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Abstract
There has been significant recent progress in the computational design of protein interactions
including the creation of novel heterodimers, homodimers, nanohedra, fibril caps and a protein
crystal. Essential to these successes has been the use of innovative strategies for finding binding
modes that are achievable, i.e. identifying binding partners and docked conformations that can be
successfully stabilized via sequence optimization and backbone refinement. In many cases this has
involved the use of structural motifs commonly found at naturally occurring interfaces including
alpha helices inserted into hydrophobic grooves, beta-strand pairing, metal binding, established
helix packing motifs, and the use of symmetry to form cooperative interactions. Future challenges
include the creation of hydrogen bond networks and antibody-like interactions based on the
redesign of protein surface loops.

Introduction
Engineering of protein-protein interactions can generate pair-wise complexes, multi-
component complexes, and interaction networks with extensive structural and functional
diversity. Practical applications for designed interactions are numerous and include the
creation of competitive inhibitors, affinity reagents, biosensors, scaffolding molecules and
nanomaterials [2-20].

Directed evolution methods and selection strategies such as phage display are effective for
generating new target-binding interactions using antibody scaffolds [21] and non-antibody
scaffolds [22], and binders identified with these approaches have shown promise in clinical
trials [23]. Computational interface design is an alternative approach that is currently not as
robust as experimental selection and screening, but offers precise control of binding location
and binding mode and can be applied to design goals that are more difficult for selection
technologies such as homomeric assemblies, arrays, fibril caps, and multi-specificity.
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Methods in computational protein design have been used to redesign the affinity and
specificity of naturally occurring interactions [24-27] as well as create new interactions from
scratch (Figure 1, Table I). This review focuses on novel interfaces that have been designed
in the last two years. In most cases, new interactions have been created by mutating the
amino acids on the surfaces of naturally occurring proteins so that favorable interactions
occur upon formation of the target complex. In these simulations there are three possible
degrees of freedom, the relative rigid-body orientation of the proteins, the backbone
conformation of residues at the interface, and the amino acid sequence of the interacting
residues [28]. Sequence optimization is typically performed with rotamer-based side-chain
sampling methods such as simulated annealing or dead end elimination [29,30]. In most
studies, backbone sampling has not been performed or only small perturbations have been
allowed. Accurate remodeling of the protein backbone is a challenging goal in its own right.
As a more conservative approach for allowing alternative backbones at the interface, several
methods computationally consider a large set of proteins as the template for interface design.

Despite continued improvements in conformational searching and energy evaluation,
interface design remains an imposing challenge due to limitations in these two areas [31]. In
particular, the design of interfaces that make use of cooperative hydrogen bonding networks
has been especially challenging. As a result, successful designs have relied on carefully
chosen strategies in which a desired high-probability binding mode limits the
conformational search and is somewhat robust to inaccuracies in energy calculations. Here
we review the emerging strategies for designing a desired binding mode (Figure 2).

Helix in a known binding groove
An alpha helix docked in a hydrophobic groove is a favorable scenario for interface design
[12,32,33]. Overall shape complementarity of a helix for a concave groove guides the
binding orientation and avoids the error-prone challenge of designing polar contacts from
scratch.

As a prominent example, broad inhibition of influenza viral fusion [6] was accomplished
starting with computational methods to bind the hydrophobic groove in the conserved stem
region rather than the variable head domain of hemagglutinin [32]. The first design step
positioned disembodied hydrophobic side chains at the target stem to serve as hotspots, and
the second design step docked protein scaffolds to connect these disembodied hotspot side
chains. By building outwards from native-like and de novo hydrophobic side-chain hotspots,
two moderate-affinity binders for hemagglutinin were produced (Kd > 5 μM), and the
crystal structure of an affinity-matured variant demonstrated high accuracy in the intended
binding location and orientation [32].

Secondly, the C-terminal coil region of the GoLoco peptide binds a hydrophobic groove in
the heterotrimeric G-protein alpha subunit (Gαi1), and this peptide coil was redesigned to
form a helix and bind the same hydrophobic groove. Rather than start from side-chain
hotspots, this study used simultaneous backbone design by fragment insertion and sequence
design of the GoLoco peptide. Binding of the redesigned helix was ~2-fold weaker than the
native coil, but the crystal structure demonstrated accurate backbone and side-chain
positions [33].

High-order symmetry (O, T, C6, D2)
High-order symmetry helps specify a binding orientation because off-target binding modes
are unlikely to be compatible with cooperative symmetric assembly. Also, high-order
symmetry enables design of large complexes using a small number of designed contacts.
The first approach to design a large nanocage used native dimers and trimers fused by a
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rigid helix [34,35]. Building on this result, instead of using a rigid linker, a designed
interface was used as the rigid connection between native oligomers. In this study, the outer
surfaces of native trimers were redesigned to self-associate and accurately form a 24-mer
octahedron and a 12-mer tetrahedron. These large nanohedra resulted from one designed
protein interface with mostly hydrophobic interactions [17].

Hydrophobic shape complementarity in a symmetric system was also used to design a
hexameric channel. Classical coiled-coils feature core hydrophobic side-chain interdigitation
and peripheral electrostatic complementarity, but surprisingly, a six-membered classical
coiled-coil had not been previously observed. Inspired by an approach of hydrophobic
expansion [36], a designed coiled-coil tetramer was mutated (peripheral lysines to alanines)
to modulate the symmetric hydrophobic complementarity and produced a hexameric
channel-forming assembly [37].

Strand pairing
Hydrophobic contacts will usually need help from polar contacts to specify a desired binding
mode. Strand pairing is an effective strategy to generate new polar contacts – it provides
cooperative formation of multiple hydrogen bonds to specify binding orientation, and these
backbone-backbone hydrogen bonds avoid the entropy loss of side-chain hydrogen bonds.
The following two studies combine strand pairing with hydrophobic side-chain
interdigitation.

Amyloid fibrils are associated with human disease and can form via repeating strand-strand
interactions. To cap and inhibit amyloid fibril formation, short peptides were designed to
form beta-strand hydrogen bonds and interdigitating hydrophobic side-chain interactions at
the fibril end. A designed D-peptide inhibited fibril formation by the tau peptide of
Alzheimer’s disease, and a designed noncanonical L-peptide inhibited fibril formation by a
PAP peptide fragment associated with HIV transmission. Strand pairing was a central design
element, and the specific side-chain interactions were critical for binding in both cases [7].

Secondly, a monomeric protein with a surface-exposed beta strand was redesigned to form a
symmetric beta-strand-mediated homodimer. To supplement the strand pair, side chains
were designed to form mostly polar or mostly hydrophobic interactions. The successful
design (Kd = 1 μM) had hydrophobic side-chain interactions. A crystal structure revealed
highly accurate positioning of the strand-pair atoms and highly accurate binding orientation,
with mostly accurate positioning of the hydrophobic side chains. Thus, the strand-strand
polar contacts were primarily responsible for the high accuracy of the overall binding
orientation, and the interdigitating hydrophobic side chains were critical for binding [38].

Metal binding
Metal binding is another strategy for generating new polar contacts – metal coordination
geometry is well-defined and coordination bonds are stronger than hydrogen bonds. Metal
binding sites and a small hydrophobic protein interface were designed together to achieve
high affinity and a predetermined binding orientation. In the absence of metal, an
unanticipated binding orientation was observed, highlighting the importance of polar
contacts to govern the binding mode. Addition of zinc improved affinity by >100-fold and
recovered the intended binding orientation [39]. As evidenced in this study and other zinc-
binding studies [20,40], a three-His one-Asp/Glu motif is favored over a four-His zinc
coordination motif.

As another example of metal cofactor-mediated protein assembly, multi-heme arrays in a
helix bundle were designed with the goal of artificial electron transport through a
membrane. A previous method for designing water-soluble multi-porphyrin binding helical
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bundles [41] was extended to design porphyrin proteins in a membrane (PRIME) [42]. In
this study, two FeIII diphenyl porphyrins were coordinated by a bis-histidine motif with
second-shell threonine hydrogen bonds from helices arranged in a tetrameric bundle with D2
symmetry. This approach combined classic coiled-coil side-chain motifs, metal
coordination, and symmetry to govern complex formation. Similar methods have also been
used to achieve selective binding of an artificial porphyrin chromophore [43].

Super-helix and helix glycine motifs
Two types of helical interaction motifs were used to design a predetermined protein crystal
lattice in the P6 space group. Crystal lattices in the rarely observed P6 space group feature
planar layering. Contacts between layers were formed by a stacking helix-to-helix end-to-
end interaction – this pseudocontiguous “super helix” crystal contact required N-terminal
acetyl and C-terminal amide groups and was derived from the previously observed P321
crystal lattice of the original three-helix bundle design [44]. Contacts across a layer were
formed by GxxxG helical glycine interactions for helix association with tight packing and a
predictable crossing angle [45]. This is the first example of a de novo designed protein
crystal.

Hexameric helical assemblies coating carbon nanotube surfaces were also designed using a
superhelical motif. The second major feature was the use of repeating alanine or glycine
residues to interact with the repeating depressions in 6-membered carbon ring centers of the
nanotube surface. The peptide was labeled with gold particles to generate TEM images to
confirm a patterned array of protein coating the nanotube. Nanotube binding is not amenable
to crystallization, but a crystal structure of a tetrameric form of the designed protein showed
repeating hydrophobic and polar side-chain interactions between adjacent helices [16].

Thirdly, non-natural beta peptides were designed to form beta helices that bind an alpha
helical transmembrane domain. The designed beta helices featured outward-facing apolar
residues with lysine and tryptophan residues near the lipid headgroup region. A GxxGxxG
motif in the designed beta-helix was used to target a GxxxG motif in the target
transmembrane helix [46].

Electrostatic patterning of coiled coils
Electrostatic patterning in coiled-coils was used in some of the studies already discussed
[37,45], but this feature is most prominent in a designed interaction that inhibits a bZIP
transcription factor called BZLF1 [8]. The BZLF1 transcription factor homodimerizes (A:A)
to bind DNA, so the designed competitive interaction (A:B) inhibits transcription. Given the
structural similarity of the inhibitor and target, inhibitor designs are likely to homodimerize
(B:B) and lose potency, so self-association of these inhibitory peptides was explicitly
disfavored. The method combined experimental data from known bZIP coiled-coils,
physics-based calculations, and machine learning to generate a primary sequence scoring
function for rapid design with multi-specificity [47]. The best sequences for BZLF1 binding
featured charge-charge repulsions that disfavored B:B homodimerization and charge-charge
attractions that favored A:B complex formation [8].

Hydrogen bond from an aromatic sidechain
Although it is a challenging design goal, side-chain hydrogen bonds can be used as hotspots.
In two-sided design of a de novo binding pair, tyrosine and tryptophan residues were
intended to simultaneously form aromatic/hydrophobic hotspots and a hydrogen bond [48].
One designed pair bound tightly (Kd = 120 nM). Structure determination of an affinity-
matured variant revealed that the actual binding orientation was flipped 180° compared to
the model, and that the tryptophan hotspot did not form. However, the tyrosine hotspot at the
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center of the interface did form and was the pivot point between the actual and intended
binding orientation, suggesting that the intended tyrosine interaction motif was a strong
hotspot.

Grafting: scaffold redesign to accommodate known interface contacts
The hotspot side chain design strategy [32,48-50] is similar in spirit to a side-chain-only
grafting strategy previously used to generate a new binding pair [51]. A more recent strategy
grafted backbone and side-chain epitopes from HIV for possible applications in vaccine
development. Grafting of 6- to 11-residue linear epitopes required aggressive computational
backbone sampling and resulted in successful binders [3]. Additionally, a discontinuous
epitope – two segments from HIV gp120 – were grafted onto an unrelated scaffold, and
computationally-guided directed evolution generated a high-affinity binder that
demonstrated close mimicry in one epitope and partial mimicry in the second epitope [4].
Interestingly, grafting studies [3,4,52] take atomic-level binding motifs directly from native
interactions but are still susceptible to atomic-level inaccuracies, highlighting the challenge
of accurately designing new interactions from scratch.

Conclusions
There are many routes to engineering new protein complexes, including redesign of native
interfaces, directed evolution, genetic fusion, and empirical approaches (Table I). This short
review emphasizes computer-based de novo interface design with a desired orientation. In
the past two years, the field of protein interface design has advanced significantly. However,
despite many new successful designs, a low success rate [1] burdens the experimental stage
and calls for high-probability binding modes that can overcome current limitations in the
conformational search and energy evaluation. So far, these strategies and binding modes
include: helices in hydrophobic grooves, side chain interdigitation, high-order symmetry,
strand pairing, metal binding, glycine-mediated helix crossing, coiled-coil electrostatic
patterning, hydrogen-bonding aromatic sidechains, grafting of native interface fragments,
and fusion of native proteins. Interfaces containing loops are common in nature [53] and
directed evolution studies [54], but they have not yet been designed computationally due to
many challenges: loop conformations are challenging to predict, loop flexibility results in
entropic penalty upon binding, loops require backbone and side-chain polar atoms to have
their hydrogen bonding potential satisfied, and this design goal would require simultaneous
design of the scaffold backbone and interface contacts. Additionally, a hydrogen bond
network has not yet been a major component of a de novo designed interaction, in part due
to side-chain flexibility and the penalty for desolvating side-chain polar atoms. Designing
these and other challenging types of interfaces will require continued improvements in
conformational searching, energy evaluation, and experimental throughput, as well as
continued innovation of strategies to control the binding mode.
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Inset

Currently, the major challenge in protein interface design is generating polar contacts [1].
While successful de novo interface designs to-date are predominantly hydrophobic, polar
contacts are often required for monomer solubility and binding specificity. Successful
strategies for designing hydrophobic and polar contacts have been:

Hydrophobic binding strategies:

• Helices in binding grooves

• High-order symmetry/avidity

• Side chain interdigitation

• Helix crossing at glycine residues

Polar binding strategies:

• Strand pairing

• Helix stacking

• Metal binding

• Electrostatic patterning (coiled-coils)

• Tyrosine hotspots

• Grafted backbone and side-chain motifs
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Highlights

• Many computationally designed protein-protein interactions were reported over
the past two years.

• Recent design goals include heterodimers, homodimers, homooligomers, fibril
caps, and arrays.

• Diverse polar and nonpolar interaction motifs can control the binding
orientation.

• Crystal structures show accurately designed interactions compared to atomic
level predictions.

• Loops and hydrogen bond networks are outstanding interface design challenges.
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Figure 1. Types of protein complexes designed using computational methods
Target binding [32]: a helical scaffold (red) redesigned to bind the stem region of influenza
hemagglutinin (white). Two-sided design [48]: redesigned scaffolds were ankyrin repeat
protein (gray) and a coenzyme A binding protein (PH1109, white), interface contacts in red.
Cofactor-mediated binding [39]: A helical hairpin designed for zinc-mediated
homodimerization. Histidine residues (sticks) coordinate zinc (spheres). Homodimer [38]:
the γ-adaptin appendage domain – a monomer with an exposed beta strand – redesigned to
allow intermolecular beta-sheet formation. Nanohedra [17]: a native trimer (red) redesigned
to form an octamer of trimers, a 24-mer octahedron. P6 crystal lattice [45]: a previously
designed coiled-coil homotrimer modified to form a predetermined crystal lattice in a rare
space group, P6.
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Figure 2. Types of interaction motifs used in de novo designed protein interactions
Known groove: influenza hemagglutinin binding (left), Gαi1 binding (right). High-order
symmetry: a trimer redesigned to form a 24-mer octahedron (left), a coiled-coil tetramer
mutated to form a coiled-coil hexamer (right). Beta-strand: a monomer redesigned to form
a strand-mediated homodimer (left), amyloid fibril formation inhibited with a designed
binding peptide (right). Metal coordination: a monomer redesigned to form a zinc-
mediated homodimer (left), a stepwise process converted a crystal-contact tetramer to a
solution-phase tetramer by placing histidines at crystal contacts. Subsequently, the zinc-
mediated tetramer was improved by computational design (right). Aromatic and hbond
hotspot: tyrosine was used to form a hydrophobic and hydrogen bonding hotspot interaction
with a preordered aspartate side chain in a hydrophobic pocket. Grafting: discontinuous
side-chain and backbone interaction motifs from a known antibody-antigen pair were grafted
onto an unrelated scaffold. Superhelix and glycine crossing: a previously designed and
crystallized coiled-coil trimer was redesigned to form superhelix stacking interactions and
helical glycine crossing interactions, generating the intended honeycomb-like P6 crystal
lattice.
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Table I
Summary of recent computer-based designed interactions

Goal Strategy System PDB codes Ref

Interface de novo design

Target binding Known hydrophobic groove, hotspots Hemaglutinin 3R2X [32]

Target binding Known hydrophobic groove GoLoco peptide, Gαil 2XNS [33]

Target binding Known hydrophobic groove PAK1 [12]

Target binding, multi-
specificity

Dataset-driven scoring of coiled-coils bZIP coiled-coil [8]

Fibril inhibition Strand pairing and hydrophobic sidechains Tau and PAP fibrils [7]

Two-sided design Aromatic sidechain hydrogen bond Ankyrin and PH1109 3Q9U, 3Q9N, 3QA9 [48]

Homodimer Strand pairing and hydrophobic sidechains Native monomer 3ZY7 [38]

Homodimer Metal binding and hydrophobic sidechains Native monomer 3V1A, 3V1B, 3V1C,
3V1D, 3V1E, 3V1F

[39]

Heterotetramer Nonnatural zinc chromophore Heterotetramer coiled-coil [43]

Transmembrane
targeting

GxxGxxG motif in a beta helix Beta-peptide [46]

Transmembrane Porphyrin binding Four-helix bundle [42]

Octahedron, 24-mer Hydrophobic sidechains, hydroxyl hbonds Native trimer 3VCD, 4DDF [17]

Tetrahedron, 12-mer Hydrophobic sidechains Native trimer 4EGG, 4DCL [17]

Nanotube coating Helix Ala/Gly interaction with carbon ring Coiled-coil hexamer 3S0R [16]

Array, P6 crystal Superhelix stacking, GxxG helix Previous trimer lattice 3V86, 4DAC [45]

Scaffold design for new binding complexes

Target binding Grafting HIV epitopes 2F5 and 4E10 3RPT, 3RU8 and
3RI0, 3RHU, 3RFN

[3]

Target binding Grafting MMP-14 and TIMP-2 not released [52]

Target binding PAK1 biosensor Autoinhib. helical domain [13]

Nanohedron Genetic fusion, rigid helix linker Native dimer, trimer, helix 3VDX, 4D9J [35,55]

Arrays, 1D and 2D Genetic fusion, rotational symmetry (TEM, AFM data) [56]

Interface redesign

Specificity Second-site suppressor mutations GoLoco peptide and Gai,
UbcH7 and E6AP

[57]
[14]

Specificity Flexible backbone design to replace Phe GTPase/GEF (1KI1) 3QBV [14]

Multi-specificity Structure-based modeling and library
screening

Bcl-x(L) [58]

Affinity Noncanonical amino acid at a native interface Calpain, calpastatin [59]

Affinity Sequence design with backbone perturbation PDZ peptide and CAL [2]

Affinity Hydrophobic interface design Cytochrome cb562 3HNI, 3HNJ, 3HNL [60]

Affinity Two hydrophobic mutations PCNA and polymerase [9]

Homologous target Computationally-directed library Ubc12 and E6AP [61]

Hexamer Augmentation of coiled-coil tetramer GCN4-p1 starting tetramer 3R4A, 3R4H, 3R3K,
3R46, 3R48

[37]

Metal switching Replace native interactions with metal
coordination residues

Ferritin cage 4DYX, 4DYY, 4DYZ,
4DZ0

[62]
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