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SUMMARY
The cancer-ageing hypothesis suggests that the activation of some tumor suppressor mechanisms
beneficially prevent cancer but also untowardly promote mammalian ageing. Along these lines,
activation of tumor suppressor mechanisms that inhibit the cell cycle (e.g. p16INK4a and p53) in
response to DNA damage and other age-promoting stimuli have taken center stage in immune-ageing
research. Immune cells are intrinsically susceptible to transforming events due to V(D)J
recombination, a high rate of cellular turnover and requisite long-term self-renewal. Therefore, the
DNA damage response and cell cycle regulation play a clear role in maintaining homeostasis without
neoplastic progression. Here we will argue based on recent advances in our understanding of tumor
suppressor mechanisms in immune cells, however, that aspects of these same beneficial pathways
have the potential to induce intrinsic immune ageing.

INTRODUCTION
Aspects of mammalian ageing appear to result from the persistent activation of related tumor
suppressor mechanisms by diverse gerontogenic stimuli. Such age-promoting signals probably
include environmental mutagens (e.g. UV radiation), as well as intrinsic replicative and
metabolic stresses (e.g. reactive oxygen species (ROS)). DNA damage, either alone, or
downstream of some of these stresses is associated both with ageing and the activation of tumor
suppressor mechanisms (Figure 1); however, the exact stimuli that promote their activation in
ageing are unknown.

Immune cells possess unique characteristics that make them susceptible to malignant
transformation. Both T and B lymphocytes undergo dramatic proliferation and V(D)J
recombination to obtain their massive antigen receptor diversity during their development.
Upon pathogen encounter, they engage in clonal expansion and B lymphocytes also go through
somatic hypermutation to achieve higher BCR affinity. Additionally, memory lymphocytes
undergo self-renewal, and maintain impressive replicative capacity in response to antigenic
challenges, even after decades without such stimulation. As a result, the DNA damage response
and other tumor suppressor mechanisms appear to be finely regulated to allow for this unusual
proliferative behavior.

Here, we will argue that activation of tumor suppressor pathways in response to age-promoting
(“gerontogenic”) stimuli promote immune ageing by inducing a proliferative compromise,
perhaps even cellular senescence, or an increased propensity to undergo apoptosis; and we
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suggest these cell-intrinsic alterations contribute to ageing of the immune system. It is also
important to note that cell extrinsic factors, such as degradation of immunologic “niches” and
alterations of the hormonal milieu undoubtedly play an important role in mammalian immune
ageing. For example, thymic involution contributes to reduced thymic output with ageing
(reviewed in [1]) and hematopoietic stem cell (HSC) ageing is partially determined by the bone
marrow microenvironment [2]. Although such extrinsic mechanisms are of doubtless
physiologic importance in ageing, in this review, we will focus on cell-intrinsic ageing of the
immune system that results from tumor suppressor activation.

The induction of age-promoting tumor suppressor mechanisms
A common feature of several “gerontogens” is the induction of DNA damage with subsequent
initiation of DNA Damage Response (DDR) pathways. Alteration in DNA metabolism is
associated with features of premature ageing in a few human genetic diseases (e.g. Werner
syndrome [3]), as well as several mouse models (reviewed in [4]). These data have advanced
the hypothesis that DNA damage and/or the cellular responses activated as part of the DDR
promote ageing. One of the most important responders of the DDR is the p53 tumor suppressor,
which is activated by a series of kinases that sense several forms of DNA damage (Figure 1).
Additionally, p53 can also be stabilized by “mitogenic stress” through induction of the Arf
tumor suppressor gene, and this is thought to occur largely independent of DNA damage [5].
Arf is transcribed in an ‘Alternate Reading Frame’ with another tumor suppressor gene,
p16INK4a, that is also thought to regulate ageing (reviewed in [6]). Importantly, the p53
transcription factor engages a diverse set of cellular pathways which can lead to a variety of
outcomes including enhanced DNA repair, a transient cell cycle arrest, a permanent growth
arrest (i.e. senescence), or apoptosis depending on the quality, intensity and persistence of the
damaging signal (Figure 2). Given these diverse possible outcomes of p53 expression, it is
perhaps not surprising that p53 has been suggested to both accelerate and retard mammalian
ageing when activated in different contexts in murine systems [7–10••]

The induction of the p16INK4a tumor suppressor gene is less well-understood. Several diverse
stresses have been shown to increase p16INK4a expression, among them oxidative stress,
oncogene activation and telomere dysfunction (Figure 1). Expression of p16INK4a leads to
decreased activity of the CDK4/6 proliferative kinases with attendant RB hypophosphorylation
and growth arrest in some, but certainly not all, proliferating cell types [11,12]. Under some
circumstances, p16INK4a activation and persistent RB hypophosphorylation can induce cellular
senescence [6]. It is worth noting that by “cellular senescence”, we refer to a specialized,
permanent form of growth arrest originally described by Hayflick and colleagues. This should
not be confused with “immunosenescence” and related terms used generically to describe
cellular hypoproliferation noted in the ageing immune system. Cellular (‘Hayflickian’)
senescence represents a precise cell biological phenotype where cells are irreversibly arrested
in G1 phase, but remain metabolically active, and viable indefinitely [13]. In contrast,
“replicative senescence” of lymphocytes has been used to refer to limited proliferation upon
mitogen or antigen stimulation seen in cells from aged organisms [14]. Importantly, expression
of p16INK4a has been closely linked to the Hayflickian senescence of cultured human cells,
whereas the importance of p16INK4a for “immunosenescence” is an area of ongoing
investigation. For the purposes of clarity, in this review, we will reserve the term “senescence”
for the more precisely defined, permanent growth arrest described by Hayflick.

Does telomere dysfunction cause immune ageing?
Telomere dysfunction appears to increase in primates with physiological ageing [15], and has
been linked to p53 and p16INK4a activation. Telomeres are nucleoprotein structures that act to
protect chromosome ends from degradation. They are composed of numerous 5′ TTAGGG 3′
repeats (in vertebrates), a 3′ G-rich overhang and the protein complex named shelterin
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(reviewed in [16]). Telomeres shorten with each round of cell division due to the inability of
DNA polymerase to completely copy terminal linear DNA sequences. Telomere shortening is
thought to limit proliferative capacity, and therefore may serve as a barrier to turmorigenesis,
at least in the context of intact p53 function. Telomerase is a specialized RNA-protein complex
that synthesizes telomere repeats de novo and maintains telomere length during cell division.
Telomerase is expressed in germ cells but is absent in most human somatic tissues [5]. Critically
shortened telomeres cannot be bound by the shelterin complex and form uncapped telomere
ends, which are subsequently recognized as double strand breaks (DSBs) and cause initiation
of DDR.

Several lines of evidence have suggested that telomere dysfunction may contribute to human
ageing. Telomerase-deficient mice that have been serially backcrossed to harbor human-length
telomeres demonstrate regenerative failure in multiple organs due to a decline in stem cell
proliferative capacity and tissue repair ability [17], showing that telomere dysfunction can
induce aspects of the impaired tissue regeneration characteristic of human ageing. Likewise,
while humans with WRN deficieny exhibit a profound progeria, Wrn-deficient mice do not
appear progeroid except in the setting of shortened telomeres [18]. In the immune system,
telomerase is required to maintain HSC lifespan during serial transplantation [19] and to
prevent ageing-related abnormal B cell and myeloid hematopoiesis in mice [20,21••]. In
addition, human CD28 negative T cells, which have lost optimal telomerase activity,
accumulate in vivo with age and display impaired function [22], and the overexpression of
telomerase or activation of telomerase using small molecules partially rescues these defects
[22,23•]. Patients with dyskeratosis congenita (DKC) and other diseases that harbor genetic
defects in telomerase activity also display some features of premature ageing (reviewed in
[16]). In particular, some DKC patients exhibit immune ageing phenotypes, such as
lymphopenia and lymphocyte hypo-proliferation [24].

On the other hand, evidence has suggested that many aspects of ageing can occur in the absence
of telomere dysfunction, and it is not clear if telomeric signals usually contribute to human
ageing under physiological settings. For example, mean telomere length correlates poorly with
ageing [25,26], and telomere shortening is only weakly associated with most common human
age-associated diseases [27–29]. Secondly, while normal inbred mice demonstrate many
familiar aspects of mammalian ageing, this appears to be almost entirely telomere-independent,
as telomerase-deficient mice demonstrate only subtle abnormalities with regard to ageing
[17]. Moreover, as in Terc-deficient mice, phenotypes of telomerase deficiency in humans are
generally seen in patients who also inherit shortened telomeres from parents with telomerase
deficiency (termed ‘anticipation’) (reviewed in [16] ). Thirdly, other than perhaps cirrhosis,
classic ageing phenotypes such as atherosclerosis, type 2 diabetes mellitus, osteopenia, or
neurodegenerative disease have not yet been reported in human patients with telomerase
deficiency. That is, humans harboring sufficient telomere dysfunction to induce overt disease
such as aplastic anemia and pulmonary fibrosis do not exhibit a segmental progeria akin to that
seen in WRN patients. We believe these data for and against the role of telomere dysfunction
in human ageing, when taken in aggregate, suggest that telomere dysfunction likely contributes
to age-associated phenotypes in humans, but it still remains unclear as to whether telomere
dysfunction plays a major or minor role in these processes.

Complex roles in ageing for the p53 pathway
As mentioned, activation of p53 can induce a variety of responses including transient cell cycle
arrest (often accompanied with DNA repair), senescence or apoptosis. Correspondingly, recent
studies in mouse models have indicated that the effect of p53 activation on ageing is complex
(Figure 2). In some murine models, activation of p53 appears to generally accelerate ageing
[7,8]. With regard to immune function, deletion of p53 in mice increases the number and
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abrogates the age-related decline of HSC self-renewal capacity [30–32]. Likewise, increased
p53 dosage causes reduced repopulating capacity in HSCs [10••]. Deletion of p53 rescues the
ageing phenotype of stem cells in mice with dysfunctional telomeres, but fails to extend the
life span of these animals due to increased tumor susceptibility [33]. In contrast, inactivation
of p21CIP, a p53-target that induces cell cycle arrest, rescues proliferative defects of stem cells
in telomerase deficient mice and extends their longevity [34]. These data suggest a pro-ageing
role of the p53 pathway in certain settings.

In other systems, however, p53 activation has been shown to delay ageing. Mice harboring
extra copies of the p53 and Ink4a/Arf genes (super Ink4a/Arf/p53 mice) display an extended
longevity, decreased malignancy and enhanced protection from DNA damage [9••,35], while
mice have reduced gene dosage of MDM2 or an extra copy of either ARF or p53 do not exhibit
accelerated ageing (reviewed in [35]). Consistent with these data, inactivation of Arf in a
premature ageing mouse model (BubR1 insufficient) leads to exacerbated ageing phenotype,
while loss of p16INK4a rescues aspects of this progeria [36•]. Also of interest, p53-deficient
mice show accelerated ageing in the T cell compartment [37]. These data suggest Arf-p53
function can be anti-ageing, presumably by augmenting DNA repair and therefore preserving
genomic integrity.

These two seemingly contradicting roles of p53 in ageing may result from differences in the
quality or persistence of the stimuli that activate p53 expression. Some activating signals may
skew its response towards transient arrest and DNA repair, thereby restoring normal
homeostasis and acting as an anti-ageing checkpoint. Additionally, the persistence of the
stimuli that induces p53 may be important. Long-term p53 activation, as occurs with telomere
dysfunction, might promote senescence or cell death, whereas transient activation might
enhance genomic fidelity. In accord with these views, the progeroid p53 overexpresing mice
[8,10••] appear to have a greater and more persistent degree of p53 activation compared to the
super-p53 mice [9••,35] which do not show accelerated ageing. Correspondingly, loss of the
p53 target gene, p21CIP, which induces an important, transient cell cycle pause after DNA
damage compromises long-term HSC function during serial transplantation [38–40••], but
significantly enhances HSC function in the setting of persistent telomere dysfunction [34]. We
believe the murine data suggests that the effects of the pleiotropic p53 transcription factor with
regard to ageing depend on the nature and duration of the stresses that engage p53 in vivo.

p16INK4a-pRB pathway and senescence
The p16INK4a tumor suppressor is an important mediator of cellular senescence, and recent
work has suggested it may also play a role in human ageing [6] (Figure 3). Expression of
p16INK4a is induced upon T cell activation and has been shown to possibly cause hypo-
proliferation before cells reach permanent, possibly senescent growth arrest in vitro, in which
T cells cease responding to stimulation in culture [41]. These observations raise the critical
question as to whether p16INK4a can promote ageing by inducing hypoproliferation (e.g. in T
cells) without necessarily causing true ‘Hayflickian’ senescence in vivo.

The expression of p16INK4a has been shown to sharply increase with ageing in the majority of
human, baboon and rodent tissues tested to date [17]; and caloric restriction, which retards
ageing in rodents, attenuates age-induced increase in p16INK4a expression [42,43]. Recent
studies [44–47••] have demonstrated that increased p16INK4a expression in mice causes an age-
associated functional decline in HSCs, pancreatic islet cells, neural stem cells (NSC), and B
lymphocyte progenitors [47••]. Accordingly, p16INK4a deletion attenuates the age-related
decline in the repopulation potential of stem cells in these compartments [44–46] and partially
rescues premature ageing in skeletal muscle and fat tissues in a premature ageing mouse model
(BubR1 insufficient) [36•].
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Recent evidence has also linked p16INK4a expression to human ageing. For example, we have
recently shown that p16INK4a expression in human peripheral blood T cells increases sharply
with ageing and strongly correlates in independent samples with gerontogenic behaviors such
as smoking and physical inactivity [48•]. Moreover, findings from human association studies
have recently linked p16INK4a expression to several human age-related phenotypes. Single
nucleotide polymorphisms (SNPs) whose genotypes are associated with the risk of age-related
conditions, such as frailty, type 2 diabetes mellitus, stroke and myocardial infarction, have
been mapped by candidate approaches and genome-wide studies to within 120 kb of the human
INK4/ARF locus (reviewed in [17]). We have recently identified that the expression level of
p16INK4a and other INK4a/ARF transcripts in peripheral T-cells is strongly correlated with a
common, non-coding SNP ~100 kb away from p16 INK4a promoter [49]. Although the precise
mechanistic linkage between these 9p21 SNPs and human ageing are still unclear, these data
provocatively suggest an important link between p16INK4a expression and human ageing.

Precisely what aspect of mammalian ageing induces p16INK4a expression is unknown.
However, p16INK4a activation has been shown to be regulated at transcriptional and
posttranscriptional levels (Figure 3). MAPK signaling via ERK and p38MAPK has been
suggested to induce p16INK4a expression in response to oncogenic activation or stress stimuli.
Expression of p16INK4a can be either transcriptionally activated (e.g. Ets family ) or inhibited
(e.g. Id proteins) by a number of pathways (reviewed in [6]). Although the majority of research
has focused on transcriptional control, recent studies have suggested that p16INK4a can be
regulated post-transcriptionally through interaction with microRNAs [50]. A particular link
has been suggested between p16INK4a expression and PcG function. The PcG proteins BMI-1
[51–53], EZH2 [54–56•] and CBX7 [57] have been shown to act as epigenetic repressors of
p16INK4a expression. Consistent with these data, Bmi-1 deficient mice display accelerated HSC
attrition [53,58], reduced self-renewal of neural stem cells (NSC) [52], postnatal growth
retardation and neurological defects [59], and diminished β-cell mass and phenotypes of T2DM
[60•]. Importantly, the defects in HSC and NSC observed in Bmi-1 deficient animals are
partially reversed by deletion of Ink4a/Arf [51,52,61,62]. Recent data has further suggested
that an age-induced loss of PcG function may contribute to the increased expression of
p16INK4a seen with ageing. For example, loss of Ezh2 and Bmi-1 binding to the INK4a/ARF
locus has been reported with prolonged fibroblast culture with attendant increased expression
of the locus in senescent cells [55]. Most recently, loss of EZH2 expression has been reported
in pancreatic β-cells in vivo with ageing in humans and mice [56•]. Furthermore, specific
somatic deletion of Ezh2 in this tissue causes Ink4a/Arf overexpression, a relative failure of
insulin secretion and hyperglycemia; which can be rescued by Ink4a/Arf deficiency. These
results suggest the possibility that a loss of PcG repression with ageing contributes to the
observed increase in expression of p16INK4a noted in several human tissues.

With regard to immune ageing, besides its role in limiting HSC and B cell progenitor
proliferation potential with ageing, p16INK4a has been shown to play an important role in
immune cell development [63] and myeloid cell senescence [64]. Overexpression of
p16INK4a in T cells arrests thymocyte development at the DN stage presumably through
induction of hypo-proliferation during thymocyte differentiation [63]. Consistent with this
result, p16INK4a mediates peripheral T cell replicative senescence/hypo-proliferation [41,65]
and p16INK4a deficient mice have increased thymocyte and peripheral T cell number [66,67].
However, it is not known whether p16INK4a plays an intrinsic role in the ageing-related
functional declines observed in terminally differentiated lymphocytes. It is recognized that
immunological microenvironments play an essential role in the age-related changes
documented for lymphocyte development and function [1]. However, current mouse models
do not allow us to determine whether p16INK4a functions intrinsically or extrinsically in naive
and memory lymphocyte ageing. Long-term bone marrow transplantation experiments or
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future mouse models with lineage-specific deletion of p16INK4a are needed to address these
questions.

CONCLUSIONS
In summary, the activation of tumor suppressor mechanisms in immune cells appears to provide
an important defense against malignant transformation caused by DNA damages and other
stimuli during their development, homeostatic replication and activation. Activation of these
tumor suppressor mechanisms can lead to both pro- and anti-ageing effects in immune cells.
For example, transient p53 activation likely induces a beneficial cell cycle pause and
opportunity for DNA repair that affords a resistance to certain age-promoting stimuli. In
contrast, gerontogenic stresses such as telomere dysfunction and other forms of persistent DNA
damage appear to activate apoptosis and senescence via p53 and p16INK4a induction, which
appears to be pro-ageing in some settings.

Major challenges going forward will be to understand immune ageing on a tissue, rather than
cellular, level: that is, how these cell-intrinsic activities influence the behavior of the affected
cells and interact with cell-extrinsic changes to produce organismic immune ageing. For
example, p16INK4a expression has been noted in several subsets of lymphocytes with ageing,
but we think it is unlikely that all types of proliferation in these diverse subsets of lymphocytes
are affected by p16INK4a expression. More likely, we think that certain lymphocyte
proliferative events will be specifically retarded by an age-induced increase in p16INK4a

expression, whereas the replicative capacity of other lymphocyte subsets may not be adversely
compromised, or perhaps even increased, in the setting of p16INK4a induction. Likewise, an
age-induced decline in the replicative capacity of certain cell types (e.g. T regulatory cells),
may extrinsically lead to increased proliferation in other immune subsets. Sorting out the
physiology of immune ageing will require carefully designed murine studies using conditional
alleles, as well as more longitudinal studies of human immune ageing.

Another important issue is whether the pro- or anti-ageing effects of p53 predominate in
humans. In this regard, it is important to note that conclusions about p53 regulation from mice
may be of limited applicability to humans. There are important differences in ARF regulation
and telomere biology between humans and rodents that may be of relevance to the role of p53
in ageing. As mentioned, telomere length is shorter and telomerase activity is more tightly
regulated in humans compared to rodents, and therefore telomere dysfunction may be an
important activator of p53 in human, but not rodent, ageing. Likewise, while Arf expression
increases markedly with ageing in most rodent tissues [42,68] with a correlative increase in
the expression of p53 target genes [42,43], expression of ARF has not been observed to increase
with age in any human tissue tested to date, including T lymphocytes [48•] and kidney [69].
Likewise, human ARF does not increase with the onset of cellular senescence, nor is human
ARF induced by ectopic RAS expression in vitro; whereas murine Arf markedly increases in
expression during these settings (reviewed in [6]). It is tempting to speculate that species
differences in the PcG repression of the INK4a/ARF locus [54,55] account for these differences
in ARF regulation with ageing, although other explanations are also possible. Nonetheless,
these major differences between mouse and man with regard to telomere and ARF biology
suggest that care must be taken in drawing conclusions about the role of p53 in human ageing
based on murine studies.

In summary, we believe the activation of tumor suppressor genes and cell cycle inhibitors
influences immune ageing, and likely contributes to a cell-autonomous decline in cellular
replicative capacity in specific immune cell subsets (e.g. B-cell progenitors [47••]). We believe
future studies of immune ageing will allow for the identification of reliable molecular markers
of molecular ageing to assess the progression of immune ageing and possibly forecast the onset
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of certain age-associated diseases. Moreover, an enhanced understanding of the pro- and anti-
ageing roles of tumor suppressor activation may provide therapeutic opportunity. Although we
remain concerned that efforts to attenuate tumor suppressor responses risk enhanced neoplasia,
we anticipate that a more sophisticated understanding of cellular ageing will permit the design
of rational anti-ageing therapeutics to retard the pace of immune ageing.

Acknowledgments
We thank Christin E. Burd for critical reading of the manuscript. N.E.S is supported by NIH grant (AG024379), the
Ellison Medical Foundation and the Burroughs Wellcome Fund. Y.L. is supported by NIH training grant
(CA009156-34).

References
• of special interest

•• of outstanding interest

1. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol
2004;5:133–139. [PubMed: 14749784]

2. Ju Z, Rudolph KL. Telomeres and telomerase in stem cells during aging and disease. Genome Dyn
2006;1:84–103. [PubMed: 18724055]

3. Kudlow BA, Kennedy BK, Monnat RJ Jr. Werner and Hutchinson-Gilford progeria syndromes:
mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 2007;8:394–404. [PubMed:
17450177]

4. Ruzankina Y, Asare A, Brown EJ. Replicative stress, stem cells and aging. Mech Ageing Dev
2008;129:460–466. [PubMed: 18462780]

5. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest
2004;113:160–168. [PubMed: 14722605]

6. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell 2006;127:265–275.
[PubMed: 17055429]

7. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper
B, Brayton C, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature
2002;415:45–53. [PubMed: 11780111]

8. Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable
H. Modulation of mammalian life span by the short isoform of p53. Genes Dev 2004;18:306–319.
[PubMed: 14871929]

9. Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA, Serrano
M. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007;448:375–379.
[PubMed: 17637672]•• This paper shows that increased expression of Arf and wild-type p53 protects
mice from both cancer and ageing-related damages, indicating an anti-ageing role of Arf/p53 pathway
presumably through enhanced DNA damage repair

10. Dumble M, Moore L, Chambers SM, Geiger H, Van Zant G, Goodell MA, Donehower LA. The
impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood
2007;109:1736–1742. [PubMed: 17032926]•• This paper demonstrates that increased activity of p53
causes premature ageing of HSCs, while lower dose of p53 abolishes age-associated decline of HSC
repopulating capacity. Together with references [7] and [8], this study supports a pro-ageing role of
p53 pathway.

11. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M. Loss of Cdk4
expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia.
Nat Genet 1999;22:44–52. [PubMed: 10319860]

12. Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H. Targeted disruption
of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 1999;19:7011–
7019. [PubMed: 10490638]

Liu and Sharpless Page 7

Curr Opin Immunol. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Matsumura T, Zerrudo Z, Hayflick L. Senescent human diploid cells in culture: survival, DNA
synthesis and morphology. J Gerontol 1979;34:328–334. [PubMed: 429765]

14. Effros RB, Dagarag M, Spaulding C, Man J. The role of CD8+ T-cell replicative senescence in human
aging. Immunol Rev 2005;205:147–157. [PubMed: 15882351]

15. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science
2006;311:1257. [PubMed: 16456035]

16. Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev 2008;88:557–579. [PubMed: 18391173]
17. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell

Biol 2007;8:703–713. [PubMed: 17717515]
18. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho

RA. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet
2004;36:877–882. [PubMed: 15235603]

19. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL. Telomerase is required to slow
telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood
2003;102:517–520. [PubMed: 12663456]

20. Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A, Rudolph KL. Telomere
dysfunction induces environmental alterations limiting hematopoietic stem cell function and
engraftment. Nat Med 2007;13:742–747. [PubMed: 17486088]

21. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA
damage repair limit the function of haematopoietic stem cells with age. Nature 2007;447:725–729.
[PubMed: 17554309]•• This paper examines HSC function with age in mice deficient in several DNA
repair pathways and shows that HSC repopulating capacity and self-renewal is defective in the
absence of these pathways. This study also provides evidence that endogenous DNA damage
accumulates with age in HSCs and supports that DNA damage accumulation plays an important role
in HSC ageing.

22. Effros RB. Telomerase induction in T cells: a cure for aging and disease? Exp Gerontol 2007;42:416–
420. [PubMed: 17182206]

23. Fauce SR, Jamieson BD, Chin AC, Mitsuyasu RT, Parish ST, Ng HL, Kitchen CM, Yang OO, Harley
CB, Effros RB. Telomerase-based pharmacologic enhancement of antiviral function of human CD8
+ T lymphocytes. J Immunol 2008;181:7400–7406. [PubMed: 18981163]• This paper represents the
first study to use a pharmacological telomerase-based approach to enhance immune function. By
showing that a small molecule telomerase activator (TAT2) increases antiviral function of senescent
CD8+ CTLs in chronic viral infection, this study provides evidence that telomere shortening plays
an important role in immunosenescence caused by chronic infection.

24. Knudson M, Kulkarni S, Ballas ZK, Bessler M, Goldman F. Association of immune abnormalities
with telomere shortening in autosomal-dominant dyskeratosis congenita. Blood 2005;105:682–688.
[PubMed: 15238429]

25. Alter BP, Baerlocher GM, Savage SA, Chanock SJ, Weksler BB, Willner JP, Peters JA, Giri N,
Lansdorp PM. Very short telomere length by flow fluorescence in situ hybridization identifies
patients with dyskeratosis congenita. Blood 2007;110:1439–1447. [PubMed: 17468339]

26. Frenck RW Jr, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes
varies with age. Proc Natl Acad Sci U S A 1998;95:5607–5610. [PubMed: 9576930]

27. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis.
Lancet 2001;358:472–473. [PubMed: 11513915]

28. Obana N, Takagi S, Kinouchi Y, Tokita Y, Sekikawa A, Takahashi S, Hiwatashi N, Oikawa S,
Shimosegawa T. Telomere shortening of peripheral blood mononuclear cells in coronary disease
patients with metabolic disorders. Intern Med 2003;42:150–153. [PubMed: 12636233]

29. Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR. Telomere
dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 2003;95:1211–1218.
[PubMed: 12928346]

30. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee JM, Deblasio A,
Menendez S, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009;4:37–48.
[PubMed: 19128791]

Liu and Sharpless Page 8

Curr Opin Immunol. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



31. Chen J, Ellison FM, Keyvanfar K, Omokaro SO, Desierto MJ, Eckhaus MA, Young NS. Enrichment
of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem
cell function in normal and Trp53 null mice. Exp Hematol 2008;36:1236–1243. [PubMed: 18562080]

32. Akala OO, Park IK, Qian D, Pihalja M, Becker MW, Clarke MF. Long-term haematopoietic
reconstitution by Trp53−/−p16Ink4a−/−p19Arf−/− multipotent progenitors. Nature 2008;453:228–
232. [PubMed: 18418377]

33. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA. p53 deficiency
rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate
carcinogenesis. Cell 1999;97:527–538. [PubMed: 10338216]

34. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska
A, Wang C, Buer J, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with
dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007;39:99–105.
[PubMed: 17143283]

35. Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol
Cell Biol 2007;8:715–722. [PubMed: 17717516]

36. Baker DJ, Perez-Terzic C, Jin F, Pitel K, Niederlander NJ, Jeganathan K, Yamada S, Reyes S, Rowe
L, Hiddinga HJ, et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by
BubR1 insufficiency. Nat Cell Biol 2008;10:825–836. [PubMed: 18516091]• Using a progeroid
BubR1-insufficient mice model, this study shows that inactivation of Arf exacerbates premature
ageing while deletion of p16INK4a attenuates ageing phenotype in these mice. These data suggest
that p16INK4a and Arf may play apposing roles in mammalian ageing.

37. Ohkusu-Tsukada K, Tsukada T, Isobe K. Accelerated development and aging of the immune system
in p53-deficient mice. J Immunol 1999;163:1966–1972. [PubMed: 10438933]

38. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT. Hematopoietic
stem cell quiescence maintained by p21cip1/waf1. Science 2000;287:1804–1808. [PubMed:
10710306]

39. van Os R, Kamminga LM, Ausema A, Bystrykh LV, Draijer DP, van Pelt K, Dontje B, de Haan G.
A Limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem
Cells 2007;25:836–843. [PubMed: 17170062]

40. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore
I, Monestiroli S, et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of
leukaemia stem cells. Nature 2009;457:51–56. [PubMed: 19122635]•• This study demonstrates that
loss of the p53 target gene, p21CIP, which induces a transient cell cycle pause after DNA damage,
compromises leukemic stem cell renewal. Together with reference [38] and [39], these data indicate
that p21CIP is important for maintaining self-renewal of leukemia/hematopoietic stem cells.

41. Migliaccio M, Raj K, Menzel O, Rufer N. Mechanisms that limit the in vitro proliferative potential
of human CD8+ T lymphocytes. J Immunol 2005;174:3335–3343. [PubMed: 15749865]

42. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE. Ink4a/
Arf expression is a biomarker of aging. J Clin Invest 2004;114:1299–1307. [PubMed: 15520862]

43. Edwards MG, Anderson RM, Yuan M, Kendziorski CM, Weindruch R, Prolla TA. Gene expression
profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics
2007;8:80–92. [PubMed: 17381838]

44. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE.
p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006;443:453–
457. [PubMed: 16957737]

45. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA,
Sharpless NE, Scadden DT. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor
p16INK4a. Nature 2006;443:421–426. [PubMed: 16957735]

46. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison
SJ. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing.
Nature 2006;443:448–452. [PubMed: 16957738]

47. Signer RA, Montecino-Rodriguez E, Witte ON, Dorshkind K. Aging and cancer resistance in
lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 2008;22:3115–
3120. [PubMed: 19056891]•• In an effort to dissect the differential effects of ageing on lymphopoiesis

Liu and Sharpless Page 9

Curr Opin Immunol. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and myelopoiesis, this study discovers the preferential expression of p16INK4a and Arf in aged
lymphoid progenitors and shows that this higher expression contributes to reduced growth and
survival of B cell progenitors. Reduction of p16INK4a or Arf expression in aged lymphoid progenitors
rescues these defects, indicating an important role of INK4a/Arf locus in lymphoid progenitor ageing
in mice.

48. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE. Expression
of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009In
press.• This paper and reference [49] provide evidences that p16INK4a expression in human peripheral
blood lymphocytes is associated with chronologic age, genetics, and factors that affect the degree of
human ageing. These data validate the observations in model system and indicate that p16INK4a

expression, determined by chronological age, environmental exposures and genetics, acts as a
biomarker of human molecular age.

49. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, Ibrahim JG, Thomas NE, Sharpless NE.
INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to
atherosclerosis. PLoS ONE 2009;4:e5027. [PubMed: 19343170]

50. Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R Jr, Srikantan S, Subrahmanyam R,
Martindale JL, Yang X, Ahmed F, et al. p16(INK4a) translation suppressed by miR-24. PLoS ONE
2008;3:e1864. [PubMed: 18365017]

51. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group
gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature
1999;397:164–168. [PubMed: 9923679]

52. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence
distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003;425:962–967.
[PubMed: 14574365]

53. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is
required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003;423:302–
305. [PubMed: 12714971]

54. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27
trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor
suppressor gene. Genes Dev 2007;21:49–54. [PubMed: 17210787]

55. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-
Monch K, Minucci S, Porse BT, Marine JC, et al. The Polycomb group proteins bind throughout the
INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007;21:525–530. [PubMed:
17344414]

56. Hainan, Chen XG.; Su, I-hsin; Bottino, Rita; Contreras, Juan L.; Tarakhovsky, Alexander; Kim, Seung
K. Polycomb protein Ezh2 regulates pancreatic beta -cell Ink4a/Arf expression and regeneration in
diabetes mellitus. Genes Dev. 2009In press.• See annotation in reference [60•]

57. Gil J, Bernard D, Martinez D, Beach D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat
Cell Biol 2004;6:67–72. [PubMed: 14647293]

58. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem
cells. Nature 2003;423:255–260. [PubMed: 12714970]

59. van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk
M, Deschamps J, Sofroniew M, van Lohuizen M, et al. Posterior transformation, neurological
abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-
oncogene. Genes Dev 1994;8:757–769. [PubMed: 7926765]

60. Dhawan ST, Shuen-Ing, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-
cell proliferation. Genes Dev. 2009In press.• This paper and reference [56•] provide the evidences
that expression of PcG proteins EZH2 or BMI-1 reduces with ageing in pancreatic β-cells, which is
associated with observed increase in p16INK4a expression, diminished β-cell mass and phenotypes
of T2DM. These results suggest the possibility that a loss of PcG repression with ageing contributes
to the observed increase in expression of p16INK4a and ageing phenotypes noted in several human
tissues.

61. Oguro H, Iwama A, Morita Y, Kamijo T, van Lohuizen M, Nakauchi H. Differential impact of Ink4a
and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient
mice. J Exp Med 2006;203:2247–2253. [PubMed: 16954369]

Liu and Sharpless Page 10

Curr Opin Immunol. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



62. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, Tanger E, Hulsman
D, Leung C, Arsenijevic Y, Marino S, et al. Ink4a and Arf differentially affect cell proliferation and
neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 2005;19:1438–1443. [PubMed:
15964995]

63. Lagresle C, Gardie B, Eyquem S, Fasseu M, Vieville JC, Pla M, Sigaux F, Bories JC. Transgenic
expression of the p16(INK4a) cyclin-dependent kinase inhibitor leads to enhanced apoptosis and
differentiation arrest of CD4-CD8- immature thymocytes. J Immunol 2002;168:2325–2331.
[PubMed: 11859122]

64. Randle DH, Zindy F, Sherr CJ, Roussel MF. Differential effects of p19(Arf) and p16(Ink4a) loss on
senescence of murine bone marrow-derived preB cells and macrophages. Proc Natl Acad Sci U S A
2001;98:9654–9659. [PubMed: 11481442]

65. Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grander D. Involvement of the Ink4 proteins
p16 and p15 in T-lymphocyte senescence. Oncogene 1998;17:595–602. [PubMed: 9704925]

66. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW,
DePinho RA. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature
2001;413:86–91. [PubMed: 11544531]

67. Bianchi T, Rufer N, MacDonald HR, Migliaccio M. The tumor suppressor p16(Ink4a) regulates T
lymphocyte survival. Oncogene 2006;25:4110–4115. [PubMed: 16491120]

68. Zindy F, Quelle DE, Roussel MF, Sherr CJ. Expression of the p16INK4a tumor suppressor versus
other INK4 family members during mouse development and aging. Oncogene 1997;15:203–211.
[PubMed: 9244355]

69. Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF. Expression of p16INK4a
and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int
2004;65:510–520. [PubMed: 14717921]

Liu and Sharpless Page 11

Curr Opin Immunol. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Tumor suppressor mechanisms and their role in cancer and ageing
In response to exogenous gerontogens and endogenous damage signals, the tumor suppressors
p53 and p16INK4a are activated to prevent cancer but can also untowardly promote mammalian
ageing through inducing cell growth arrest, senescence and apoptosis. Activation of p53,
however, can also engage a transient cell cycle arrest and DNA repair that may retard ageing.
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Figure 2. Activation of p53 pathway in immune ageing
Many age-promoting stimuli can lead to activation of p53 pathway through ATM/ATR-
dependent DDR pathway or a DNA damage independent ARF-HDM2 pathway. ATM and/or
ATR, together with CHK1 and/or CHK2, facilitate activation of p53 in response to DNA
damage. In addition, p53 activation can also be induced by ARF in response to oncogene
activation, PcG loss or other unknown mechanisms. ARF inhibits HDM2 (MDM2 in mice)
and stabilizes p53 expression. Among a suite of p53 targets, p21CIP is activated and causes a
transient cell cycle arrest. Apoptosis and senescence can also be triggered through other p53
downstream pathways. Both apoptosis and cellular senescence lead to ageing at the organism
level, while transient arrest and DNA repair could restore normal homeostasis and delay ageing.
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Figure 3. Regulation of p16INK4a and its role in immune ageing
Senescence-inducing signals (e.g. mitogen stimuli and other unknown ageing-promoting
stimuli) activate the p16INK4a pathway by upregulating p16INK4a expression, which can be
achieved through a variety of mechanisms, including epigenetic, transcriptional, and
posttranscriptional regulation. It is not clear whether different stress-related signals employ
one or more specific mechanisms to regulate p16INK4a expression. However, once activated,
p16INK4a inhibits the proliferative kinases CDK4/6, leading to immune ageing through
induction of hypo-proliferation, and perhaps cellular senescence.
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