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Abstract

There is renewed interest in hepatitis A virus (HAV) pathogenesis and immunity after 2–3 decades 

of limited progress. From a public health perspective, the average age at infection has increased in 

developing countries, resulting in more severe hepatitis that is poorly understood mechanistically. 

More fundamentally, there is interest in comparing immunity to HAV and hepatitis C virus 

(HCV): small, positive-strand RNA viruses with very different infection outcomes. Here, we 

review evidence that circulating HAV virions are cloaked in membranes, with consequences for 

induction of innate immunity and antibody-mediated neutralization. We also consider the 

contribution of CD4+ helper versus CD8+ cytotoxic T cells to antiviral immunity and liver injury, 

and present a model of non-cytotoxic immune control of HAV infection.

Introduction

Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the family 

Picornaviridae. A prominent cause of fecal-orally transmitted acute viral hepatitis (Figure 1) 

and prevalent where sanitation is poor, it was first visualized in 1973 by immune electron 

microscopy in the feces of human volunteers [1]. Only a single HAV serotype exists, and it 

has never been shown to establish longterm persistent infections. Interest in HAV peaked in 

the late 1980s, but then declined with introduction of successful formalin-inactivated 

vaccines and the discovery of hepatitis C virus (HCV). HCV, also a positive-strand RNA 

virus (family Flaviviridae), has a striking capacity to establish persistence and strong 
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association with chronic hepatitis, progressive hepatic fibrosis and liver cancer – clinical 

outcomes never linked to HAV. However, recent years have marked a resurgence of interest 

in HAV, sparked in part by the desire to understand these different infection outcomes. 

Many potential explanations have been advanced [2], but the mechanisms underlying HCV 

persistence remain elusive. Contrasts in the host response to HAV and HCV that are now 

emerging may provide important clues to this mystery. Recent studies have brought to light 

several unexpected aspects of the innate and adaptive immune response to HAV, and 

revealed paradigm-breaking features of HAV structure and the HAV lifecycle. Here, we 

review these recent developments and outline the questions they pose for future 

investigations.

Structure of the infectious HAV particle

While the organization of the HAV genome resembles other picornaviruses (Figure 2), 

recent crystallographic studies show the capsid to be intermediate in structure between that 

of ‘primitive’ insect dicistroviruses and mammalian picornaviruses such as poliovirus [3]. 

Although it was recognized that the HAV structure must differ from other picornaviruses 

given its impressive physical stability and a distinct morphogenesis pathway [4,5], the 

degree of difference comes as a surprise and indicates that HAV diverged from other 

picornaviruses eons ago. The capsid is also generally devoid of the surface topology that 

provides binding sites for cellular receptors on other picornaviruses [3], raising questions as 

to how HAV enters cells.

Even more surprising is the discovery that HAV is released from infected hepatocytes 

cloaked in host membranes and thereby hidden from neutralizing antibodies [6]. These 

membrane-wrapped virions (‘eHAV’) (Figure 2) are infectious and possess key attributes of 

conventional enveloped viruses, including loss of infectivity upon extraction with organic 

solvents. The membrane cloaking the virus is not decorated with virally-encoded 

glycoproteins, however, providing an important distinction and leading us to consider these 

eHAV virions to be “quasi-enveloped” [7]. While the largest of the 4 capsid proteins, VP1, 

is 274 amino acid residues in length in ‘naked’, non-enveloped HAV virions, it has an 8 kDa 

carboxyterminal extension (pX, also known as 2A) and is approximately 71 residues longer 

in eHAV (VP1-pX) [6]. pX is unrelated to any other known protein. It plays a critical role in 

capsid assembly and likely eHAV envelopment, but is cleaved from the capsid upon loss of 

the membrane [5,6].

The biogenesis of quasi-enveloped eHAV particles is dependent upon ALIX and VPS4B [6], 

components of the cellular endosomal sorting complex required for transport (ESCRT) 

commonly involved in budding of conventional enveloped viruses [8]. ALIX appears to bind 

tandem YPX3L ‘late domains’ in VP2 [6]. Although confirmatory ultrastructural data are 

lacking, this likely promotes the budding of assembled capsids into multivesicular bodies 

(MVBs), leading to eHAV envelopment and a release mechanism resembling exosome 

biogenesis [9]. Since the VP2 late domains are buried beneath the surface of the naked 

capsid in the X-ray structure [3], the capsid appears to undergo significant conformational 

rearrangement upon membrane dissolution and loss of pX.
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Only quasi-enveloped eHAV is detected in serum and plasma during acute infection, 

whereas non-enveloped virions are shed in feces [6]. While not well understood, these naked 

virions are probably produced in the liver and secreted in bile. They may be released from 

hepatocytes as eHAV, but converted to naked virions in the proximal biliary canaliculus 

where local bile salt concentrations could be sufficient to dissolve the membrane [10]. 

However, available data do not exclude an intestinal source [11]. The non-enveloped virion 

is remarkably stable to heat, low pH, and drying, facilitating viral transmission [3,4]. This 

dual lifestyle, quasi-enveloped and cloaked from neutralizing antibodies within the host 

while devoid of membranes and stable in the environment, provides unique opportunities for 

spread within and between hosts.

Cellular entry of eHAV occurs via a chloroquine-sensitive endocytic pathway distinct from 

entry of non-enveloped virions [6]. Entry of both virion types is dependent upon the 

phosphatidylserine receptor, T cell immunoglobulin and mucin domain-1 (TIM-1, also 

referred to as HAVCR1), but little else is known about this. Important questions that remain 

unresolved is how the eHAV membrane alters cellular tropism, and whether a distinct 

receptor is involved in eHAV entry.

Innate and cell-intrinsic immune responses

Type 1 interferon (IFN-α/β) is both a first line of defense against viruses and important in 

optimal priming of subsequent adaptive cellular immunity. HAV evokes a minimal 

intrahepatic type I IFN response in chimpanzees, far less quantitatively than that observed in 

acute HCV infections (Figure 3) [12]. Despite this, intrahepatic viral RNA is 100- to 1000-

fold more abundant in acute HAV versus HCV infection. There are several possible 

explanations for these differences. Both viruses express proteases that cleave MAVS and 

TRIF, key adaptor proteins in RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) 

signaling, respectively. This represents an interesting example of convergent evolution, as 

the responsible HAV proteases, 3ABC and 3CD [13,14], are structurally and 

phylogenetically unrelated to the HCV protease, NS3/4A [15]. However, the mature HAV 

protease, 3Cpro, also cleaves NEMO, a bridging adaptor required for NF-κB activation and 

IFN-β expression [16]. The targeting of NEMO by HAV may provide an additional level of 

disruption in interferon signaling beyond that imposed by HCV, possibly contributing to less 

interferon-stimulated gene (ISG) expression in hepatitis A.

Differences may also exist in the plasmacytoid dendritic cell (pDC) response to these 

infections. pDCs are activated and produce IFN through a TLR7 pathway when placed in 

co-culture with HCV-infected cells [17]. Although they do not sense some picornaviruses 

unless the virus is complexed with antibodies [18,19], they do produce substantial amounts 

of IFN-α when co-cultured with HAV-infected cells [20]. pDCs preferentially take up quasi-

enveloped eHAV virions, which stimulate IFN production in the absence of genome 

replication. pDCs sense HCV RNA carried as cargo from infected cells by exosomes [21], a 

mechanistically similar process since eHAV resemble exosomes and may share a similar 

biogenesis. A key difference between HAV and HCV, however, may be in how pDCs are 

recruited to the liver. In chimpanzees, numerous pDCs are present within the liver by the 

end of the first week of HAV infection (Figure 1) [20]. For unknown reasons, they disappear 
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and cannot be detected at the peak of virus replication and acute inflammation 2–3 weeks 

later. Less is known about temporal aspects of the pDC response in HCV infection, but 

pDCs appear to be abundant in chronically infected livers where ISG expression is often 

strong [22].

HCV may also replicate less efficiently than HAV, resulting in lower expression of HCV 

proteins and therefore less efficient antagonism of IFN signaling. HCV is exquisitely and 

uniquely sensitive to oxidative membrane damage, whereas HAV is not [23]. Because HCV 

infection induces oxidative stress, an auto-regulatory circuit unique to HCV may ensure that 

replication is maintained at low levels within the liver.

Adaptive Immunity and Control of HAV Infection.

HAV-specific humoral and cellular immune responses typically appear 4–5 weeks after 

infection with the onset of hepatitis (Figure 1). Increased numbers of plasmablasts secreting 

IgM with a variety of specificities are present at this point in time [24], but this rapidly 

transitions to a neutralizing IgG response that provides life-long protection from hepatitis A 

[25]. Passive transfer of anti-HAV antibodies or vaccination up to two weeks after exposure 

to the virus can prevent liver disease [26], indicating that antibodies also have the potential 

to modulate the course of an established infection. Neutralizing antibodies recognize a small 

number of closely-positioned epitopes in the highly conserved VP1, VP3 [27] and possibly 

VP2 [3] capsid proteins.

Non-enveloped HAV are readily neutralized when pre-treated with antibodies before 

inoculation onto cultured cells [28], and thus it has been assumed that immunization or 

immune globulins protect against disease by neutralizing circulating virus. However, quasi-

enveloped eHAV virions (the only virion type found in blood) are completely resistant to 

neutralization in classical infectious focus-reduction assays since the membrane effectively 

cloaks the capsid [6]. Despite this, replication is inhibited when anti-capsid antibodies are 

added to cells several hours after eHAV infection [6]. Neutralization probably occurs within 

late endosomes or lysosomes, where the membrane is likely to be removed and the capsid 

exposed during entry of the virus. The kinetics of such post-endocytic neutralization suggest 

that eHAV entry is relatively slow, requiring 4–6 hours for dissolution of the membrane. In 

contrast, antibodies have no effect when added even immediately after infection of cells 

with non-enveloped HAV [6].

HAV-specific cytotoxic CD8+ T cell responses were first described in the blood [29] and 

liver [30] of jaundiced patients with acute hepatitis A 25 years ago. Since the icteric phase of 

infection typically coincides with a sharp decline in viremia, this CD8+ T cell response was 

correlated kinetically with control of virus replication (Figure 1). The detection of cytotoxic 

CD8+ T cells during this acute phase of the infection was also consistent with liver injury 

being immune mediated, since robust virus replication occurs during the preceding 2–3 

week prodromal period without liver disease. However, a series of recent studies have 

provided fresh insight into cellular immune responses using newer methods for more precise 

measurement of T cell frequency and function. Epitopes presented by defined class I 

epitopes were mapped in human subjects infected during a recent hepatitis A outbreak [31]. 
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Whereas CD8+ T cells targeting these epitopes were successfully expanded from blood of 

patients with acute HAV infection, most circulating CD8+ T cells were present at 

frequencies too low for direct visualization with class I tetramers. Effector functions were 

not assessed. A survey of CD4+ helper and CD8+ cytotoxic T cell activity was also 

undertaken in two chimpanzees with relatively mild transient hepatitis 3–4 weeks after 

experimental challenge [32]. In that study, CD8+ T cells were visualized in blood with class 

I tetramers, but they targeted few epitopes and did not gain effector functions until after 

viremia and hepatitis had substantially declined (Figure 1). On the other hand, multi-

functional HAV-specific CD4+ T cells targeting over 30 discrete class II epitopes appeared 

in blood at much higher frequency well before CD8+ T cells were detected. Control of 

viremia was more closely linked to expansion of functional CD4+ T cells than CD8+ T cells 

[32]. The frequency of HAV-specific CD4+ T cells declined very slowly in blood after 

termination of viremia and fecal shedding of virus. Slow contraction of CD4+ T cells 

paralleled gradual clearance of HAV RNA from the liver over 8–9 months [12,32]. While 

the continued presence of intrahepatic HAV RNA for such a long period of time was 

unexpected, it is consistent with a role for residual viral antigen in prolonging CD4+ but not 

CD8+ T cell contraction as described recently in lymphocytic choriomeningitis virus 

(LCMV)-infected mice [33].

While the detection of CD8+ T cells in patients with acute hepatitis A provided an early 

conceptual framework explaining both acute liver injury and immune control of HAV 

(Figure 4, left panel), liver injury can range from inapparent to severe (even fatal) in acute 

HAV infection. This suggests that cytotoxic CD8+ T cell activity is likely to be a variable 

feature in hepatitis A. More recent studies of patients infected during a recent nationwide 

epidemic of hepatitis A in South Korea established an inverse correlation between the 

frequency and function of regulatory T cells (Treg) in blood and the severity of liver injury 

as reflected by increases in in serum alanine aminotransferase (ALT) [34]. The frequency of 

circulating HAV-specific CD8+ T cells did not correlate with Treg activity [34], raising 

questions about the identity of effector cells that mediate immunopathology. Little is known 

about the role of NK and NKT cells in this infection. Moreover, the potential for HAV to 

modulate NKT cell cytotoxic activity [35] as well as Treg function [36] through direct 

interaction of the viral capsid with the TIM-1 receptor highlights the complexity of host 

virus-interactions in this infection.

Conclusion: Towards a more flexible model of HAV immunity and 

pathogenesis

The new findings summarized above demand a rethinking of the relationships between 

innate and adaptive immune responses and acute liver injury, as well as immune elimination 

of HAV. A new model might place less emphasis on cytotoxic elimination of HAV-infected 

hepatocytes by CD8+ T cells, particularly if the delay in acquisition of effector function 

observed in chimpanzees [32] is recapitulated in future studies of human subjects (Figure 4, 

right panel). A defect in early antiviral effector function by CD8+ T cells is probably not 

caused by an absence of help because CD4+ T cells in the HAV-infected chimpanzees 

produced IL-2, IL-21, and IFN-γ [32]. Interference with class I antigen processing and 
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presentation has been described for other picornaviruses [37], but the relevance of this to 

generation of CD8+ T cell immunity in HAV infection remains to be determined. Weak type 

I IFN responses in the liver [12] might also dampen CD8+ T cell immunity as this cytokine 

delivers an important differentiation signal in some virus infections. As discussed above, 

more needs to be learned about the fate of pDCs in the acutely infected liver in order to 

better understand the paucity of type I IFN responses and how it might limit development of 

CD8+ T cell responses.

The concept that CD4+ T cells provide direct control of virus infections through production 

of antiviral cytokines is gaining favor [38]. Non-cytotoxic control of virus replication by 

CD4+ T cells could be a general mechanism for terminating HAV infection regardless of 

CD8+ T cell activity. CD4+ T cells could also have a protective role in the post-

convalescent phase of infection, when HAV RNA genomes are gradually lost from liver. 

Clinical relapse associated with apparent recrudescent infection after the initial resolution of 

symptoms of hepatitis A [39], and prolonged presence of HAV RNA in serum of some 

adults [40], suggests the existence of a non-cytotoxic mechanism of immune surveillance 

that is effective in most infections. CD4+ T cells, that contract gradually after apparent 

resolution of infection [32], could serve this function. However, the persistence of viral 

RNA in the liver for months after the cessation of fecal shedding [12] remains to be 

explained. One interesting possibility is that virions may remain complexed to neutralizing 

antibodies within endolysosomes.

Finally, despite its major fecal-oral route of transmission, the role of the gut as a site for 

HAV replication and perhaps as a regulator of immune responses to the virus has received 

insufficient attention [41]. Early studies in owl monkeys suggest HAV may replicate in the 

lower gastrointestinal tract [11], but this has never been confirmed in humans. Local 

inflammatory signals elicited by even limited replication of HAV in the gut could 

substantially influence the nature of immunity and disease severity in liver [41].

A better understanding of HAV pathogenesis and immunity could provide general insight 

into mechanisms of immune evasion and control of other viruses that infect the liver, 

including HCV. A focus on human subjects who are infected as a result of sporadic and 

epidemic spread of the virus provides one path forward. However, there is a need for a 

renewed effort to better characterize non-human primate models of hepatitis A and perhaps 

even the adaptation of HAV to replication in rodents to facilitate access to tissue and 

experimental manipulation of immune responses.
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HIGHLIGHTS

• Circulating virions are cloaked in membranes and resistant to neutralization

• Acute HAV infection induces a meager intrahepatic type I interferon response

• CD4+T cells appear earlier and acquire effector function before CD8+ T cells

• Immune control of HAV may be predominantly non-cytotoxic and cytokine 

driven
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Figure 1. 
Virologic and immunologic events during acute HAV infection in a chimpanzee inoculated 

intravenously with wild-type HAV [12,20,32]. Working from the bottom up, the lowest 

panel shows the presence of viral RNA (GE, genome equivalents) in serum (GE/ml), feces 

(GE/gm), and liver tissue (GE/µg total RNA) in relationship to serum alanine 

aminotransferase (ALT) activity shown in the shaded zone [12]. The prolonged persistence 

of intrahepatic HAV RNA is surprising. The panel immediately above shows total anti-HAV 

antibody (% blocking in a competitive ELISA assay) and IgM anti-HAV (ELISA O.D.) 
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[12]. The next two panels show frequencies of HAV-specific CD4+ and CD8+ T cells 

among peripheral blood mononuclear cells, as determined in an IFN-γ intracellular staining 

(ICS) assay [32]. CD8+ cells were also quantified on the basis of staining with tetramers 

targeting epitopes in pX, 2B, and 3Dpol (see Figure 2). Note the difference in scale between 

CD4+ and CD8+ T cell frequencies. The top panel shows type I IFN responses to HAV 

infection as reflected in minimal and only early serum IFN-α levels detectable by cytokine 

ELISA, and minimal increases in intrahepatic expression of IFN-stimulated genes: IFIT1 

and ISG15 [12]. pDCs were detected in liver tissue only at 1 week after viral challenge 

(arrow) [20]. (The authors gratefully acknowledge the essential involvement of Dr. Robert 

Lanford in these comprehensive chimpanzee studies.)
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Figure 2. 
Schematic showing organization of the 7.5 kb single-stranded, positive-sense RNA genome 

of HAV. The 2227 amino acid residue polyprotein is comprised of both structural and 

nonstructural proteins, and is flanked by 5. and 3. untranslated RNA segments containing 

regulatory elements. Below are shown electron microscopic images of gradient purified 

quasi-enveloped eHAV (panels i–iv) and naked, non-enveloped HAV (panel v) released 

from infected hepatoma cell cultures. (Reproduced with permission from Feng et al. Nature 

2013, 496:367–371).
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Figure 3. 
Comparison of maximum intrahepatic and serum viral RNA abundance and interferon-

stimulated gene (ISG15) expression in acute, resolving HAV (n = 3) and HCV (n = 8) 

infections in experimentally infected chimpanzees. Differences in intrahepatic genome copy 

numbers (p=0.01) and ISG expression (p=0.01) were significant by two-sided Mann-

Whitney test. Adapted from Lanford et al. [12].
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Figure 4. 
Proposed cellular interactions in the liver during acute hepatitis A. HAV infection of the 

liver is thought to be non-cytopathic, resulting in release of quasi-enveloped virions from the 

basolateral plasma membrane of hepatocytes into the circulation and apical release of virus 

into the biliary system resulting in fecal shedding of naked HAV virions [6]. Contact 

between infected hepatocytes and plasmacytoid dendritic cells (pDC) results in transfer of 

eHAV to pDCs and signaling for production of type I IFN [20], a cytokine important to 

development of adaptive cellular immune responses. Cytotoxic cells, including virus-

specific CD8+ T cells, NK cells, and NKT cells, have been implicated in acute 

hepatocellular injury during HAV infection. Liver damage can range from mild and 

inapparent, to severe and fatal, and may be regulated in part by the strength of the innate 

immune response, including type I IFN production by pDC. We propose that non-cytotoxic 

control of HAV replication is a central feature of infection and immune control of the virus 

regardless of disease severity. CD4+T helper cells are a potential source of antiviral 

cytokines because they appear in blood and acquire effector function earlier than CD8+ T 

cells [32], as shown in Figure 1. A primary site of virus replication within the gut after per-
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oral infection with the virus, or secondary to shedding of virus from the liver, remains 

speculative but could influence infection and immunity in the liver.
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