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Abstract

Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-

cartilaginous region known as interzone, and the specification of progenitor cells that commit to 

the articular fate. Although several signaling molecules are expressed by the interzone, the 

mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the 

presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem 

cells niches have been found in different joint regions, such as the surface zone of articular 

cartilage, synovium and groove of Ranvier. Inherited joint malformation as well as joint 

degenerating conditions are often associated with other skeletal defects, and may be seen as the 

failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. 

Therefore, exploring how joints form can help us understand how cartilage and bone are damaged 

and to develop drugs to reactivate this developing mechanism.
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INTRODUCTION

Formation and positioning of synovial joints are critically important during evolution 

allowing successful adaptation of vertebrate limbs to a variety of ecological environments. 

Because of the variety of tissues comprising the synovial joint (articular cartilage, synovial 

fluid, ligaments, joint capsule) disease or trauma affecting one tissue has wide-ranging 

implications on the health and function of the joint as a whole organ (1). Inherited joint 

malformations, although relatively rare, present with a wide range of forms and severity and 

are often associated with skeletal defects, suggesting a reciprocal cause/effect relationship 

(2, 3). On the other hand, degenerating conditions that affect joint function, such as 

osteoarthritis (OA) and inflammatory rheumatoid arthritis (RA), are the single largest cause 

of disability in the adult population (4, 5), and while our understanding of the pathology of 

these diseases has greatly improved, the only successful treatment for restoring joint 

function in end-stage diseases is total joint replacement (6). To some extent, this lack of 

effective medical treatments is due to the fact that the articular cartilage is avascular, and 

this limits its reparative capacity (7). Although physiologically and clinically significant 

there is limited information on the mechanisms and signaling molecules that lead to joint 

morphogenesis. A greater understanding of joint formation can provide critical insight on 

the pathogenesis of joint degeneration and to develop novel reparative strategies to restore 

long-term joint function following trauma and disease.

JOINT MORPHOGENESIS

During skeletogenesis, long bone formation initiates as uninterrupted mesenchyme 

condensations in the early limb buds, which undergo differentiation to chondrocytes (1, 6). 

Joint formation becomes morphologically evident with the appearance of a region called the 

interzone at the sites of future joint location where the resident cells flatten and form a clear 

separation of the previous uninterrupted cartilaginous skeletal anlagen (8–9). In most 

species, the interzone is a tripartite structure consisting of two outer layers adjacent to the 

epiphyseal end of the future bones and an intermediate zone, that adopt a nonchondrogenic 

phenotype, as indicated by the loss of chondrogenic markers such as Sox-9 and Collagen 2, 

and the expression of new sets of genes including Gdf5, Wnt14 and Wnt4 (10–12). The 

pivotal role the interzone in joint formation is widely recognized, as its microsurgical 

removal results in joint ablation (8–9, 13). Ultrastructural analysis in developing rat embryos 

indicated that the outer interzone layers participate in initial lengthening of long bone 

anlagen, while articular chondrocytes largely derive from the intermediate layer (14). 

Despite wide recognition that the interzone region is essential for joint formation, there is 

limited information of the gene expression environment in which interzone cells emerge and 

distinguish themselves from adjacent growth plate chondrocytes (14–16). Numerous studies 

in recent years have reported several signaling molecules, growth factors, transcription 

factors, and other regulatory molecules expressed by the interzone: these include GDF-5, 

Wnt-14, Wnt-4, Wnt-16, Gli3, CD44; BMP antagonists Chordin and Noggin; fibroblast 

growth factor family member FGF-2, FGF-4 and FGF-13; transcription factors Cux1 and 

ERG (10, 12, 17–20). GDF-5 is expressed in the early interzone in mouse and chick embryo 

limb joints and lack of GDF-5 in the natural mouse mutant brachypodism, causes 

widespread joint defects and skeletal growth retardation (21). Subsequent studies established 
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that Gdf-5-expressing cells give rise to most if not all joint tissues, including articular 

cartilage, ligaments and inner synovial lining (14). The current view is that GDF-5 has at 

least two roles in skeletogenesis. At early stages, it is expressed throughout the condensation 

and would stimulate recruitment and differentiation of chondrogenic cells. At later stages, 

when its expression becomes restricted to the interzone, GDF-5 would promote interzone 

cell function and joint development (22). Iwamoto et al. reported that there is a close 

spatiotemporal expression of GDF-5 with the transcriptional factor ERG (one of the ets gene 

family member) in developing mouse embryo joints which suggests that ERG acts 

downstream of GDF-5 leading chondrocytes to become joint forming cells (9).

Wnt14 and the BMP antagonist Noggin are anti-chondrogenic factors that are expressed 

early during interzone formation. Targeted misexpression of Wnt14 in developing chicken 

digit rays induced ectopic joints, with upregulation of Gdf5, Wnt4, CD44 and down-

regulation of Col2, Sox9 (10) while ablation of Wnt-14 along with Wnt-4 impairs joint 

formation and causes some fusions (23). In vitro studies show that Wnt14 reversed 

chondrocyte differentiation in predifferentiated micromass culture, reflecting what happened 

in vivo(10, 24).

Experimental ablation of Noggin in mouse prevents limb joint formation and causes skeletal 

fusions (17). The role of Noggin is conserved between mouse and humans, and at least two 

human syndromes, which are characterized by multiple synostoses (absence of joints), are 

due to mutations in Noggin (25). The expression of another BMP antagonist, Chordin, is 

restricted to the joint interzone, emphasizing the role of BMP antagonism during joint 

development. The significant concept stemming from these studies is that joint formation 

involves the intervention of gene products with chondrogenic and anti-chondrogenic 

activities, the former critical for formation of fibro-cartilaginous joint structures and the 

latter for maintaining the initial mesenchymal character of cells present at joint sites (15). 

Thus, it is not surprising that the joint interzone appears to be also an essential regulator of 

skeletal development, and vice-versa (24). One example is shown by the conditional 

inactivation of Ext1 in developing joints in Gdf5-expressing cells. Ext1 encodes a subunit of 

the Ext1/Ext2 Golgi-associated protein complex responsible for heparan sulfate (HS) 

synthesis. Heparan sulfate (HS) is an essential component of cell surface and matrix-

associated proteoglycans and mutations in HS-synthesizing and modifying enzymes cause 

several skeletal phenotypes, such as hereditary multiple exostoses (HME), described later in 

joint genetic disease chapter. Interestingly, mutation of Ext1 in Gdf5-expressing cells, led to 

lack of a distinct mesenchymal interzone with consequent joint fusion. They also found 

abnormal BMP and hedgehog activity and signaling leading to a delayed growth and 

lengthening of long bones indicating that defects in joint formation reverberate on, and 

delay, overall long bone growth (26).

Recent studies have identified an important role for HIF-1 and HIF-2 in the regulation of 

skeletal development as well as joint formation and homeostasis. In addition, overexpression 

of HIF-1 and HIF-2 has been clinically associated with osteoarthritis (27).

The critical role of Ihh and parathyroid Hormone-Related protein (PTHrP) during 

endochondral bone formation is well known, but also their importance in synovial joint 
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formation (28–30) has been reported. Ihh null have mice failed joint development (28, 31, 

32) and have abnormal distribution and function of Gdf5-expressing interzone-associated 

cells (17, 29, 31, 33). These studies suggest that in the developing diaphysis, secreted Ihh 

could diffuse and reach the epiphyseal ends of the long bone analgen, where it would 

regulate interzone formation (1). Using a PTHrP-Lac-Z knockin mouse containing a β-gal 

reporter under endogenous PTHrP gene regulatory sequences, Chen et al. have confirmed 

two distinct PTHrP β-gal positive subpopulations: in the articular cartilage and in the 

proliferative chondrocytes, that are maintained through adulthood (34) (35). A role for 

PTHrP in articular cartilage maintenance has been recently proposed by Gdf5-Cre-targeted 

knock-down of PTHrP in mouse articular chondrocytes that led to accelerated development 

of OA in a DMM model (36). In addition, systemic administration of recombinant human 

PTH in mice inhibited cartilage degeneration and induced cartilage regeneration following 

meniscal/ligamentous injury (37).

Proper spatial positioning of synovial joints is crucial in skeletogenesis. Sohaskey et al. 

reported that mice carrying an insertional mutation in the Jaws gene (abnormal joint with 

splitting) die perinatally with striking skeletal defects, including ectopic interphalangeal 

joints (38). These ectopic joints develop along the longitudinal axis and persist at birth, 

suggesting that JAWS is uniquely required for the orientation and consequent positioning of 

interphalangeal joints within the endochondral skeleton.

Transgenic mice overexpressing fibroblast growth factor receptors (FGFR) 1 and 3 exhibit 

joint defects similar to the symphalangism that occurs in Apert syndrome, a rare congenital 

disorder characterized by craniosynostosis, midfacial malformation and symmetrical 

syndactyly. In this mice some synovial joints failed to develop and the presumptive joint 

space was replaced by cartilage. (39)

A recent study by Gao et al. reported a critical role of Osr1 and Osr2, the mammalian 

homologs of the odd-skipped family of zinc finger transcription factors required for 

Drosophila leg joint formation, in mouse synovial joint formation. They report that Osr1 and 

Osr2 and are both strongly expressed in the developing synovial joint cells and are required 

for Gdf5, Wnt4 and Wnt14 expressions (40).

Genetic manipulation of the TGF-β system has revealed critical roles in both joint 

development and skeletogenesis (41–43). In transgenic mice, overexpression of a dominant 

negative Tgfbr2 (DNIIR) resulted in OA(40). In humans, mutations of the Tgfbr2 have been 

associated with Loeys-Dietz syndrome, a Marfan-like syndrome that leads early onset of OA 

(OMIM#609192) (44,45). In previous studies, by generating a TGF-β type II receptor 

(TβRII) reporter mouse (β-Gal and GFP), we showed that TβRII is highly and specifically 

expressed in the developing joint (43). By generating a mouse in which the TβRII signaling 

is conditionally inactivated in mesenchyme limb buds starting at E9.5 (Tgfbr2Prx1KO), we 

demonstrated that the lack of TβRII signaling led to complete absence of interphalangeal 

joints and was associated with down-regulation of key joint morphogenic factors (such as 

Noggin, GDF5 and the Notch ligand, Jagged 1). Interestingly, lack of joint was associated 

with up-regulation of many inflammatory cytokines/chemokines in the presumptive 

interzone, such as MCP-5 and Il 36 (43, 46, 47); blockade of MCP-5 receptor was able to 
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rescue the TβRII-mediated joint deficiency (47), suggesting that cytokines/chemokines may 

have a regulatory role during development, mediating proper interzone formation.

There is compelling evidence that Notch signaling is critical for progenitor cell survival and 

for their maintenance in an undifferentiated state, which sets the boundaries that segregates 

two distinct cell populations during development (48–52). Notch1 is a regulator of great 

importance for cell fate commitment during both early growth and in adult tissues and has 

been shown to play a critical role in the cell fate determinant in different stem cell niche 

structures such as the skin, teeth and nervous system (53). Hayes et al. reported that Notch 1 

is expressed in the developing and post-natal articular surface (54). The Notch family 

members are also expressed in adult articular cartilage (55) and over 70% of chondrocytes 

on the surface zone of articular cartilage express Notch 1 receptor (16), suggesting a 

significant role of the Notch signaling in regulating articular cartilage homeostasis during 

adult life (55,56)

Despite important advances on multiple fronts, there are still fundamental aspects of joint 

formation that remain unclear and in particular, how joints acquire their diverse morphology 

and organization from embryonic life to adulthood. A better understanding of genes 

involved in patterning processes will be critical to link embryonic development with joint 

disease in adult, in both inherited and acquired debilitating diseases.

PROGENITOR STEM CELL NICHE

The view of articular cartilage as a non-regenerative organ has been challenged in recent 

years. The superficial zone of articular cartilage demonstrates a distinct pattern regarding 

stem cell markers (Notch-1, Stro-1, and vascular cell adhesion-1) (57) and has been 

hypothesized to harbor stem cells (58). Studies regarding cartilage development have shed 

light on the question of whether any of the joint tissues harbors potential joint progenitor 

cells. Through the use of BrdU (bromo-deoxyuridine) injections to localize slow-cycling 

cells, a trait characteristic of progenitor cells, a few potential joint stem cell niches have 

been determined. A Notch-1 positive cell population has been isolated from the surface zone 

of articular cartilage (59); these cells possess high colony-forming efficiency that was 

abolished when Notch signaling was blocked (16).

Karystinou et al reported the isolation and characterization of multipotent MSCs from adult 

human synovium, that could be expanded for up to 30 population doubling, with limited 

senescence and maintenance of multilineage differentiation capacity toward chondrogenesis, 

osteogenesis, adipogenesis and skeletal myogenesis (60). In response to injury of various 

types, including trauma, the synovial membrane rapidly becomes hyperplastic, which seems 

to be sustained mainly by stromal synovial fibroblasts (61–63). The biologic function of 

synovial cell proliferation is believed to have a pivotal role in joint homeostasis and 

deregulation of this process is thought to contribute to the formation of pannus, which in RA 

causes destruction of cartilage and bone (63). Although very little is known about the 

identity of the synovial cells that proliferate following injury, this study provides the first 

evidence of the existence in vivo, within postnatal knee synovium, of non-hematopoietic, 

non-endothelial stromal cells with MSC phenotype (64–66) which proliferate following 
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articular cartilage injury and, under specific experimental conditions, differentiated into 

chondrocytes in area of cartilage metaplasia within the synovium (67).

An area of potential interest with regard to joint progenitor cells is the perichondrial groove 

of Ranvier. This area is located at the periphery of the epiphyseal growth plate and has been 

demonstrated to contain proliferating cells (68). Studies by Karlsson et al. in the knee of 

sexually mature rabbits have proved the existence of different subpopulations of progenitor 

cells, in the articular cartilage, in the groove of Ranvier, as well as the epiphyseal plate near 

the groove of Ranvier; however, whereas the progenitor cells in the surface layer of the 

articular cartilage seem to lose their progenitor properties and become dispersed throughout 

the articular cartilage as they grow older, the progenitor cells in the groove of Ranvier were 

positive for several marker associated with stem cell niche (including Stro-1, Jagged-1 and 

BMPr1a) and maintain their progenitor properties and localization over time (58).

We have addressed in the previous section the critical role of the TβRII in joint-element 

development. Our finding that mice lacking of TβRII signaling in developing limbs failed 

interzone formation and lacked interphalangeal joints, led us to investigate the expression 

pattern of TβRII-expressing cells and their characterization as joint progenitors(69) By using 

a Tgfbr2-β-Gal-GFP-BAC mouse previously described, we have recently characterized the 

TβRII-expressing cells as joint progenitors(69), clustering in a contiguous niches that 

comprises the groove of Ranvier and the synovio-entheseal complex, including part of the 

perichondrium, the synovium, the articular cartilage superficial layer and the tendon’s 

enthuses(69) Developmental-stage studies showed that TβRII expression was in synchrony 

with expression of joint-morphogenic genes such as Noggin, Gdf-5, Notch1 and Jagged1. 

Pre-natal and post-natal BrdU-incorporation studies showed that within this synovio-

entheseal articular cartilage niche most of the TβRII-expressing cells exhibit stem cell traits. 

In addition, TβRII-expressing cells isolated from embryonic limb mesenchyme expressed 

joint progenitor markers in a time- and TGF-β-dependent manner. TβRII-expressing cells 

were maintained in their specific niches from embryonic life throughout early adulthood, 

although characterized by a progressive age-dependent reduction in number.

The functional characterization of adult joint progenitors, together with the identification of 

embryonic markers that are preserved in postnatal joints, opens prospects for potential ways 

to reactivate the joint-forming ability of such cells, to implement their survival during aging 

and to evaluate their role in joint genetic disease as well as joint degenerative pathologies, 

such as arthritis.

JOINT GENETIC DISEASES

Genetic constitution is a factor in the development of most diseases, including those of 

bones and joints. Evidence for the influence of genes in most disease development is 

expressed in two ways. In polygenic disorders, the genetic influence is indirect, based only 

on the higher rate of recurrence in some families compared to the general population. The 

second group follows Mendelian inheritance, where a specific gene is directly responsible 

for the disease and the gene is passed on to subsequent generations. These diseases may also 

appear spontaneously as new mutations. There are over 5000 documented Mendelian 

disorders, and over 500 of these affect bones and joints (70). Some of these single gene 
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disorders affect many tissues, and the skeletal system, including joints, is one of many 

organs involved (71), others are directly related to joint malformation. It is beyond the scope 

of this review to give a detailed list of all the joint genetic diseases; however, we will 

provide some examples in Table 1. There are very few genes that are known to be necessary 

and/or sufficient to initiate the joint formation process, among them Noggin, Gdf5, Tgfbr2 

and Wnt14 (10,17,22,41). The factor(s) that induce the expression of these joint 

morphogenic molecules are undefined. Gong et al. (25) demonstrated that five dominant 

mutations in the Noggin gene in unrelated families segregate with proximal symphalangism 

(SYM1A, OMIM#185800), an autosomal dominant disorder characterized by a complete 

bony fusion between the proximal and middle phalanges of the digit. Another form of 

proximal symphalangism (SYM1B) is caused by a heterozygous missense mutation in the 

Gdf5 (OMIM #615298).

We reported that TβRII functions as a master regulator for the expression of key joint 

marker genes, such as Gdf5 and Noggin, and is necessary for proper joint development (43). 

The joint phenotype observed in mice lacking the Tgfbr2 gene in limbs is similar to that in 

patients with SYM1. In humans, heterozygous mutations of the Tgfbr2 gene have been 

associated with Loeys-Dietz syndrome (OMIM #610168), a Marfan-like syndrome 

characterized by several defects including joint hypermotility and/or contractures that lead to 

early onset of OA (44,45). It has been hypothesized that in Loeys-Dietz syndrome, an excess 

of TGF-β signaling accounts for the pathological manifestations (72).

Several lines of evidence have demonstrated the importance of Notch signaling in joint 

morphogenesis and genetic inactivation of the Notch signaling in Drosophila, resulting in 

loss of joints (73). A derangement of Notch signaling has been reported in articular 

synoviocytes from patients with RA, characterized by aberrant synoviocyte proliferation 

(74). Heterozygous mutation in the Notch2 gene causes the Hajdu-Cheney syndrome 

(HJCYS, OMIM #102500), a rare autosomal dominant disorder that, in addition to severe 

skeletal abnormalities including acroosteolysis, is characterized by joint laxity. Mutations 

and deletions in Jagged-1 (Notch ligand) have been found in patients with Alagille 

syndrome characterized by intrahepatic cholestasis, eye and cardiac abnormalities, as well as 

skeletal defects in particular in the fingers (75, 76).

Mouse studies have indicated that embryonic long bone development is altered by mutations 

in Ext genes members (Ext1, Ext2 and Ext3) of the exostosin protein family and responsible 

for the synthesis of heparan sulphate (HS)(77). Recent data have shown that loss of Ext-1 

expression postnatally is not only affecting the growth and organization of long bones, but is 

incompatible with normal joint structure, resembling human OA (78, 79). In humans, HS 

deficiency due to mutation in the genes encoding exostosin-1, -2, -3, causes multiple 

hereditary exostoses (EXT, OMIM #133700), an autosomal dominant disorder characterized 

by multiple projections of bone capped by cartilage, most numerous in the metaphyses of 

long bones, but also occurring on the diaphyses of long bones. Deformity of the legs, 

forearms (resembling Madelung deformity), and hands is frequent (80).

Mutations in the Jaws gene (joints abnormal with splitting), also known as Impad1 (inositol 

monophosphatase domain-containing protein 1) cause the GPAPP type of chondrodysplasia 

Longobardi et al. Page 7

Curr Osteoporos Rep. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



with joint contractures, an autosomal recessive disorder characterized by short stature, 

chondrodysplasia with brachydactyly, congenital joint dislocations, micrognathia, cleft 

palate, and facial dysmorphism (OMIM #614078).

Alkaptonuria (AKU, OMIM #203500) is an autosomal recessive metabolic disorder caused 

by homozygous or compound heterozygous mutations in the homogentisate 1,2-dioxygenase 

gene (HGD) and characterized by accumulation of homogentisic acid, leading to darkened 

urine, ochronotic pigmentation of fibrous tissues including cartilage, tendons, ligaments, 

chronic joint pain, and destruction of the cardiac valves. Ultimately, patients develop severe 

secondary OA.

Current knowledge of joint biology and pathologies has not been translated, however, into 

effective therapies to treat joint conditions (103, 104). Knowing how joints form during fetal 

life, express certain genes that become established in early post-natal life and are maintained 

in adult life would shed light on the homeostasis of the whole joint and could lead to novel 

treatment for many joint disorders.

CAN WE UNDERSTAND BETTER OA FROM JOINT DEVELOPMENT?

OA is a complex disease caused by the interaction of multiple genetic and environmental 

factors and the major cause of disability in the adult population. Although articular cartilage 

degeneration is the primary concern in OA, it is now the prevailing paradigm that OA is a 

disease of the entire joint and homeostasis and integrity of articular cartilage depends also 

on the biochemical interplay with subchondral bone; thus, it not surprising that mutation in 

genes that are needed during skeletogenesis may lead to OA later in life.

We have addressed the critical role of the TGF-β system in both joint development and 

skeletogenesis (41–43). The scope of this section is to provide an example of how genes that 

are so critical in joint morphogenesis may also have key roles in joint degenerating disease, 

such as OA. TGF-βs bind to TGF-β type II receptor (TβRII) leading to TβRII-TβRI complex 

formation, which then activates the signaling cascade through R-Smad dependent (Smad-2, 

-3,-4) and Smad-independent pathways (81, 82).

In human and mouse embryonic cartilage, TGF-βs are expressed in the endochondral 

template (83–86). Using laser capturing microdissection (LCM) we have obtained RNA 

samples from E13.5 progenitor joint-forming interzone cells and from the adjacent growth 

plate chondrocytes. Each population-related mRNA was subjected to microarray analysis. 

We have found that Tgfbr2 expression was 12.3 times higher, while Tgfbr1 and Tgfbr3 were 

slightly lower in the interzone cells. In mice, targeted manipulation of the TGF-β system 

genes have revealed their critical, but still undefined, function in skeletogenesis (41, 42, 87, 

88). R-Smad gene targeting in mice has led to variable phenotypes ranging from early 

lethality (Smad2 and Smad4 ablation) to a normal phenotype at birth with progressive OA in 

adulthood (Smad3 ablation) (89–92). In transgenic mice, overexpression of a dominant 

negative Tgfbr2 (DNIIR) can result in OA in adults (42); in chick embryos, however, 

implanted beads releasing TGF-β induce extra digit formation (93). In humans, mutations of 

the Tgfbr2 have been associated with Loeys-Dietz syndrome (44, 45, 72).
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In previous studies, we demonstrated that lack of TβRII signaling in developing limbs was 

associated with complete absence of interphalangeal joints as well as with impaired growth 

plate development (43).

By combining LCM with microarray analysis we were also able to show that interzone cells 

express a gene pattern that is distinct from adjacent growth plate chondrocytes and such 

gene regulation is impaired in mutant limbs lacking TβRII. We performed a pathway 

analysis using the PANTHER (protein analysis through evolutionary relationships) 

Classification System (Celera) to classify genes into canonical pathways. This enabled us to 

identify functional categories in the joint-forming interzone cells of wild type mice that were 

different from mutants. We determined that in the interzone cells the “inflammation 

mediated by chemokines and cytokines” was the most down-regulated pathway in the wild 

type interzone compared to mutant. Specifically, we found that monocyte chemoattractant 

protein-5 (MCP-5) and Interleukin 36-α (IL-36α) were among the most down-regulated 

genes in this pathway (46, 47). It has been reported that MCP5, MCP-1 and their sole 

common receptor CCR2, as well as IL-36α are increased in the inflamed joints of patients 

with different forms of arthritis and in rodent models for arthritis (94–97). While the role of 

inflammatory cytokines in the arthritic process appears indisputable, their role in joint 

development has never been evaluated. A finding of cytokine involvement in joint formation 

would determine a shift in our current view of joint cells as passive victims of the disruptive 

force of cytokines but as active participants in maintaining control of the cytokine effects 

and therefore joint integrity. It has been shown that in healthy cartilage, a balance between 

cytokines and anabolic growth factors is critical to maintain proper tissue homeostasis (98, 

99). Supported by our previously published data and other current evidence, in Figure 1 we 

propose a model for the role of TβRII signaling in regulating cell commitment to joint-

forming cells or chondrocytes within the joints (47). Specifically, TβRII signaling, by 

blocking critical inflammatory cytokines expression in the interzone, halts Collagen 2 

expression and induces interzone specific markers (i.e. Gdf5, Noggin). In mutant mice, lack 

of the TβRII expression in developing limbs, leads to disregulated levels of cytokine/

chemokines in the interzone (such as MCP-5 and IL-36α) which, in turn, block expression 

of interzone specific markers while increasing Collagen 2-expressing cells, with consequent 

accumulation of chondrocytes within the joint region and impaired of joint formation.

The activation of the inflammatory cytokine/chemokine cascade is associated with the more 

common forms of arthritis (100). The generally accepted hypothesis is that during the 

OA/RA process, the increased levels of cytokines and chemokines are the last step of a long 

lasting damage process that sees the joint as a passive target. To determine the role of TβRII 

signaling in joint homeostasis we generate a genetically modified mouse to tamoxifen 

induces, a Cre-conditional inactivation of floxed Tbfbr2 in osteochondro progenitors starting 

at postnatal day 3 of life (46). We found that postnatal TβRII signaling inactivation was 

associated with high expression of IL36α and MCP-5 (unpublished data) in the articular 

cartilage and synovium and progressive OA development(46). Blockage of IL36α signaling 

led to rescue of the OA phenotype(46). In a mouse model of post-traumatic OA, namely 

caused by a destabilization of the medial meniscus (DMM) surgically-induced after medial 

meniscotibial ligament transection, we found that an intense early cellular response of TβRII 
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positive cells that gradually decreased with OA progression and was associated with an 

increase of MCP-5 (101). Blockage of the MCP-5 signaling as well as implant of TβRII 

positive cells improved OA lesions and decreased subchondral bone reaction (101, 102). 

These findings suggest that TβRII signaling and cellular response is critical in joint 

development and it is an active mechanism to preserve joint homeostasis in adulthood. In 

this respect we provide a novel perspective to evaluate the OA process that results from the 

failure of an active cell joint population, expressing TβRII, to maintain a controlled cytokine 

environment rather than from the damage induced by a systemic influx of inflammatory 

cells and cytokines against a passive target (the joint).

CONCLUSIONS

Joint biology has been the subject of extensive research activity, and much has been learned 

about the structure and composition of articular cartilage, ligaments, synovium, and joint 

capsule, and the specific roles each of these tissues plays in joint function in developing and 

adult organisms Much is also known about susceptibility of joint tissues to damage and 

malfunction during natural aging and congenital or acquired skeletal conditions (20). 

Diseases that target and disrupt structure and function in the articular cartilage, synovium, 

meniscus and subchondral bone result in painful, debilitating and costly conditions for 

patients and society as a whole. The articular cartilage is avascular, and this presents 

limitations on its reparative capacity and for drug delivery. Joint homeostasis is maintained 

preserving the articular cells to proceed down the differentiation pathway that leads to 

chondrocyte hypertrophy and bone replacement such as it occurs in the growth plate 

cartilage. Many joint degenerating conditions may be seen as the failure of morphogenic 

factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring 

how joints form can lead us to understand how cartilage and bone are damaged and develop 

drugs that are able to reactivate this developing mechanism. This information would have 

major biomedical relevance, as it could lead to novel repair strategies to restore joint 

function following trauma, as well as providing insight on the pathogenesis of acquired and 

inherited joint diseases.
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Figure 1. A model for the TβRII-mediated regulation of joint development
TβRII down-regulates MCP-5/IL-36α expressions in the interzone, allowing expression of 

key joint markers (such as Gdf5) while inhibiting Collagen2 expression. Lack of the TβRII 

signaling leads to up-regulation of interzone MCP-5/IL-36α with consequent lack of joint 

formation.
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Table 1

Joint Genetic Diseases

Location Gene locus Inheritance Phenotype Clinical Synopsis (skeletal)

17q22 Noggin Autosomal dominant Proximal symphalangism 1A Joint fusion
Proximal interphalangeal joint synostoses
Distal interphalangeal joint synostoses 
(occasional)
Carpal and tarsal bone fusion

20q11.22 Gdf5, CDMP1, 
SYNS2, 
OS5,BDA1C, 
SYM1b

Autosomal dominant Proximal symphalangism 1B Joint fusion
Distal interphalangeal joint fusions
Flat feet
Absence of the cuboid bone
Bone fusion (proximal/middle phalanges)

3p24.1 Tgfbr2 Loeys-Dietz syndrome type 2 
(formerly, Marfan syndrome 
type 2)

Joint laxity
Osteoporosis (some patients)
Low-impact fractures
Arachnodactyly
Camptodactyly
Brachydactyly
Contractures

1p13-p11 Notch2 Autosomal dominant Hajdu-Cheney syndrome Joint laxity
Short stature
Osteopenia
Osteoporosis
Pathologic fractures
Acroosteolysis

8q12.1 Jaws/Impad1 Autosomal recessive Chondrodysplasia with joint 
dislocations, GRAPP type

Joint dislocations
Shortening and deformity of the limbs
Brachydactyly
Longitudinal splitting of the proximal phalanx of 
forefinger
Splitting of the first metacarpal in two parts
Short stature

8q24.11 Ext1 Autosomal dominant Multiple cartilaginous exostoses, 
type 1

Cartilaginous protuberances at ends of long 
bones
Short metacarpal
Exostoses in juxtaepiphyseal regions of long 
bones
Genu valgum
Madelung-like forearm deformities
Bilateral overriding of single toes

3q13.33 Hgd Autosomal recessive Alkaptonuria (AKU) Ochronotic pigmentation of connective tissue
Ochronotic arthritis
Ochronotic arthropathy
Chronic joint pain
Degeneration of intervertebral disks
Fusion of vertebral bodies
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