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Abstract

Like electronic circuits, the modular arrangement of cell-signaling networks decides how inputs 

produce outputs. Animal heterotrimeric guanine nucleotide binding proteins (G-proteins) operate 

as switches in the circuits that signal between extracellular agonists and intracellular effectors. 

There still is no biochemical evidence for a receptor or its agonist in the plant G-protein pathways. 

Plant G-proteins deviate in many important ways from the animal paradigm. This review covers 

important discoveries from the last two years that enlighten these differences and ends describing 

alternative wiring diagrams for the plant signaling circuits regulated by G-proteins. We propose 

that plant G-proteins are integrated in the signaling circuits as variable resistor rather than 

switches, controlling the flux of information in response to the cell’s metabolic state.

Introduction

Heterotrimeric, guanine-nucleotide-binding proteins (G-proteins) are conserved elements in, 

arguably, the most important signal transduction cascades. Genes encoding G-protein 

components are found in most plants [1,2], but the molecular mechanisms were derived 

primarily from animal cell studies. Animal and plant heterotrimers are composed of two 

functional modules, the α subunit and the Gβγ, which are each delimited to the plasma 

membrane (PM) by lipid tethers [1,2]. The repertoire of genes encoding subunits in plants is 

small in comparison with animals, making Arabidopsis a good genetic model for G protein 

studies. Plant G-proteins mutants have altered response to light, glucose, abscisic acid, 

auxin, jasmonic acid, gibberellins, sphingolipids, and pathogens. In both rice and 

Arabidopsis, mutations in genes encoding G signaling elements affects hypocotyl length, 

leaf size and morphology, plant height, silique size, and grain shape and size. Regulatory 

and signaling pathways for the physiological processes described above are, for the most 

part well characterized, however a unified molecular mechanism still needs elaboration.
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The G-protein paradigm: animal heterotrimeric G-proteins are molecular 

timers that control the amplitude and duration of a broad spectrum of 

instantaneous responses

Animal heterotrimeric G-proteins directly couple the receptor (aka GPCR) with downstream 

effectors. In the absence of the stimulus, nearly all the cellular G-proteins are at rest at the 

PM in a heterotrimeric inactive conformation that is bound to GPCRs. In this inactive state, 

the Gα subunit’s guanine-nucleotide-binding site binds GDP. Upon ligand binding, the 

receptor-agonist complex acts upon the Gα subunit as a guanine nucleotide exchange factors 

(GEF) and facilitates the diffusion of GDP away from the Gα subunit-binding site, 

promoting the exchange of GDP for GTP. This event marks the activation of the α-subunit 

and the Gβγ, which in turn interact with their own set of effector proteins to initiate 

downstream signaling cascades [3]. The amplitude of these responses depends on the ratio 

of αGTP/αGDP (activated/deactivated G-proteins) at steady state [4]. Under persistent 

stimulation, the Gα guanine-binding-site is quickly and constantly replenished with GTP 

favoring the accumulation of active αGTP. Thus, in animals, G proteins transduce 

information by rolling the GTPase cycle for the duration of the stimulus. Gα subunits are 

slow GTPases and the fast deactivation that follows the removal of stimulus depends on 

GTPase Activating Proteins (GAP) [5]. The GAPs for heterotrimeric G proteins are 

Regulator of G-protein Signaling’ (RGS) protein. GAPs not only ensures timely termination 

of the response but also potentiate the reaction by speeding up the GTPase cycle during 

stimulation in a process called dynamic scaffolding [4,5]. In short, animal heterotrimeric G 

proteins are GTP/GDP-gated molecular timers, which respond instantaneously. Both 

responsiveness and amplitude of the signal-output are controlled independently by the 

concerted cooperation of GEFs and GAPs [4,5].

Arabidopsis G-proteins: the plant paradigm

Many of the key kinetic principles that control animal G-protein pathways do not apply to 

plants. Biochemical characterization of the plant G-protein activation-deactivation cycle 

derives mainly from research on the Arabidopsis heterotrimeric alpha subunit (AtGPA1) and 

Arabidopsis Regulator of G-protein signaling 1 (AtRGS1), but the principles extend to most 

other plants [2,6••,7,8•].

Activation

Since the initial discovery of G-proteins in model plants, most researchers adopted the 

animal paradigm [15] concluding that plant G-proteins operate as switches that set the “on” 

and “off” states of signaling pathways. Later, we learned that the kinetic properties of plant 

Gα differ diametrically from animals and therefore, the animal paradigm cannot apply [8•,

12••]. AtGPA1 has an intrinsically high rate of nucleotide exchange. AtGPA1 spontaneously 

exchanges GDP for GTP thus they do not require a GEF such as a GPCR in animals. 

Consistent with this property, no receptors with GEF activity are found in plants [48,49]. If 

plant heterotrimeric G-proteins lie inactive on the PM to be activated by extracellular 

stimuli, (off-on switch) the existence of plant-specific Guanine nucleotide Dissociation 

Inhibitors like protein (GDI-like) is needed [10] but, to date, non were found. In the absence 
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of an extrinsic source of regulation, the plant Gα subunit would exist in a constitutively 

activated state, (αGTP) freeing most of the Gβγ. Thus, in contrast to animals, the signals that 

control G-proteins activity would promote the formation of heterotrimer. So far AtRGS1 is 

the only known G-protein modulator able to perform this function.

A speculative alternative to the two-state model of regulation is that plant G protein 

components are tunable modulators of signal-output that work not by the absolute number of 

activated subunits over time but rather by the ratio of active to total G protein component. In 

this scenario, the modulatory capacity of plant G-proteins is tuned by reaching steady state 

at different αGTP/αGDP and freedβγ/hetβγ ratios. This mechanism converts a signal-dependent, 

two-state output into a continuous dose-dependent output.

Deactivation

As in animals, inactivation of plant Gα subunits depends on hydrolysis of bound GTP 

[11,12••]. Hydrolysis of GTP is the rate-limiting step for the plant αGTP/αGDP cycle. RGS 

proteins accelerate the intrinsic GTP hydrolysis rate of Gα subunits in vitro [8•] and in vivo 

[13]. Whether the plant RGS GAP activity accelerates signal termination and/or attenuates 

signaling by lowering fractional activation at the steady state cannot be discerned with in 

vitro assays. The regulation of amplitude and rate of deactivation may be completely 

different for plant G signaling. The animal Gα repetitively cycles through the duration of the 

stimulus, and the fraction of each cycle in its active conformation determines the amplitude 

of the signal [4]. GAPs can shorten the time that Gα s spend activated. But if the 

deactivation occurs in the vicinity of a receptor, it shortens the time that GαGDP needs to 

interact with the GEF, speeding the re-entry into the active state. This kinetic scaffolding 

mechanism allow GAPs to potentiate G-signaling [4,5]. However, given the kinetic 

properties of plant Gα, this scaffolding mechanism is irrelevant for plant G cycling, 

prompting us to rethink the role of plant RGS proteins.

Activation and Deactivation During Glucose Stimulation

Plant RGS proteins have a seven-transmembrane domain that topologically resemble animal 

GPCRs. Although no GEF activity has been demonstrated for this domain, we confirmed a 

model in which at the idle state Gα operates in a futile cycle in association with the Gβγ and 

RGS. Glucose stimulation frees the Gβγ, which recruits WITH NO LYSINE (WNK) 

kinases. There are 11 WNK Ser/Thr kinases in Arabidopsis and 3 of them (WNK8, WNK1 

and WNK10) interact and phosphorylate serine residues in the C-terminal region of AtRGS1 

[6••]. Phosphorylation is required for AtRGS1 endocytosis in response to glucose however 

different WNKs operate at different time scales and glucose concentration allowing the cells 

to perceive both, the intensity and the temporal dimension of the glucose stimulus [14••]. 

Following RGS internalization and the physical uncoupling from GPA1 the heterotrimer is 

dissociated, allowing the Gα monomer and the Gβγ dimer to interact with their effectors 

[14••]. The extension of AtRGS1 endocytosis is a glucose dose dependent process.
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Physiological functions and G-protein signaling associated cascades

Studies conducted mostly with Arabidopsis and rice mutants revealed species-specific, 

tissue-specific and development-specific phenotypes [15]. Both Arabidopsis and rice have 

the potential to create three to five different heterotrimers (combinations of one alpha, one 

beta and one of the 3–5 gamma subunits, depending on species) [15]. From the beginning of 

plant G protein research, the simplicity of the plant G protein repertoire promised to simplify 

the interpretation of phenotypes, e.g. to establish associations between phenotypes and 

subunits or to assign specific phenotypes to failures in the activation mechanism. However, 

systematic analyses of epistatic interactions between genes encoding the different 

heterotrimeric subunits revealed more complexity than expected [15,16]. If we follow the 

animal paradigm, expectations of phenotypes for specific mutations in the Gα subunit 

should constitutively activate Gβγ-dominant pathways. However a quantitative comparison 

of gpa1 and agb1 developmental phenotypes in Arabidopsis growing under standardized 

non stressed conditions showed that this prediction is not always corroborated [17]. Unique 

phenotypes for either of the G-protein subunits have also been found in responses to biotic 

stress. For example, AGB1 mediates cell death downstream of the receptor-like kinase 

BIR1. Mutations in BIR1 activate cell death and defense responses but these phenotypes are 

reverted by a null mutation in AGB1. However, this BIR1-AGB1 modulated pathway is 

insensitive to mutations affecting GPA1 [18••]. Freedom from control or influence of the 

other G-subunit is also suggested in PAMP triggered immune responses mediated by FLS2, 

EFR and CERK1 [18••]. In general, the role of AGB1 and AtGPA1 in immunity varies 

depending in the plant–pathogen interaction [19,20••,21–25]. In more general terms the data 

indicates that the mechanism of activation varies with the stimulus and pathway and suggest 

that the existence of alternative mechanisms that activate or deactivate Gα and the Gβγ 

without the participation of a heterotrimeric state.

Agonist

Plants carrying mutations affecting G-protein subunits display phenotypes associated with 

the actions of major phytohormones (e.g. gibberellins, brassinosteroids, abscisic acid, 

jasmonic acid), agents that triggers oxidative stress (UV, ozone, H2O2, NaCl, pathogen 

associated molecular patterns [PAMPs], tunicamycin), and molecules that signal for energy 

and growth (glucose, ATP, CLAVATA3 peptide). To date, there is no biochemical evidence 

for ligand binding to a receptor in the plant G protein pathway. The efficacy of these 

potential agonists in the plant G-protein pathways needs to be assessed with suitable assays, 

preferably assays that measure the relationship between agonist concentration and the 

fractional activation of Gα at steady state but there is no in vivo reporter for GTP-bound Gα 

subunit at this time. The best candidate for an agonist to date is glucose [6••,14••]. Glucose 

induces the internalization of the 7 transmembrane RGS1 proteins [6••,14••] and induces 

interaction between AtRGS1 and AtGPA1 [12••]. The activation and relaxation times are in 

the order of minutes, much slower than the times in animals. The activation kinetics is 

influenced not only by the concentration of glucose but also by the exposure time. G-

proteins are similarly activated by acute glucose doses or prolonged exposure to low glucose 

concentration. This property of reciprocally sensing dose and duration is another difference 

between plant and animal G signaling.
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Receptors

Given that plant Gα subunits may dispense with GEFs for activation, another family of 

receptors might better fit the kinetic properties of plant G-proteins. The hypothesis that 

receptor-like kinases (RLK) discriminate the potentially many extracellular signals that 

regulate the activation state of G-proteins has gained support over the time. G-protein 

mutant alleles were isolated from genetic screens for components in diverse RLK signaling 

pathways [18••,26,27••]. In Arabidopsis, the agb1-4 allele rescued a severe growth 

phenotype associated with the bir1-1 allele. BIR1 is a RLK that negatively regulates 

activation of defense mechanism by the RLK SOBIR1. The data suggest that AGB1 

mediates activation of cell death downstream of the SOBIR1. In addition AGB1 mediates 

immune responses downstream of several pattern-recognition receptors (PRRs). PRRs are 

RLKs that interact with PAMPs and boost the plant innate immune system [18••]. PAMP-

triggered immunity assays showed that agb1-4 plants are not able to boost immunity after 

treatment with flg22, elf18 and chitin [18••]. In maize, the RLK FASCIATED EAR2 (FEA2) 

is an ortholog of the Arabidopsis leucine-rich repeat receptor CLAVATA 2 (CLV2). CLV2 

interacts with the secreted peptide CLAVATA3 (CLV3) and inhibit growth of the shoot 

apical meristem (SAM). Genetic evidence suggests that a null allele of COMPACT PLANT2 

(CT2) an ortholog of AtGPA1 is epistatic to FEA2 in a pathway that determines the size of 

the SAM [27••]. Biochemical data suggest that FEA2 and CT2 interact at the PM. ct2 

embryos have reduced sensitivity to CLV3. Together, the data suggest that FEA2 couples 

CT2 to transmit signals that control proliferation of stem cells in the maize SAM [27••].

In summary, compelling evidence suggest that signal transduction by G-proteins 

downstream of RLKs occurs in plants. However, much work still needs to be done to 

understand the functional relationship between RLKs and G signaling.

Second messengers

Second messengers relay signals both downstream and upstream of the heterotrimer. For 

example, inhibition of stomatal opening, stimulation of stomatal opening and elicitation of 

stomatal closure are separate phenomenon controlled by different arrangements of 

environmental signals, hormones, second messengers and G-proteins. Originally the second 

messenger sphingosine-1-phosphate (S1P) was found to mediate ABA inhibition of stomatal 

aperture upstream of G-proteins [28]. Later it was suggested that AtGPA1 is a node of 

convergence for signals mediated by ABA-S1P and flg22-FLS2 [29]. Downstream of 

AtGPA1, the second messengers H2O2, nitric oxide (NO) and Ca2+ regulates the activation 

of potassium channels that inhibited the stomatal opening [29]. AtGPA1 is also involved in 

UV-B induced stomatal closure in a linear pathway that involves AtGPA1 dependent 

production of ROS and NO [30•]. Stomatal closure is also induced by extracellular Ca2+ via 

an extracellular calmodulin that signal through AtGPA1. Production of ROS and NO by 

NITRIC OXIDE ASSOCIATED1 and RESPIRATORY BURST OXIDASE HOMOLOGS 

(AtRBOH D and F) are also downstream of AtGPA1 in this signaling cascade [31]. Finally, 

stomatal opening is mediated by AtGPA1 downstream of extracellular ATP. In turn, 

AtGPA1 stimulates production of ROS by the NADPH oxidases AtRBOH D and F. The 

oxidative burst triggers H+ efflux and Ca2+ influx. A rise in cytosolic Ca2+ in guard cells is 

evoked by a variety of processes that regulates stomatal movements [32]. The same signals 
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under the control of AtGPA1 evokes opposite outcomes in the stomata movement 

suggesting that key element of these pathways have not yet been identified.

Effectors

Plant G-proteins evolved their own set of molecular surfaces to regulate effectors. The many 

phenotypes attributed to G-proteins may be explained by multiple coupling to many 

effectors. An exhaustive screen using yeast complementation assays detected a 

comprehensive list of putative plant G-protein effectors [33•] revealed many enzymes and 

transcription factors that are involved in the regulation of the cell wall composition, 

alongside with altered xylose content in the cell wall of G-protein mutants [33•]. This is 

consistent with a transcriptomic analysis of agb1 and agg1 agg2 mutants infected with a 

necrotrophic fungi P. cucumerina showing misregulation of genes involved in cell wall 

composition [20••]. Genes that determine the structure and composition of the cell wall were 

significantly reprogrammed after the infection in both Col-0 and G-protein mutants. Some of 

these genes were found differentially regulated between genotypes (e.g. Col-0 vs agb1 

alleles). In contrast to G-proteins mutants, which have a decreased xylose content and 

increased susceptibility to P. cucumerina, the det3, xyl1-2 and irx6-1 mutants with increased 

level of xylose or xyloglucan showed decreased susceptibility to the P. cucumerina infection 

[20••]. Mutations of glucuroxylan-synthesis genes enhance tolerance to abiotic stress as well 

[34]. Mutations affecting acetylation of xylans induce a constitutive stress phenotype [35]. 

For example, plants lacking TBL29 protein in the Golgi, a member of the TRICHOME 

BIREFRINGENCE-LIKE (TBL) family are tolerant to drought, salt and cold and have 

elevated levels of ABA under normal growth conditions [36]. TBL29 contains a DUF231 

domain, which is required for O-acetylation of xyloglucans [37]. Interestingly in a 

trascriptomic study designed to identify glucose-induced, AtRGS1-dependent genes, the 

TLB26 gene was the most attenuated in the rgs1-2 mutant compared to Col-0 [38]. TBL26 

also contains a DUF231 domain and it is located on the Golgi membranes (S. Wolfenstetter, 

unpublished data). In summary, both xylose content and xylan acetylation contribute to the 

modulation of stress responses. G-proteins regulate these process at different levels: 1) 
transcriptional regulation of cell wall biosynthetic genes [20••], 2) glucose dependent control 

of xylan acetyl transferase levels in the Golgi [38], 3) control of sugar transport to the Golgi 

[39], and 4) interaction with putative effectors involved in cell wall synthesis or remodeling 

[33•]. However, it is not clear to what extent the cell wall related enzymes found in the 

interactome are real effectors. A molecular and kinetic characterization of each of these 

interactions is needed.

The G-protein interactome is a rich source for identifying novel plant G-protein effectors. 

To discover new G signaling elements, we performed gene ontology enrichment analysis on 

these interactors. The resulting functional profiles confirmed many of the previously 

characterized plant G-protein functions but also suggested new signaling clusters [40]. The 

most important role of plant G-proteins suggested by this analysis was the response to 

abiotic stress; similar results were associated with interactors in pea [41]. The response to 

salinity appeared as the most relevant biological process associated to the interactome and 

the involvement of plant G-protein in Na+ stress was corroborated [40]. Na+-induced 

senescence is accelerated in agb1-2 mutants but delayed in gpa1-4 and rgs1-2 mutants. The 
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null AGB1 allele is epistatic to the null AtRGS1 allele [40]. This suggests that AGB1 is the 

primary G-protein element mediating salt tolerance or recovery and that AtRGS1’s GAP 

activity on AtGPA1 reduces free Gβγ through heterotrimer formation. This was confirmed 

using point mutations that disrupt heterotrimer formation [42]. Both AtGPA1 and AGB1 are 

positive regulators of shoot cell proliferation. Thus, inactivation of plant G-proteins could be 

a mechanism by which stress attenuates the pace of growth. However, AGB1 also negatively 

regulates cell death [43•]. Thus, modulation of the unsequestered/heterotrimeric AGB1 ratio 

during the stress responses may shift the balance between death and growth.

The involvement of G-protein in the balance between growth and senescence during Na+ 

stress appears to be a general mechanism in plants. Recently, we showed that ct2 and d1, the 

KO alleles for the Gα subunit in maize and rice, respectively, are tolerant to Na+ stress [50].

AtRGS1 regulates the active/inactive G-protein ratio, in part, by its own trafficking. On the 

PM, AtRGS1 decreases the active pool of AtGPA1 and when endocytosed, the ratio 

increases [40]. AtRGS1 internalization occurs 10 to 16 h after exposure to Na+ coinciding 

with the growth recovery phase [44] and the time that glucose levels increase [45,46]. Thus, 

glucose may be the molecule that signal RGS internalization during salt stress.

AtRGS1 may respond to changes in the carbon-energy metabolism caused by metabolic 

stress induced by salt [47]. Once the system reaches homeostasis and growth resumes, the 

level of internalized RGS will determine a new ratio of active/inactive G-protein that will set 

the new pace of growth. This relationship between metabolism, G-proteins and salt stress is 

seen in the G protein inter-actome. Many enzymes in glycolysis and at the entrance into the 

tricarboxylic acid cycle are potential partners to Arabidopsis G-proteins (Figure 1).

Conclusions and remarks

A major conundrum in plant G-protein research is the stark contrast between the simple 

composition of the heterotrimers and the complex repertoire of phenotypes in which they 

were found involved. A major effort was made to identify receptors that discriminate signals 

upstream of plant G-proteins, but so far the search produced no protein worthy of a 

“receptor” moniker in plant G signaling [48,49] except AtRGS1 [13] Figure 2 provides an 

alternative idea. In this model, G-proteins exert a tonic level of modulation in the activities 

of their effectors. Under favorable conditions, G-proteins promote growth to optimal levels 

either stimulating growth-promoting-effectors or inhibiting growth-inhibitors. 

Environmental stresses may uncouple G-proteins from these effectors, and consequently 

bring growth to its basal level. For example, it was recently suggested that plants lacking the 

Gα subunit are already growing at basal level and therefore growth is less affected by salt 

stress in relation to WT [50]. Thus the G-protein-effector complex behave as variable 

resistors (rheostats) in the signaling circuits that control cell expansion and cell proliferation 

(Figure 2). In summary, G-proteins modulate the intensity of the signal output (indicated by 

the symbol  in Figure 2C) downstream of the master regulators with associated 

phenotypes related to growth. We speculate that plant G-proteins are active by default, 

consistent with the kinetic properties of the plant Gα subunits. Modulating proteins such as 

AtRGS1 shift the fractional pool of active G-proteins. Rather than having bimodal “on” and 
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“off” states, plant G-proteins reach steady state at different active/inactive ratios. We 

speculates that under certain stresses (e.g. salt stress) the level of active Gα subunit and Gβγ 

is controlled by the energy state of the cell, which is sensed by the glucose level, and 

transduced by AtRGS1. This connects metabolic signaling with other related signaling 

pathways to produce a coherent and integrated response. We acknowledge that the signaling 

circuits presented in Figure 2 do not fit all the aspect of plant G-protein signaling. As 

discussed above there are a number of signaling processes, which appears to be specific for 

only one of the heterotrimeric subunit, yet so far do not involve an RGS protein. Moreover, 

the absence of a 7TM RGS protein in the monocot lineage challenges the generalization of 

current models and creates the need to rethink alternative mechanism or additional 

components for plant G-protein activation and signaling.
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Figure 1. G-proteins interact with Metabolic Enzymes
Enzymes in glycolysis and at the entrance into the tricarboxcylic acid cycle (TCA) that 

interact with G-proteins are indicated in pink boxes. HXK1, hexokinase, 6PGDH, 6-

phosphogluconate dehydrogenase; NP-GAPDH, non-phosphorylating glyceraldehydes 3-

phosphate dehydrogenase; PGK, phosphoglycerate kinase; ATCS, Arabidopsis thaliana 

citrate synthase; IDH, isocitrate dyhydrogenase. The subcellular locations of the orthologs 

for IDH and ATCS are not certain. The other enzymes are cytosolic. Product abbreviation: 

6PG, 6-phospho-D-glucono-1,5-lactone; R5P, ribulose 5 phosphate; P5C, pyrroline-5-

carboxylate; PRO, proline; DHAP, Dihydroxyacetone phosphate.
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Figure 2. G-protein regulation of plant signaling pathways
(A) In this model the activation of the heterotrimeric G-protein is an obligated step to 

convey information through the regulated pathway, (i.e. activation of G-proteins depend on 

the transduced signal). G-proteins link receptors and operate as switches. The binding of an 

agonist to a coupled-receptor releases the heterotrimer from an inhibitory complex (e.g. with 

a GDI like protein). This promotes Gα self activation, dissociation of the heterotrimer and 

activation or inhibition of G-protein effectors. G-proteins convey information during 

receptor stimulation (ON state). Deactivation of receptors lead to deactivation of the G-

proteins. GAP activity must accelerate deactivation and stabilize the heterotrimer in its OFF 

state. How receptors activate plant G-proteins is still unkonw and could include one or more 

intermediary proteins/steps (dashed arrows with question marks). (B) In this model the 

activation of G-proteins is not controled by the trigger-signal of the singnalling pathways, 

but rather controlled by the cell’s metabolic state. Thus G-proteins integrate metabolic 

information in the signaling network that controls cell division and cell expansion (i.e. 

growth). The free G-protein subunits, rather than the heterotrimer, are the ones integrated in 

the signaling pathways exerting a constitutive modulatory activity. Sustained activation of 

G-proteins involves the concerted activities of different WNK kinases, which encode 

intensity and duration of glucose signal to regulate RGS endocytosis. How glucose activates 

WNKs is still unkonw and could include one or more intermediary proteins/steps (dashed 

arrows and question marks). Phosphorylation of RGS promotes its endocytosis and 

physically uncoupling from the G-protein complex, allowing spontaneous nucleotide 
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exchange in the Gα subunit and release of the Gβγ dimer. (C) In analogy with electronic 

circuits, the signal transduction networks are interconnected modules arranged to convert 

inputs in outputs. The panel in the left represent a wired diagram of this signaling network 

where G-proteins operate as switches in the circuits that convey signals triggered by 

development, stress, hormones, energy, nutrient, and diverse mitogens. Under situations that 

favor growth, the G-protein coupled pathways that respond to growth-inhibitory-stimuli 

(yellow) will be switched off at the G-protein module. The opposite (switch on) will occur 

in the G-protein coupled pathways that respond to growth promoting stimuli (green). In 

some cases this switch will be controlled by RGS endocytosis/RGS GAP activity, e.g. 

glucose (blue). The panel in the right represents a wired diagram of the rheostat model in a 

situation favorable to growth. In this example G-proteins are imposing maximum resistance 

to transmit information along pathways responding to growth-inhibitory-stimuli (yellow) or 

not resistance in pathways responding to growth promoting stimuli (green). The G-protein 

modulatory capacity represented by the variable resistor  symbol will depend on the 

cellular glucose content. In blue we show a pathway that convey information to boost cell 

division or cell expansion. Under nutrient availability glucose will promote RGS 

endocytosis shifting the G-protein rheostat to minimum resistance. Opposite, low levels of 

glucose will promote G-protein inactivation trough RGS GAP activity shifting the G-protein 

rheostat to maximum resistance. Plants lacking one or the other G-subunit still convey 

information trought the G-protein associated pathways but with modified intensity.
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