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Abstract
The computer-based design of protein-protein interactions is a rigorous test of our understanding of
molecular recognition and an attractive approach for creating novel tools for cell and molecular
research. Considerable attention has been placed on redesigning the affinity and specificity of
naturally occurring interactions. Several studies have shown that reducing the desolvation costs for
binding while preserving shape complimentarity and hydrogen bonding is an effective strategy for
improving binding affinities. In favorable cases specificity has been designed by focusing only on
interactions with the target protein, while in cases with closely related off-target proteins, it has been
necessary to explicitly disfavor unwanted binding partners. The rational design of protein-protein
interactions from scratch is still an unsolved problem, but recent developments in flexible backbone
design and energy functions hold promise for the future.
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Introduction
Protein-protein interactions are critical to most biological processes. The ability to rationally
create and destroy selective protein-protein interactions can be used to develop valuable
therapeutic agents as well as novel tools for basic cell and molecular research. In general,
protein designers have been focused on three problems in interface design: enhancing the
affinity of naturally occurring interactions, redesigning binding specificities within a family
of interactions, and designing interactions from scratch. Two common approaches for
achieving these goals are directed evolution and structure-based modeling. Recently, there has
been significant progress in structure-based modeling as computational methods developed for
stabilizing and designing monomeric proteins have been applied to protein interfaces. These
programs use rapid optimization techniques to search for sequences that pack tightly, form
good hydrogen bonds, and have favorable solvation energies [1,2]. Because the physical
principles that determine protein stability and protein binding affinities are similar [3],
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sequence optimization algorithms and energy functions developed for de novo protein design
can be used largely unaltered for protein interface design.

However, protein interfaces do have unique features that make them particularly challenging
to design. Interfaces between proteins that interact transiently are generally more polar than
the interior of a protein core [4]. To successfully design these types of interfaces it is especially
important to be able to model the subtle tradeoff between desolvation and hydrogen bond
formation. Additionally, water mediated interactions are more prevalent at interfaces than in
the interior of proteins [5]. Naturally occurring protein-protein interactions can be very specific
despite the presence of competing proteins with very similar structures and sequences. To
design high specificity interactions protein designers have been required to create new
algorithms that allow for the explicit optimization of the energy gap between target and off-
target interactions [6].

Here, we review recent progress in computer-based design of affinity and specificity at protein
interfaces and describe new methodology that is likely to be important for achieving even more
ambitious goals such as designing novel protein interactions from scratch. We focus on studies
that have been not reviewed previously [2,7,8].

Designing for affinity
A systematic approach to identifying mutations that increase the affinity of a protein-protein
interface will clearly be a useful complement to current selection/screening methods. Sammond
et al built and tested a protocol [9] that focused on a set of detailed structure-based “rules”.
Before a mutation was predicted to be stabilizing, it must pass these rules, which fall into two
categories. First, it must directly increase affinity by increasing the hydrophobic surface area
buried by the interface. Second, it must maintain the structure of the interface – this was
assessed via the interface interaction energy, ensuring that the mutation not disrupt any
hydrogen bonds or lead to burial of additional polar groups, and a requirement that the mutation
not destabilize the structure of the monomeric protein (each of these were evaluated using
Rosetta).

Given the physically-reasonable basis of this approach, it is not surprising that other studies
on different protein-protein interfaces have led to similar conclusions [10-12]. In two separate
studies, Tidor and co-workers increased protein binding affinities by searching for mutations
that had a net favorable Poisson-Boltzmann continuum electrostatic solvation and interaction
score [13,14]. Many of the mutations swapped polar residues buried at the interface with similar
sized hydrophobic amino acids (Figure 1). Mutations that were found to increase the affinity
of the SHV-1 β-lactamase / BLIP complex [15] – while not designed with a particular focus
on desolvation energies – served to emphasize their importance. Additionally, a reweighting
of the terms in the Rosetta energy function to identify those which best predict affinity-
increasing mutations in the TCR / MHC peptide complex pointed to sterics and solvation as
most important [16]. This is in keeping with the lesson that an efficient way to increase affinity
– given the accuracy of current energy functions – is through creation of additional
intermolecular contacts without increasing burial of charged groups. This is far from the
only way to increase affinity, however, as other studies have found affinity-increasing
mutations through consideration of long-range interactions between charged amino acids
[17].

Specificity
One of the most aestetically appealing – and challenging – targets for designing specificity into
protein-protein interactions is construction of an obligate heterodimeric interface from a
homodimer. As pointed out by Bolon et. al. [18], this may represent the situation where
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“negative design” approaches are most essential. Since each component of the desired interface
begins the design process with an identical backbone, “off-target” binding (ie. formation of
homodimers) is especially likely. An exciting biological application of this goal has recently
been realized through design of heterodimeric nucleases [19,20]; while homodimeric nucleases
cleave palindromic DNA sequences, construction of heterodimeric nucleases greatly expends
the universe of sequences which can be targeted. This was achieved though “implicit” negative
design techniques: introduction of opposite (and hence complementary) charges on each
subunit, or else introduction of “all-big” sidechains on one subunit and “all-small” sidechains
on the other.

Most computational studies that have focused on changing binding specificities have tested
their designs with only one or a handful of potential off-target binders. Recent work by
Grigoryan et al. is groundbreaking because they computationally and experimentally test their
designed bZIP-binding peptides against all 20 bZIP families in the human genome [21]. Given
the overlap in sequence and structure space between bZIP families, it is not surprising that
explicit negative design was required to create specific binders. Negative design was especially
important for disfavoring homodimer formation by the designed proteins. To rapidly compute
target and off-target binding energies a new method based on cluster expansion was developed
that allows one to convert a structure-based model into a sequence-based scoring function
[22]. Integer linear programming was then combined with rapid energy evaluation by cluster
expansion to identify sequences that had specified stabilities and specificities [23]. It will be
exciting to see if a similar approach can be used to design specificity in systems that are not
as structurally conserved as the bZIP peptides. One potential limitation of the cluster expansion
method is that it requires predetermined backbone coordinates for the target interactions,
although it has been shown that cluster expansion can be accurately applied to families of very
similar backbones [24]. In cases where “undesirable” targets exhibit significant structural
differences from the “desirable” target, examples continue to accumulate in support of the idea
that mutations neutral or stabilizing to the “desirable” target are on average destabilizing to
“undesirable” targets, and hence specificity can be achieved through explicit consideration of
the target interaction only [25-28][29].

Promiscuity
While rational design of a single protein sequence that binds a predetermined set of partners
remains an unattained goal, the groundwork towards this has been laid through “multi-
constraint” design [30]. Using a set of proteins known to bind more than one partner, Humphris
and Kortemme redesigned each protein either with a single constraint (to bind one partner in
particular) or with multiple constraints (to optimally bind all known partners simultaneously).
With this experimental setup, divergence of the single-constraint designs from the multiple-
constraint design is indicative of compromise made by the promiscuous protein in order to
maintain binding to multiple partners. Surprisingly, the degree of compromise in the sequence
of most promiscuous proteins was found to be minimal; the structural basis for this
phenomenom was traced to the fact that diverse interaction partners had evolved similar means
to form key interactions with the promiscuous protein. In contrast, a small number of proteins
– “hub” proteins with an exceptionally large number of interaction partners such as ubiquitin
– were found to have evolved their vast promiscuousity via a different approach. Extensive
compromise over multiple surface patches was identified, probably representing the primary
source of selective pressure on these protein sequences. These exciting revelations may provide
direction for future efforts at rationally designing multi-functional proteins.
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Methods and Future Goals
Despite considerable success in the redesign of naturally occurring protein-protein interfaces,
building protein-protein interactions from scratch has proven to be a challenging problem for
computational design [31]. In one case, grafting key residues from a known interface into a
new scaffold protein created a novel interaction, but this is not a viable approach when the
target interface has no known binding partners [32]. In contrast to modeling-based approaches,
there are many examples in which directed evolution has been used to design novel protein
binders [33,34]. Strikingly, selecting from protein libraries that have surface loops containing
only tyrosines and serines is sufficient to generate high affinity binders [35]. Like naturally
occurring antibodies, the sequences and structures of the designed loops co-evolve to present
complementary surfaces to the target protein. These results highlight the need for
computational protocols to sample backbone conformational space as well as sequence space
when designing protein interfaces.

A variety of approaches have been developed for combining backbone optimization with
sequence optimization. Humpris et al. showed that a pre-generated ensemble of backbones
built with small perturbations to Cα-Cβ bond vectors followed by sequence optimization
improved recapitulation of favorable sequences at a protein-protein interface [36]. Similar
backbone perturbations have been incorporated into dead end elimination algorithms for
simultaneous optimization of backbone and sequence [37]. Normal mode analysis has also
been used to pre-generate alternative backbones and used to design new helical peptides that
bind Bcl-xL [38]. Backbone optimization can also be iterated with sequence optimization. This
strategy was recently used to design new conformations in a protein loop, a potential step in
de novo interface design [39]. In all of these examples, relatively small perturbations were
made to the protein backbone. In contrast, large changes in loop structure are frequently seen
in antibodies and binders evolved in the laboratory. Inclusion of large conformational
perturbations in computational design will be challenging but potentially useful for creating
novel interfaces.

In addition to efficient methods for sampling backbone and sequence space, it is critical to have
an accurate energy function for evaluating the relative favorability of different models
[40-42][43]. After producing a set of models, it is also common to use a set of structure-based
filters to eliminate models that have defects. For example, a high number of buried unsatisfied
hydrogen bonds or the presence of low probability side chain rotamers may be cause to throw
out a model. It is particularly useful to have a way to compare the quality of the design models
to naturally occurring proteins. Sheffler and Baker have created a procedure for identifying
cavities within a protein and estimating the probability of observing a similar cavity in high-
resolution crystal structures [44]. Comparisons of this type may indicate that certain terms in
the energy function are not being emphasized properly, or that more conformational sampling
needs to be performed in order to find higher quality design models.

As methods in computational interface design improve, an important aim will be to move
beyond model studies and create proteins that are useful to others. When faced with pragmatic
goals, it may be advantageous to combine computational methods with other techniques for
protein engineering, such as directed evolution. Whether the goal is binding a specific target
surface on a protein or designing a new enzyme, directed evolution usually requires that the
starting sequences for selection contain some members that are at least partially functional.
Computational design may be useful for creating libraries or individual sequences enriched in
the target functionality, and thus provide a good starting point for directed evolution [45,46].
This approach was used in the recent design of an enzyme for a novel reaction [47]. The long-
term challenge is to learn from the optimization of current designs imparted by directed
evolution, to further improve rational approaches.
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Conclusions
The successful redesign of protein-protein binding affinities and specificities indicate that
computational design is a viable approach for redesigning protein-signaling pathways. It is
clear that explicit negative design will be needed in some cases to achieve specificity, however,
techniques that focus on only positive design are suitable when the targets are significantly
different in structure. Directed evolution experiments have shown that relatively simple
libraries can be used to create novel protein binders, and suggests means to improving current
computational design methodologies.
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Figure 1. Reducing desolvation costs is an effective way to increase protein binding affinities
Mutations are shown from four separate studies [9,13,14,16]. In each case, a polar residue
buried at the interface (shown in space filling) was mutated to a hydrophobic residue. Between
6-fold and 12-fold increases in binding affinity were observed.
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Figure 2. The use of single vs. multiple templates in studies of specificity/promiscuity
(TOP LEFT) Calmodulin (light orange/light blue) bound to two different peptides (orange/
blue). Because the conformation of calmodulin and the peptide orientation are signficantly
different, mutations designed in the context of one interface are essentially random in the
context of the other interface. These can therefore be assumed to generally be destabilizing to
the “competing” interface, allowing specificity to be achieved through consideration of only
a single template [27] (implicit negative design). (TOP RIGHT) By contrast, structures of
bZIP coiled-coil structures are in general very similar to each other (shown are the c-Jun
homodimer and the c-Fos/c-Jun heterodimer, with c-Jun in light orange/light blue/orange and
c-Fos in blue). For this reason, consideration of multiple competing templates is critical for
achieving specificity [21] (explicit negative design). (BOTTOM LEFT) Taking cues from
Nature, promiscuous proteins that recognize similar proteins often reuse specific residue
contacts (gp130 (light orange/light blue) is shown bound to IL-6 (orange) and a viral analog
of IL-6 (blue)) [36]. Design problems falling into this category may not require explicit
consideration of each template, since mutations to the promiscuous protein can be expected to
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have a similar effect on all binding partners. (BOTTOM RIGHT) By constrast, designing a
promiscuous protein that recognizes vastly different partners (ubiquitin (light orange/light
blue) is shown with Hrs (orange) and UBC1 (blue)) will require extensive compromise in
selecting the identities of surface residues [36]. In such cases, it is therefore anticipated that
multiple design templates must be considered explicitly.
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