues recently 

demonstrated preliminary studies of PCCA uptake into peritoneal 

macrophages followed by acoustic vaporization [133]. The internalization 

of targeted or non-targeted PCCAs into similar cells and subsequent 

vaporization could lead to new methods of tissue-specific treatments.

3. Several of the previously mentioned sources have either suggested or 

given preliminary demonstration of the possibility of co-imaging with CT 

and MR techniques, and through incorporation of nanoparticles this may 

be extended to additional modalities. Strohm and colleagues recently 

showed that incorporation of PbS nanoparticles into micron-sized droplets 

of DDFP allowed the droplets to be vaporized by near-infrared laser 

irradiation due to heat generated by the particles [134]. This may be 

harnessed in the future to develop new techniques in photoacoustic 

imaging

4. PCCAs could be co-injected with other platforms to create novel imaging 

and treatment techniques. Lo and colleagues showed that co-injection with 

MCAs significantly decreased the vaporization threshold for PCCAs by 

enhancing the acoustic field in the vicinity of the droplets [74]. Therefore, 

microbubbles, which could also be targeted for angiogenesis, might be 

useful in reducing the vaporization threshold for extravasated nanodroplets 

and improving drug delivery efficiency. A platform of drug-carrying 

liposomes/micelles and PCCAs could be developed such that the 
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vaporized droplets confirm therapeutic delivery and cavitation-based 

effects from the resulting bubbles enhance release of drugs. Finally, a co-

injection of both nanoscale and microscale PCCAs could create a 

treatment where drugs are simultaneously released in the tumor 

interstitium by extravasated nanodroplets and in the vascular space by 

larger droplets that vaporize to form tissue-occluding microbubbles.

5. The nonlinear acoustic response from microbubbles excited in an 

ultrasound field has been harnessed to create contrast-specific techniques 

which can provide high contrast sensitivity while suppressing tissue 

background [46–50]. Two recent studies have demonstrated that the time-

dependent spectral content of evolving bubbles resulting from vaporized 

PCCAs may have significantly different spectral information than MCAs 

[72, 135], which could lead to further contrast-specific imaging 

techniques.

CONCLUSION

Phase-change contrast agents, which have properties of both the liquid emulsion and 

microbubble platforms, provide a unique set of tools to address in vivo and in vitro 
applications in novel ways. They can be generated over a wide range of useful sizes for 

diagnostic and therapeutic applications and can be manipulated in real-time, noninvasively, 

and with a non-ionizing imaging modality – ultrasound – that provides temporal and spatial 

specificity for droplet activation. In liquid form, they may be designed to exhibit smaller 

sizes and greater stability than MCAs, but once vaporized into microbubbles, result in 

marked contrast enhancement over surrounding tissue.
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Fig. (1). 
Vaporization of PFC droplets as a result of exposure to ultrasonic pulses. Shown here, a 

droplet of dodecafluoropentane encapsulated in a lipid shell is stable in vitro at 37°C, but 

vaporizes upon exposure to a 5 MHz ultrasonic pulse. The phase-transition results in a 

bubble approximately 5–6 times larger (unpublished data).
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Fig. (2). 
Effect of droplet size on expansion factor according to ideal gas laws with Laplace pressure 

included for a selected PFC. Calculations are presented for two variations of both ambient 

pressure (Pin vitro ≈ 101 kPa; Pin vivo ≈ 114 kPa) and surface tension (σ1 = 30 mN/m; σ2 = 51 

mN/m). Expansion of droplets on the order of 10 µm is primarily dependent on ambient 

pressure, while expansion of droplets 500 nm or less is primarily dependent on surface 

tension. Reprinted from Ultrasound in Medicine & Biology, Vol. 37, Sheeran PS, Wong VP, 

Luois S, et al., “Decafluorobutane as a phase-change contrast agent for low-energy 

extravascular ultrasonic imaging”, 1518-30 (2011), with permission from Elsevier.
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Fig. (3). 
PCCA tissue occlusion demonstrated in a canine kidney with droplets injected intravenously. 

Pulse-wave Doppler spectrum taken at the targeted spot in the renal artery before (a) and 

immediately after ADV (b), where blood flow reversal and narrowing of the waveform along 

with significant shadowing in the kidney is observed possibly because of substantial vascular 

occlusion. Reprinted from Ultrasound in Medicine & Biology, Vol. 52, Zhang M, Fabiilli 

ML, Haworth KJ, et al., “Initial investigation of acoustic droplet vaporization for occlusion 

in canine kidney”, 1691–703 (2010), with permission from Elsevier.
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Fig. (4). 
Ultrasound transcranial radiofrequency lines gathered using ex vivo human skulls. 

Misalignment of the peak amplitude of an ADV point beacon due to aberration (top) was 

corrected using time-reversal focusing (bottom). Reprinted from Ultrasound in Medicine & 
Biology, Vol. 34, Haworth KJ, Fowlkes JB, Carson PL, Kripfgans OD, “Towards aberration 

correction of transcranial ultrasound using acoustic droplet vaporization”, 435–45 (2008), 

with permission from Elsevier.
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Fig. (5). 
Schematic representation of passive drug targeting through the defective tumor 

microvasculature using an echogenic drug delivery system. The system comprises micelles 

(small circles), PFC nanodroplets (stars), and PFC microbubbles (large circles). Lipophilic 

drugs can be localized in the micelle cores and in the walls of nanodroplets/microbubbles. 

Tumors are characterized by defective vasculature with large gaps between the endothelial 

cells, which allows extravasation of drug-loaded micelles and small nanodroplets into the 

tumor interstitium. Primary microbubbles are formed from the vaporization of nanodroplets 

due to hyperthermia or ultrasound, and larger microbubbles appear due to coalescence of the 

primary microbubbles. Rapoport N, Gao Z, Kennedy A, “Multifunctional nanoparticles for 

combining ultrasonic tumor imaging and targeted chemotherapy”, J Natl Cancer Inst, 2007, 

Vol. 99, 1095–106, by permission of Oxford University Press.
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Fig. (6). 
Presence of bubbles formed by vaporized DDFP nanodroplets increased the thermal delivery 

by ultrasound to a tissue-mimicking phantom. Temperature elevations were measured during 

a 10-second HIFU exposure with and without an ADV pulse. The function generator was 

switched from continuous to pulse mode to fire the ADV pulse, and then back to continuous 

mode for heat deposition. The switching period led to the temperature drop during that 

period of time. The measured temperature reached a plateau in the presence of vaporized 

nanodroplets, most likely because of shielding effects. Reprinted from Ultrasound in 
Medicine & Biology, Vol 36, Zhang P, Porter T, “An in vitro study of a phase-shift 

nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation”, 

1856–66 (2010), with permission from Elsevier.
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Fig. (7). 
Demonstration of drug delivery by the interaction of ultrasound and drug-loaded 

nanodroplets/micelles. A nu/nu mouse bearing two ovarian carcinoma tumors immediately 

before (A) and 3 weeks after the treatment (B). The mouse was treated by four systemic 

injections of paclitaxel-loaded nanodroplets given twice weekly, while only the right tumor 

was sonicated by 1 MHz continuous-wave ultrasound 4 hours after the injection. The left 

tumor grew at the same rate as the controls, while the right tumor regressed, demonstrating 

paclitaxel release into the tumor volume. Reprinted from J Control Release, Vol. 138, 

Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH, “Controlled and targeted tumor 

chemotherapy by ultrasound-activated nanoemulsions/microbubbles”, 268–76 (2009), with 

permission from Elsevier.
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Table 2

Relation of Influencing Factors to US Vaporization Threshold

Environmental

Factor Relation to US Pressure Threshold References

Ambient Temp. Inverse [72, 75, 76, 82, 83]

Ambient Pressure Direct Governing Eqs.

Viscosity of Surrounding Medium Direct [71, 75]

Presence of MCAs Inverse [74]

Droplet Design

Factor Relation to US Pressure Threshold References

PFC Boiling Point Direct [66, 73, 75, 84, 85]

Droplet Diameter Inverse [66, 75–77]

Shell Surface Tension Direct [53]

Incorporated Nanoparticles Inverse [85]

Droplet Concentration No Effect or Inverse [72, 83]

Ultrasound Parameters

Factor Relation to US Pressure Threshold References

Frequency Inverse [51, 71, 76]

Pulse Length No Effect or Inverse [72, 74–76, 83]

Pulse Repetition Frequency No Effect or Inverse [74, 75]
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Table 3

In vivo PCCA studies

Application Animal Target Outcome References

Embolotherapy
adult

canine
(mongrel)

externalized kidney
Up to 34% regional perfusion reduction in

kidneys; Bubbles stationary for over 30
minutes;

[51]

kidney: non-
externalized and

externalized

Flow reduction in externalized and non-
externalized kidneys; Instances of cardiac
arrhythmia, respiratory distress, and death

depending on injection type and dose

[90]

New
Zealand

white rabbit
externalized kidney

Average organ perfusion reduction of >70%;
Instances of pulmonary hyperinflation

eliminated once droplets filtered
[88]

Aberration
Correction

adult
canine

(mongrel)

brain exposed by
bilateral craniotomy

Point beacons for aberration correction
created; Significant increase over surrounding

tissue
[51]

Cavitation
Bioeffects, Gene

Transfer
balb/c mice subcutaneous

RENCA tumor model
Enhanced cell transfection; Tumor growth rate

reduction [105]

adult
canine

(mongrel)
liver HIFU exposure in presence of droplets created

15-fold increase in lesion volume [55]

Internal Markers chicken
embryo various Spatial control over release of fluorescent

markers demonstrated [108]

Drug Delivery athymic
nude mice

subcutaneous A2780
ovarian cancer and

MB231 breast cancer
models

Delivery of paclitaxel and doxorubicin resulted
in substantial tumor growth rate reduction;

Eventual tumor re-growth observed
[109]

nu/nu mice

subcutaneous A2780
ovarian cancer and

orthotopic MiaPaCa-
2 pancreatic cancer

models

Delivery of paclitaxel and doxorubicin resulted
in substantial tumor growth rate reduction;
Eventual tumor re-growth observed with

exception of one instance of complete
regression

[52–54, 81,
89]

Nanoparticle
Delivery SCID mice

hepatocellular
carcinoma (HCC)
tumor xenograft

Intra-tumoral vaporization of nanodroplets
loaded with quantum dots [85]

New
Zealand

white rabbit
free circulation Biodistribution of quantum dots obtained

through histology [85]

Diagnostic Imaging SCID mice
hepatocellular

carcinoma (HCC)
tumor xenograft

Image contrast enhancement within mice
hepatomas after droplet vaporization [85]

19F MR Co-
Imaging

Swiss
Webster

white mice
free circulation Nanodroplet pharmacokinetics measured [54]

nu/nu mice
orthotopic MiaPaCa-
2 pancreatic cancer

model

Preliminary biodistribution co-imaging with
19F MR demonstrated

[54]
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