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Abstract
Less than 20 years ago, the von Hippel-Lindau (VHL) gene was discovered and associated with
sporadic renal cell carcinoma (RCC). Since then, researchers and clinicians have labored to better
understand the biology driving RCC tumor progression and provide means to predict patient survival
and response to therapy. Studies surrounding VHL inactivation and downstream effects continue to
provide insights into these areas. Besides studies of this primary pathway, cytogenetic studies, gene
expression analyses, tissue microarrays, serum proteomics, genomic resequencing, and microRNA
profiling have yielded greater understanding of RCC biology and clinical presentation, and have led
to a rich understanding of the heterogeneity of this disease. We review the current state of research
investigations into the molecular biology of RCC, and discuss the applications to currently used
clinical prognostic nomograms.

Introduction
One in 75 people will develop kidney cancer during their lifetime, being the seventh leading
cause of cancer in men and eighth in women in the United States [1]. Renal cell carcinomas
(RCCs) encompass a heterogeneous group of cancers including 60% to 80% of cases being
histologically of the clear cell (ccRCC) subtype. Papillary and chromophobe histologies round
out the other common subtypes. These stratifications represent highly dissimilar diseases and
not strictly variants of RCC. Recently, an increased appreciation of the distinct biology of these
subtypes has led to considerations of histology when managing these patients; however, even
this major subdivision provides little immediate guidance regarding disease prognosis and
management. Given this uncertainty, there is great need for both prognostic and predictive
biomarkers.

Tremendous efforts have been expended in the search for reliable indicators of the underlying
biology of renal carcinomas. With advancing technological opportunities to probe the genetic
and molecular underpinnings of this cancer, many critical discoveries have led to major
innovations in RCC, including a panel of molecularly targeted therapies which grew directly
from these discoveries. Our appreciation of the genetic steps contributing to renal cancer
development has been broadened, although some of the results have been surprising. However,
RCC stands apart as a notoriously chemotherapy-resistant cancer that has been coaxed into
submission using molecularly targeted agents that inhibit a target far removed from the inciting
genetic lesion. The investigations leading to these advances are reviewed here and form a
roadmap for future cancer therapeutic developments.
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Additionally, modern treatment decisions and the future of RCC drug development can still
benefit from increased understanding of the underlying tumor biology. Tremendous gains in
the treatment of this cancer remain to be made. The state-of-the-art science of RCC is a
continuously evolving topic, but one that promises to provide us with valuable tools for defining
the unique biology of an individual's tumor to inform predictions about recurrence or response
to therapy for patient-driven clinical decisions, and to aid in the discovery of new strategies to
effectively target this cancer. This review focuses on the current understanding of RCC biology,
focusing primarily on ccRCC, and examines genetic and molecular investigations that have
led to some biomarkers currently being advanced to provide personalized approaches to patient
care that extend beyond clinical features in current nomograms.

VHL and HIF Biology in ccRCC
The biology of the von Hippel-Lindau (VHL) gene product, pVHL, and its regulation of the
hypoxia-inducible factor (HIF) family of dynamically regulated transcription factors, is
indelibly linked to ccRCC biology. The discovery of the VHL gene, and its association with
the VHL syndrome of central nervous system hemangioblastomas, pheochromocytoma, and
ccRCC, in 1993 [2] led almost immediately to the discovery that VHL mutation is tightly
associated with sporadic ccRCC as well [3,4]. The loss of VHL leads to the loss of regulation
of HIF family members HIF1α and HIF2α [5], and several splice variants of HIF3α [6].
Xenograft studies have confirmed that restoration of pVHL expression or suppression of
deregulated HIF impairs the growth of these tumors [7,8].

Because of the essential role of VHL in RCC, the presence and type of VHL mutations in tumors
have been consistently considered as possible biomarkers. Cowey et al. [9] recently thoroughly
reviewed its potential in prognosis and prediction. Further research is still required to establish
VHL's efficacy as a biomarker, but given the frequency of its inactivation, more hope may lie
in looking downstream.

When VHL is inactivated and HIF expression thereby stabilized, a variety of other genes are
transcriptionally upregulated [10]. Which of these factors or combination of factors participates
in forming and maintaining the malignant phenotype of these tumors remains an open question.
Certainly many hypoxia-responsive genes are outstanding candidates. One HIF target, the
vascular endothelial growth factor (VEGF), has been found to be vastly upregulated in kidney
tumors compared to its elevated expression in many other cancers [11,12]. This growth factor
contributes to the highly vascular nature of this tumor, acting as a mitogen for tumor endothelial
cells. Multiple therapeutic strategies have been developed to target VEGF, neutralizing its
activity as a soluble growth factor or inhibiting the activated VEGF receptor tyrosine kinase.
Remarkably, these strategies have consistently demonstrated an effect of inhibiting tumor
progression, including therapeutic responses [13]. These breakthroughs demonstrate how
much ccRCC remains dependent on key elements of HIF pathway activation, and that even if
we can only target a fraction of the perturbed system, there can be tremendous clinical benefits.

We have also learned that in spite of the tremendous correlation of ccRCC with loss or
inactivation of VHL, the effect on HIF deregulation is not uniform. Variant mutations in
VHL may contribute to imbalances of HIF1a and HIF2a deregulation leading to distinct effects
on cell growth [14,15]. Renal tumors can in fact be characterized as H1H2 (expressing HIF1a
and HIF2a) or H2 (expressing only HIF2a), with dramatically differing effects on tumor cell
metabolism and C-myc regulation [16••]. Recent evidence suggests that the H2 tumors may
lose HIF1a expression as a result of nonsense missense mutations in a subset of tumors
[17••], suggesting a potentially selective pressure to lose the HIF1a gene during tumor
progression. These insights to potentially narrow the key tumorigenic events within the VHL/
HIF axis will undoubtedly lead to novel strategies for prognostic and therapeutic maneuvers.
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Cytogenetic Studies
Beyond VHL loss and HIF activation lies the great morass of genetic events that supplement
these common molecular features to give the “teeth” to RCC. Major efforts have yet to identify
a simple linear progression of genetic lesions accounting for the gains in aggressiveness in
RCC. Rather, it appears that many events, most surprisingly dissimilar to other epithelial
cancers, participate in this progression, discovered via both new strategies to examine the
cancer genome and conventional cytogenetic studies. These studies have enhanced our
understanding of the cancer genome in RCC.

Quite a bit of work has already been done to advance the field of RCC cytogenetic research
[18–20]. However, two important large-scale ccRCC cytogenetics studies were published
within the past year. One study performed both single nucleotide polymorphism (SNP) analysis
and gene expression analysis on 54 cases of sporadic ccRCC and 36 tumors from 12 patients
with VHL disease [21•]. Importantly, this group confirmed a widely held, but previously
unproven assumption about ccRCC and VHL disease: tumors from sporadic and VHL-disease
ccRCC tumors have overall similar profiles, but sporadic tumors are more heterogenous and
contain more events per tumor. In fact, unsupervised analysis of gene expression data from
these two groups could not distinguish them. While this study did not identify any prognostic
or predictive biomarkers, knowing that VHL disease induced ccRCC and sporadic ccRCC
tumors are so similar suggest that they may be able to be targeted with the same treatments.

The other study was a prospective study of 282 ccRCC patients with up to 108 months of
follow-up using traditional cytogenetic karyotyping techniques [22••]. They determined that
loss of 3p was significantly associated with increased disease-specific survival, while loss of
4p, 9p, and 14q were significantly associated with decreased disease-specific survival. Only
loss of 9p remained significant in multivariable analysis in the presence of standard clinical
measures, but the specific genes in these regions implicated in causing the poor prognosis
remain to be characterized.

In determining these individual genes associated with RCC, we turn to sequencing studies.
Although whole-scale sequencing has not yet been performed on large numbers of renal
carcinomas, this tumor type is being examined as a priority tumor in the cancer genome atlas
and by other international efforts. Large-scale sequencing of cancer genomes is becoming more
common as technology becomes better and the cost decreases. In ccRCC, the Futreal group
has resequenced 3544 genes in 96 pretreatment tumors, as well as performing SNP and gene
expression analyses on these tumors [17••]. They then sequenced genes with at least two
nonsynonymous mutations in another 246 ccRCC tumors. Using a false discovery rate cutoff
of 20%, the authors suggest that mutations in SETD2, JARID1C, NF2, UTX, and MLL2 have
been selected for a role in cancer development or progression, opening up several interesting
themes in tumor progression, particularly pertaining to the role of histone methylation. These
studies will likely enhance our understanding of the steps that may permit or promote renal
tumorigenesis, ultimately to the benefit of patient-centered therapy.

Gene Expression Studies
Following the overwhelming success of gene expression analyses in breast cancer, including
the resulting US Food and Drug Administration–approved gene panels predictive of risk for
breast cancer recurrence [23], it was logical to attempt similar studies in ccRCC. Gene
expression data of ccRCC tumors have been studied by both supervised and unsupervised
analyses. Supervised analyses are designed to reveal the differences among tumors based on
preselected criteria, often survival, easily deriving biomarkers for the clinical characteristic of
interest. In contrast, unsupervised analyses work with the data a priori and, therefore, are more
likely to determine the underlying biological differences. While these biological differences
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may also correspond with survival or other clinical characteristics, these correlations are
tangential to the original analyses; thus, these two types of analyses generate very different
kinds of results. Table 1 gives an overview of the microarray gene expression studies performed
in RCC.

Analyses focused on clinical outcomes
One of the earliest studies examined 29 ccRCC tumors and identified 51 genes that could
classify tumors based on 5-year disease-specific survival [24]. This study verified the
possibility that gene expression profiles could be used to predict outcome, but remains to be
examined in a validation study or to be defined by biological parameters that may account for
this difference in disease activity. Two years later, another group examining 51 metastatic clear
cell tumors identified 45 survival genes, with vascular cell adhesion molecule-1 (VCAM-1)
being the most predictive [25]. Since then, two retrospective studies have shown that VCAM-1
has prognostic significance [26,27]. Intriguingly, high expression of this molecule predicted
for better overall survival for both clear cell and papillary histology, suggesting that VCAM-1
expression may generally indicate tumor cells with lower metastatic potential. The further
implications for antiangiogenic therapy are not yet known.

Another study described a gene signature for RCC progression, including three genes (caveolin
1, lysl oxidase, and annexin A4) that had been previously associated with RCC aggression and/
or survival [28]. A similar study concurrently identified a potential gene panel for aggressive
clinical behavior in ccRCC by analysis of gene expression profiles of a set of nonaggressive
(low Fuhrman grade), aggressive (mostly high Fuhrman grade), metastatic, and normal kidney
samples [29]. One of these genes, survivin, was shown to independently predict clear cell
progression and risk of death [30] and, therefore, was incorporated into a new prognostic
algorithm [31].

The largest study included 177 clear cell tumors and identified 340 transcripts (including
VCAM-1) that could be used to assign a risk score to a patient, which was significant in
multivariate analysis with stage, grade, and performance status [32•]. When this group later
investigated the biology associated with their survival gene set, they found that tumors from
patients who survived longer more resembled normal renal cortex or glomerular tissue, while
poor survival patients had tumors that exhibited a wound-healing signature [33]. Further
delineation and validation of pathways that contribute to tumor progression and an enhanced
appreciation of the originating cell of ccRCC would be extremely useful for modeling RCC
and identifying pre-cancerous changes earlier.

Biologically driven analyses
While all of the above studies performed supervised analysis, many of them [24,25,28,29,
32•] started with an unsupervised analysis. A common practice in array analysis is to perform
unsupervised analyses to get a general understanding of the data, then move on to a supervised
analysis to achieve the answers sought. Two of the unsupervised analyses from above bear
further examination: the study that identified VCAM-1 as a prognostic biomarker first showed
that there seemed to be two subgroups within the stage IV tumors, with possible survival
differences [25]. This suggests that molecular features beyond clinical staging could provide
informative data in understanding even metastatic tumor behavior. The group of Zhao et al.
[32•] examined their 177 tumors using 3674 genes and saw five different subgroups within
two larger groups of ccRCC, with significant survival differences as well as predicted
biological pathway distinctions. These studies helped set the stage for further delineation of
subgroups within ccRCC.
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In a strategy to intersect the supervised analyses with biological rationale directed toward the
most studied and understood pathway in RCC, gene expression profiles were linked with VHL
tumor suppressor protein (pVHL) mutation analysis and expression characteristics of the HIFs
[16••]. In this study, 160 ccRCCs were classified as VHL mutant or wild type and according
to HIF protein expression. VHL mutant, HIF1 and HIF2 expressing tumors (H1H2)
overexpressed the Akt/mTOR pathway, while VHL mutant tumors expressing solely HIF2 (H2
tumors) replicated more rapidly, marked by overexpression of Ki-67 and activation of c-Myc
signaling. While survival data were not available for this study, other groups have identified
Ki-67 as a poor-risk marker [34]. Further studies on the efficacy of HIF1 profile as a prognostic
marker are anticipated.

Two other studies stand out as being predominantly geared toward identifying the inherent
subgroups and underlying biological differences of ccRCC. The first is the Skubitz group
[35], which looked at 16 ccRCC tumors and saw that there seemed to be two types of clear
cell, one that more highly overexpressed metabolic genes and the other extracellular matrix/
cell adhesion genes. Most recently, we used a robust technique called unsupervised consensus
clustering on 48 tumors to identify two subtypes of ccRCC, ccA and ccB, that could be
distinguished by fewer than 120 probes [36]. Validating these results in the Zhao et al. [32•]
dataset of 177 tumors, we determined that patients with ccA tumors have a marked survival
advantage over those with ccB tumors. Additionally, this dataset shares the characteristics that
ccA tumors display a profile of altered metabolism, whereas ccB tumors display characteristics
of wound healing and epithelial to mesenchymal transition. This classification scheme was
significantly associated with survival in both univariate and multivariate analysis and is
undergoing further validation.

A large number of potential biomarkers have emerged from all these gene expression studies.
Encouragingly, trends are beginning to emerge between studies. The next important step will
be bringing these potential biomarkers and biomarker profiles to the clinical arena, an aspect
discussed in the Nomograms section below.

Other Technologies
A number of other technologies have been utilized in attempting to find good prognostic
biomarkers for ccRCC. Among them, we will touch briefly on tissue microarrays (TMAs),
plasma serum protein analysis, and microRNA profiling.

TMAs allow for quantitative and relatively quick immunohistochemical (IHC) analysis of
tumor protein expression patterns. A total of 800 organ-confined ccRCC tumors were recently
examined for expression of 15 proteins with regard to tumor stage, Fuhrman grade, and survival
data [37]. Surprisingly, while pVHL and phospho-mTOR staining correlated inversely with
tumor stage and grade, neither protein correlated with survival. However, expression of p27,
PAX2, periostin, p-S6, and CAIX did correlate with 5-year survival. Within the intermediate-
stage tumors (pT2 and pT3), they found that patients with p27 and CAIX-positive tumors fared
better. This information could be very useful in making clinical decisions for patients in these
difficult to predict categories. Many other potential biomarkers have been identified through
other TMA studies [34].

All of the potential biomarkers listed thus far require removal and processing of at least part
of the tumor. In contrast, the use of plasma serum proteins would simply require a blood test.
Plasma serum proteins have traditionally been studied to find noninvasive diagnostic markers
for the presence of ccRCC as compared with normal or benign renal tissue. To date, no
measurable proteins have been moved forward for screening or diagnostic evaluation.
However, work from Perez-Gracia et al. [38] identified potential predictive biomarkers for
response to sunitinib in metastatic RCC patients. Serum from patients with clinical response
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or progression was screened by cytokine arrays to discover that tumor necrosis factor-α and
matrix metalloproteinase-9 levels remained low in responders. Additionally, high levels of
these proteins in the serum correlated with decreased overall survival. In another study, low
levels of sVEGFR-3 and VEGF-C in the serum corresponded with longer progression-free
survival and objective response rate in bevacizumab-refractory metastatic RCC [39]. A third
study suggested that large changes in serum VEGF, sVEGFR-2, and sVEGFR-3 levels
corresponded with tumor response [40]. All of these potential predictive biomarkers require
external validation in larger sample sizes, but suggest that serum may prove to contain cogent
markers of survival and response.

MicroRNA, 21–23 nucleotide segments of single-stranded non-coding RNA, have now been
implicated in tumorigenesis of many cancers, even being identified as potential prognostic
biomarkers in several of these. The aberrant expression of these non-coding RNAs can provide
a powerful method of epigenetic tumor regulation, as an individual microRNA can alter the
expression of many target genes. In RCC, various studies have identified various individual
or panels of microRNAs that are differentially expressed between normal renal tissue and tumor
[36,41–43] or between histological subtypes [41,44]. The identification of relevant targets of
these tumor-associated microRNAs is just becoming realized [41,45]. What makes microRNAs
so unique compared to proteins and other small molecules is that their stem-loop structure
makes them extremely stable. MicroRNAs can be easily extracted from formalin fixation,
paraffin-embedded tissue, and blood. The ability to easily use noninvasive measures to identify
a stable target makes microRNAs a very attractive biomarker for diagnostic, prognostic, and
predictive purposes.

Updating Nomograms
There are a number of prognostic scoring systems to assign risk for death to ccRCC patients
already in common use based on clinical variables. An understanding of these patient
stratification schemes is necessary as the field moves toward the routine incorporation of
molecular biomarkers into strategies for patient stratification. For initial prognostication of risk
for recurrence or death following a definitive surgical procedure, the American Joint
Committee on Cancer Tumor Node Metastasis (TNM) [46], the UCLA Integrated Scoring
System (UISS) [47], and the Memorial Sloan-Kettering Cancer Center (MSKCC) [48]
nomograms all use clinical information including radiographic size and clinical performance
status, and add in histologic information to the noninvasive clinical measures. The Mayo
Clinic's Stage, Size, Grade, and Necrosis (SSIGN) algorithm further includes tumor necrosis
[49], and another nomogram from MSKCC uses all of the above and vascular invasion [50].
Thus, eventual transitions to inclusion of molecular information to the clinical scenario will
be relatively straightforward once the most relevant molecular biomarkers emerge.

For prognosticating survival in the metastatic setting, a metastatic disease MSKCC score is
one of the most commonly used algorithms, incorporating blood measurements of hemoglobin,
serum calcium, and lactate dehydrogenase, as well as clinical evaluation of performance status
and nephrectomy status [51]. A similar nomogram was identified by the Cleveland Clinic
Foundation based on an independent multivariate analysis [52]. The Mayo Clinic devised a
nomogram for metastatic clear cell tumors only that scored patients based on symptoms at
nephrectomy, bone/liver metastases, multiple metastases, resection of all metastases, time to
progression, tumor thrombus, primary tumor grade, and coagulative tumor necrosis [53]. A
recent outstanding review by Isbarn and Karakiewicz [54•] provides a complete overview of
these nomograms.

Each of the above means of calculating risk for recurrence or death of disease were designed
after 1999 and are well used by clinicians, yet have not included any of the large number of
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possible biomarkers. In 2005, Kim et al. [55] devised a prognostic model to assess patients’
metastatic disease that added CA9, vimentin, p53, and pTEN IHC quantification to the common
measure of tumor stage and patient performance status. This model had a slightly higher
concordance index than did the UISS scale using clinically available parameters (0.68 vs 0.62).
While not making a substantial stride in influencing prognostic accuracy, this study opened
the door to hybrid nomograms that incorporate both clinical and genetic or molecular features.
Table 2 provides a list of clinical features incorporated into commonly used algorithms that
should be considered when designing hybrid nomograms.

More recently, Yao et al. [27] fashioned a three-gene signature of VCAM-1, EDNRB, and
RGS5 to be measured by quantitative real-time polymerase chain reaction. Their outcome
prediction score could stratify patients into low, medium, and high-risk groups, even in
metastatic disease cases. However, while the authors calculated a receiver operating
characteristic curve to predict the specificity and sensitivity of their predictor alone and with
tumor stage and grade, it remains necessary to be validated in direct comparison with a currently
used algorithm. Similarly, the Bioscore algorithm was formulated in 2009 based on IHC
expression of B7-H1, survivin, and Ki-67 [31]. The authors found that dichotomizing the
expression levels of these proteins provided a c-index of 0.733, suggesting that Bioscore may
add prognostic value to both the UISS and SSIGN algorithms. The Bioscore group presents
an algorithmic model that may be beneficial for other groups to mimic: identifying patient
groups not prognostically improved by the addition of Bioscore data, such that only groups
that would benefit were recommended for further testing. This system is appropriate to avoid
undue testing expenses, and inappropriately applying molecular information in scenarios where
the additional data are uninformative.

While all of the above biomarker algorithms may enhance prognostic ability, they lack the
ability to address underlying tumor biology. The Pantuck group has begun to address tumor
biology by developing a nomogram with a c-index of 0.89 that includes TNM staging, Fuhrman
grade, and loss of chromosome 9p [22••]. The incorporation of biological information into
existing nomogram strategies for clinical prognostication or prediction of response to therapy
is clearly not trivial. However, neither clinical data, nor biological information, can be treated
in isolation. Both are relevant to patient care and patient outcomes. The future success of
biomarker programs will take a considered approach to modifying existing algorithms or
developing new hybrid algorithms based on large-scale multivariate analysis.

Conclusions
In the last decade, great strides have been made for RCC patients with regard to earlier
diagnoses, development of new treatment options, providing better prognostic information,
and beginning work on predictive biomarkers. Many challenges remain: most of the new
prognostic algorithms still require independent validation, ideally in prospective studies. The
large number of biomarkers needs to be culled into a manageable panel of markers for clinical
application in prognosis and prediction, made widely available, and covered by health
insurance. However, breast cancer has proven to us that these seemingly overwhelming tasks
are very possible. RCC is ripe for personalized cancer treatment, which takes into account the
underlying biology of an individual's tumor. The state-of-the-art has clearly led this field to
the enviable position of having a range of effective molecularly targeted therapies, with further
improvements expected on the horizon; mature profiles of protein and nucleic acid biomarkers,
which will help us to define the spectrum of tumors that lie under the umbrella of ccRCC; and
a future unmapped territory of genetic mutations to explore that may provide more tools and
answers to the questions we ask. There is great hope for the future of RCC treatment, and it
will be exciting to see what new advances will be made in the decade to come.
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Table 1

Gene expression studies in RCC

Study Year Samples Analytical focus Results

Clinically driven analyses

    Takahashi et al. [24] 2001 29 cc
29 normal

5-year survival 51 probes associate with
survival, 96% accuracy

    Vasselli et al. [25] 2003 51 cc
6 papillary
1 unknown

Survival 45 genes most associated with
survival; VCAM-1 alone can
stratify patients by survival

    Jones et al. [28] 2005 22 cc
10 metastases
37 other
24 normal

Progression and metastases 31 genes that are continuously
deregulated in disease
progression; 155 genes that
associate with metastases,
88.9% accuracy

    Kosari et al. [29] 2005 10 aggressive cc
9 non-aggressive cc
9 metastatic cc
12 normal

Tumor aggressiveness 35 genes distinguish between
non-aggressive and aggressive
tumors; survivin expression
associated with survival by
multivariate analysis in 183
patients

    Zhao et al. [32•] 2006 177 cc Unsupervised 2 primary clusters composed
of 5 subclusters with survival
difference

    Yao et al. [27] 2008 25 cc
(14 metastatic)
2 metastases

Metastatic vs nonmetastatic 3 genes (VCAM-1, EDNRB,
RGS5) that by qRT-PCR
associate with survival

Biology-driven analyses

    Vasselli et al. [25] 2003 51 cc
6 papillary
1 unknown

Unsupervised 2 clusters of metastatic tumors
with survival difference

    Skubitz et al. [35] 2006 16 cc
21 normal

Unsupervised 2 subtypes distinguishable by
546 genes, with possible
pathway differences

    Zhao et al. [32•] 2006 177 cc Survival 259 genes associated with
survival by univariate and
multivariate analysis

    Gordan et al. [16••] 2008 21 cc Wild-type VHL vs H1H2 vs H2 tumors 3 groups have distinct
biological pathways; H2
tumors overexpress c-Myc,
leading to increased
proliferation

    Zhao et al. [33] 2009 177 cc Biology of survival gene set Good prognosis tumors
resemble normal renal cortex
or glomerulus; poor prognosis
tumors associated with wound
healing and loss of
differentiation gene sets

    Brannon et al. [36] 2010 48 cc
18 normal

Unsupervised consensus clustering 2 subtypes of cc (ccA and ccB)
with pathway and survival
differences, differentiable by
< 120 probes

Gene expression and cytogenetics/sequencing analyses

    Furge et al. [18] 2004 60 cc
5 papillary
16 chromophobe

Histological classification by virtual cytogenetics 1018 gene classifier and
cytogenetic classifier to
distinguish between 3
subtypes, 99% and 81%
accuracy, respectively

    Sultmann et al. [19] 2005 65 cc
13 papillary
9 chromophobe

Cytogenetics; metastases and survival 136 genes significantly
associated with cytogenetic
abnormalities; 45 genes
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Study Year Samples Analytical focus Results
25 normal associated with survival; 85

genes associated with
metastasis formation

    Beroukhim et al. [21•] 2009 49 sporadic cc
5 metastases
36 VHL tumors

VHL disease vs sporadic clear cell VHL disease and sporadic
clear cell tumors have similar
gene expression and
cytogenetic profiles, but
sporadic cases have more
frequent alterations

    Dalgliesh et al. [17••] 2010 96 cc Genetics by sequencing Mutations in histone
modification and DNA
damage repair genes may be
important in RCC
development or progression

cc—clear cell; H1H2—HIF-1 and HIF-2 overexpressing; H2—HIF-2 only overexpressing; PCR—polymerase chain reaction; RCC—renal cell
carcinoma; VCAM—vascular cell adhesion molecule; VHL—von Hippel Lindau.
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