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Abstract

Human immunodeficiency virus type 1 (HIV-1) infection occurs throughout the body, and can 

have dramatic physical effects, such as neurocognitive impairment in the central nervous system 

(CNS). Furthermore, examining the virus that resides in the CNS is challenging due to its location 

and can only be done using samples collected either at autopsy, indirectly form the cerebral spinal 

fluid (CSF), or through the use of animal models. The unique milieu of the CNS fosters viral 
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compartmentalization as well as evolution of viral sequences, allowing for new cell types, such as 

macrophages and microglia, to be infected. Treatment must also cross the blood brain barrier 

adding additional obstacles in eliminating viral populations in the CNS. These long-lived infected 

cell types and treatment barriers may affect functional cure strategies in people on highly active 

antiretroviral therapy (HAART).
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Introduction

Compartmentalization of HIV-1 likely occurs throughout the body in tissues such as the 

liver, gut, lungs, kidney, and in fluids like breast milk and CSF. It is most well defined in the 

genital tract and the central nervous system [1]. The brain represents a unique environment 

not only for viral compartmentalization and evolution of virus but also for pathogenesis and 

potential harboring of latent virus that could present special challenges for eradication. 

Neurological dysfunction was recognized shortly after the discovery of HIV-1 infection. 

However, the mechanisms of basic questions about entry and viral evolution in the CNS are 

still debated, and insights into the causes of neurological impairment are continually updated 

and revised [2-4].

Recently, great effort has gone into finding a “cure” for HIV-1 by i) eradicating the CD4+ 

memory T cell latent reservoir using transcription regulating small molecules, ii) improving 

our ability to measure the actual size of the reservoirs, iii) trying to identify how and when 

the reservoir is established, and iv) determining what other cell types may be involved in 

harboring latent proviruses [5]. To this end, there needs to be a thorough understanding of 

HIV-1 infection in the brain, including compartmentalization and viral tropism.

Evidence for compartmentalized populations in the CNS and elsewhere

HIV-1 in the CNS has been extensively studied using autopsied brain or cerebrospinal fluid 

(CSF). Examination of HIV-1 in the CNS using brain tissue collected at autopsy samples 

demonstrates that people with HIV-associated dementia (HAD) harbor distinct viruses in 

their brains [6-10]. The CSF, which circulates the brain, can be used to asses viral dynamics 

in the CSF and at some level in the CNS which permits analysis of CNS viral populations in 

living subjects. The distinctions between HIV-1 populations in CSF versus blood are well 

documented, and it has been suggested that viral populations in the CSF and blood can 

originate from different routes [11-14]. Three states of virus have been described in the CSF 

when compared to the blood: equilibrated (where virus in the blood and CSF are very 

similar), compartmentalized (where blood and CSF viral populations are distinct, indicating 

separately evolving populations in these compartments), and clonal amplification (where a 

single variant is greatly expanded within a compartment). Clonal amplification and 

compartmentalization of HIV-1 subtype B and C strains in the CSF have been described 

using phylogenetic analysis of the single copies of full-length env genes in adults [15, 16] as 
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well as children [17]. Cell tropism studies of the pseudotyped virus, generated using full-

length env clones, in the CD4-inducible Affinofile cell line [18] revealed two types of viral 

entry phenotypes, which will be discussed at length later.

The CNS/CSF is not the only anatomical site where compartmentalized viral populations 

can exist. HIV-1 compartmentalization has been found in both the male and female genital 

tract (MGT and FGT). Viral load discrepancies between the blood and FGT were observed 

in 30 to 50% of cases [19, 20]. This discordance between viral loads in the blood and genital 

tract suggests that the virus is able to replicate independently in these compartments [21-23]. 

There is also evidence that viral shedding is influenced by local factors of the genital 

compartment [24]. Even subjects that are fully suppressed on HAART and have 

undetectable plasma viral loads can experience HIV-1 shedding in the FGT, which suggests 

that the FGT could serve as a potential reservoir for HIV-1 [25, 19]. Virus that is genetically 

distinct from that in the blood can also be detected in semen [26-31].

Recent studies analyzing the env genes from semen revealed compartmentalization for 30% 

(4/12) of subjects with chronic HIV-1 subtype C infection [32]. In both subtype C and 

subtype B infection extensive clonal amplification was present in the MGT, with one study 

reporting 50% (6/12) of subjects, and another 100% (5/5) ([33], Dukhovlinova et al in 

preparation). These bursts of viral amplification suggest active viral replication in the MGT. 

Similar observations were found for virus harvested from cervicovaginal lavage (CVL) 

samples. Even though the FGT does not seem to be as isolated a body compartment as the 

MGT, HIV-1 compartmentalization has been detected about half of the time in the FGT 

(7/13 and 5/10) ([34], Dukhovlinova et al in preparation). A direct relationship between 

compartmentalization in the FGT and blood T cell counts suggests that the origin of the 

compartmentalization in the GT may often be from short-lived and trafficking CD4+ T-cells 

([35], Dukhovlinova et al in preparation). This assumption is confirmed by the fast turnover 

(as early as 8 weeks) of both clonally amplified and compartmentalized viral strains in the 

GT. An exception would be the apparent compartmentalization can be partially due to 

recombination between clonally amplified variants, making the GT population look more 

complex and distinct then it actually is ([34, 36] Dukhovlinova et al in preparation). In 

addition to T cell trafficking and viral replication in local CD4+ T cells, long-lived cells may 

also play a role in maintaining a distinct viral population in the GT. Viruses with an 

increased ability to enter macrophages (described below) have been observed in the MGT 

and in a clonally amplified viral population in FGT (Dukhovlinova et al in preparation), 

suggesting a potential for a macrophage reservoir to play a role in the viral dynamics of the 

GT compartment.

Establishment and early evolution of virus in the CNS

CNS infection by HIV-1 can be significant and can occur early after transmission; however 

the details of local replication in the CNS can be quite diverse and evolve over time. HIV-1 

may persist in the CNS during therapy due to insufficient CNS penetration of some 

antiretroviral drugs and potentially due to the long-lived nature of resident CNS cells. The 

extent of the physiological effects of CNS infection can be seen in patients with milder 

forms of HIV-associated neurocognitive disorders (HAND), and the more extreme HAD. 
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These physiological effects have been linked to increased levels of neurological injury due 

to inflammatory signals. These immune system changes were recently reviewed by Price et 

al. [37].

Virus can be found in the CSF at low levels very early after transmission. In a subset of 

infected individuals, there is minimal CNS viral burden early [38, 39]; thus, HIV-1 is likely 

entering the CSF/CNS at low levels via incomplete partitioning of virus at the blood-brain 

barrier, or background level trafficking of immune cells, including small numbers of 

infected CD4+ T cells. Often, HIV-1 RNA loads within the CNS are elevated during 

primary infection and these elevated levels of virus can correspond with higher levels of 

CSF white blood cell (WBC) counts (i.e. pleocytosis) [39]. Thus, the CNS viral burden early 

in infection may be the result of the release of virus from an increased number of infiltrating 

infected CD4+ T cells trafficking from the periphery into the CNS, perhaps in response to 

HIV-1 replication in the CNS or due to another inflammatory condition.

Compartmentalized viral populations, genetically distinct from viral populations replicating 

in the periphery, can be detected in the CSF/CNS throughout the course of infection [40]. 

Two major classifications of compartmentalization have been defined that appear to be 

similar to the types of compartmentalization seen in the genital tract, as described above. 

The first is clonal amplification, the rapid expansion of genetically similar variants yielding 

a CSF viral population of low complexity. These populations require high levels of CD4 for 

entry, and are thus CCR5 (R5)-using T cell-tropic (discussed below). During primary 

infection, clonally amplified populations have been detected as early as two to six months 

post infection [39]. A second more complex form of CSF viral compartmentalization has 

also been identified, often consisting of macrophage-tropic virus (discussed below). Even 

during primary infection, these more genetically complex populations most often correspond 

with a longer time since HIV-1 infection, indicative of a more prolonged period of isolated 

replication and evolution of the population and entry phenotype [39, 17, 15].

While extensive compartmentalization can be a strong indicator of neuropathogenesis 

contributing to HIV-associated dementia (HAD) [40-42], compartmentalization has also 

been observed during primary infection, indicating that independent CNS replication can 

occur in the absence of overt neurological symptoms [40, 39, 15]. While a longitudinal link 

has not been made, this raises the possibility that early detection of compartmentalized CSF 

variants may identify subjects with a higher risk of developing HIV-associated neurological 

complications. In a recent study of primary infection [39], a compartmentalized CSF/CNS 

viral lineage established less than six months post infection persisted over a period of at least 

two years, showing the maintenance and evolution of a compartmentalized viral population 

within the CNS over a long duration of time starting during early infection. Additionally, in 

other subjects during primary infection [39], multiple distinct compartmentalized 

populations were observed within the CNS at different time points post infection, indicating 

that even when single compartmentalized populations aren't maintained, the CNS may 

provide a permissive environment for viral replication in which variants are successively 

and independently amplified within the CNS starting quickly post transmission.
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Vertically and horizontally transmitted viruses are often highly homogeneous, representing 

infection seeded by a single variant and characterized by low diversity [43, 42]. Thus, in 

most situations, compartmentalization within the CNS during primary infection results from 

the establishment of independently replicating viral populations that originated from the 

single transmitted lineage within the periphery. Alternatively, in recent primary infection 

studies following both vertical and horizontal transmission, a small subset of subjects were 

identified who were infected with multiple variants, with one of the variants largely 

sequestered in the CNS/CSF and the second variant replicating within the periphery [39, 17]. 

Based on these observations, one of the transmitted variants may have had a selective CNS 

tropism and was able to escape immune surveillance in this compartment, or CNS infection 

was a low probability event influenced by the chance introduction of a founder virus. 

Overall, during primary infection there are two distinct pathways to compartmentalization: 

early sequestration of a transmitted virus in the CNS, or the later establishment of 

independently replicating virus that originates in the periphery.

Link between compartmentalization and/or viral load in CSF and 

neurocognitive effects/HAD

HIV-1 can be found in the CNS/CSF within the first months of systemic infection, and the 

presence of virus can be accompanied with immune activation [44-46]. The majority of 

cases are asymptomatic [47-49]. In some cases, HIV-1 is clearly replicating in the CNS and 

this can lead to damage in the CNS and dementia or other neurocognitive disorders. Prior to 

HAART, these HIV associated neurocognitive disorders resulted in severe cognitive and 

motor disorders and dementia presenting with the onset of the severe immunosuppression 

stage of AIDS. This outcome has shifted with the availability of HAART. HAND now 

presents as more mild disturbances in psychomotor function, processing, and memory in 

patients on long-term therapy. These more minor symptoms can still disrupt daily life. This 

is not to say that, severe forms of HAND are not still seen in resource-limited settings, in 

people who are non-adherent, and in people who enter care late in disease [50, 51].

Many studies have attempted to elucidate mechanisms and correlations of HIV-1 

neuropathogenesis as it relates to HAND. As noted above, CSF viral RNA levels are 

typically lower than those in plasma [52]. One recent study of a small sample of HAND and 

cognitively normal (NC) subjects in Hawaii and Puerto Rico found HIV-1 DNA levels in 

CSF monocytes (CD14+) was higher in subjects with HAND than NC subjects, while the 

NC subjects had higher HIV-1 DNA levels in CSF lymphocytes (CD14-) compared to 

HAND subjects. This difference did not, however, correlate with HIV-1 RNA viral loads 

[53]. However, studies have reported CSF RNA viral load levels one log higher than plasma 

HIV-1 RNA viral load in subjects on drug therapy and with neuropathological HIV-1 

disease [54]. These subjects also had markers of CNS inflammation presenting as increased 

CSF protein or albumin level, which are atypical of neurologically asymptomatic patients on 

therapy. In addition, iron transport deficiency in the brain, red blood cell count, mean red 

blood cell volume, mean cell hemoglobin, hemoglobin [55], and increased levels of the light 

subunit of neurofilament protein (NFL) [56] have been suggested as indicators of neurologic 

dysfunction in persons infected with HIV-1.
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A genetic distinction between viral sequences in the CSF and in the plasma can also be a 

result of the separation of independent evolution in the two compartments and a potential 

indicator of neurologic irregularities. Most of the time, in response to drug therapy, virus in 

the CSF and virus in the plasma decay in parallel. In some cases, virus in the CSF decays at 

a slower rate than virus in the periphery [16, 57-60]. This may be accounted for by poor 

drug penetration in the CNS, a compartmentalized evolution of drug resistance, or continued 

production of virus in the face of drugs due to infection of a long-lived tissue cell such as 

macrophage or microglia. While genetically distinct, independently evolving populations of 

HIV envelope genes have been reported [15], compartmentalization is not exclusively 

specific to the envelope gene. Previous studies found compartmentalized pol and tat genes, 

and the LTR, and one recent study found brain-specific nef sequences. The nef mutations are 

predicted to be required for activation of tyrosine kinases that may ultimately promote 

efficient replication in macrophages (reviewed in [2, 61]).

Evidence for CNS Latency and general strategies for eradication and how 

they might work in the brain

Latent HIV-1, defined as integrated and transcriptionally silent proviruses, is untouched by 

current antiretroviral therapy, and poses a significant hurdle to eradication and cure of HIV 

infection. Latency is predominately attributed to the resting CD4+ memory T-cells reservoir 

[62], leaving the role of myeloid linage cellular reservoirs less clear. The strongest evidence 

for macrophage infection has been seen in the CNS of HIV infected patients with HAD [63, 

6-10], and when using simian models of infection. As one example of the ability of 

macrophages to be infected, in primates infected with a SHIV, >95% of infected cells were 

tissue macrophages in late stage disease (reviewed in [64]). Isolated viruses from these 

experiments had reduced titers, easily neutralized Env proteins, and were immune 

suppression-dependent to cause productive infection [64]. Similarly, high viral loads in 

plasma produced by tissue macrophages can be seen after CD4+ T-cell depletion in primary 

infection [64]. These experiments indicate that macrophage infection is dependent on viral 

evolution and requires either immunodeficiency to occur at a high level or immunologically 

privileged compartments like the CNS, where HIV-1 could also cause latency.

The CNS has 4 types of macrophages—microglia, perivascular macrophages, meningeal 

macrophages, and macrophages of the choroid-plexus—as well as other long-lived cell types 

such as circulating monocytes and astrocytes [65]. Turnover rates range from months to 

years for these cells types potentially making the CNS an ideal location for latency; however 

direct evidence of established latency from macrophages is lacking and largely limited to 

autopsy specimens [64]. Infection of macrophages in the CNS has been implicated in 

neurological impairment of HIV- infected patients however (reviewed in [66]). The role of 

infection of circulating monocytes and astrocytes is even more controversial. Early 

experiments establishing monocytes as a site of HIV infection were unable to ensure no T-

cell contamination, and although new sorting techniques remedy this issue the role of 

monocytes is still vague [66]. Astrocyte infection has also been widely debated (reviewed in 

[2]), most recently evidence of prolonged infection (160 days) has been shown but evidence 

of latency has never been established [67]. Knowing which (if any) of these cells can give 
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rise to a latent infection will be necessary to be able to target eradication strategies of the 

future.

Curative strategies for eliminating the latent reservoir are typically grouped into two main 

categories, functional cure approaches and sterilizing cure approaches. The proof of concept 

for a cure is the now well-known “Berlin patient”, but this was a highly restricted approach 

with significant complications [68-70]. The approaches to a functional cure can be divided 

into three distinct strategies: (1) early intervention where initiation of HAART occurs within 

days of infections to prevent the reservoir from being established [71, 72], (2) global T-cell 

activation, which has been shown to have undesirable toxicity effects, and (3) “kick and 

kill” using small molecules to reactivate HIV synthesis [73]. The “kick and kill” strategy has 

been the most tested method to date, however recent improved methods of analyzing the 

latent reservoir shows only a small fraction <0.2% of the reservoir is “kicked” [74, 75]. 

Additionally, in clinical trials using the histone deacetylase inhibitors (HDACi) vorinostat, 

romidepsin, and panobiostat, and disulfiram (an alcoholism drug) no reduction in the resting 

CD4+ memory T-cell reservoir size has been observed, showing the limitation of this 

strategy at least to date [76-78]. On top of all of the above issues, the CNS offers one more 

important road block, the blood brain barrier. Only some drugs are accessible to the CNS 

[79-81] depending on lipophilicity, the blood's protein binding molecules, and molecular 

weight [82]. Given the numerous challenges that are apparent with trying to activate the 

latent reservoir in general, a continued need for more sensitive measurements of the latent 

reservoir and more robust small molecules with good blood brain barrier penetration are 

areas of research that will need to be explored to attack potential reservoirs in the brain.

Viral tropism and sequence evolution

Most of HIV-1 is adapted to and replicating in CD4+ T memory cells [83, 84] reflected in 

the need for relatively high levels of the CD4 receptor and requirement for the CCR5 

coreceptor on the target cells surface for entry [85, 86], thus we have applied the term 

CCR5-using T cell-tropic (R5 T-tropic) viruses. In late stage disease, the viral population 

can evolve alternative receptor and coreceptor requirements to allow expansion into 

alternative target cell types (reviewed in [3]). It is important to note that viral populations 

that evolve to use additional cell types do not lose the ability to infect CD4+ T memory 

cells. The most common change in tropism is coreceptor switching, which occurs in late 

stage disease in approximately 50% of cases [87]. Coreceptor switching refers to viruses that 

acquire the ability to use CXCR4 as an alternative coreceptor allowing expansion into naïve 

CD4+ T cells [88-90], which makes them CXCR4-using (X4) T-tropic viruses. Another 

tropism shift that emerges during late disease or in distinct compartments (discussed above), 

but at a much lower frequency, is the ability to use lower levels of CD4 to expand into 

macrophages [18, 91-93]. Because these macrophage-adapted viruses generally use the 

original CCR5 coreceptor, [94-96] they are termed R5 macrophage-tropic (M-tropic) 

viruses.

R5 M-tropic variants are detected infrequently within the total population of HIV-infected 

humans, but are enriched in compartmentalized viral populations in the CSF/CNS [93, 16]. 

Some compartmentalized populations represent viruses that have adapted to macrophages by 
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enhancing their ability to enter using low levels of CD4 on the macrophage surface, which is 

approximately 20-fold lower in CD4 density compared to T cells [97, 95]. The 

compartmentalized R5 M-tropic viral populations tend to be complex, often as complex as 

the systemic R5 T-tropic populations isolated from the blood [16].

The remaining compartmentalized CSF populations represent the typical R5 T-tropic 

phenotype, but these cases are usually associated with pleocytosis [16], which means there 

is, temporarily, a supply of activated T cells that have infiltrated the CNS. These infiltrating 

T cells may undergo expansion of an infected T cell, resulting in clonal amplification of one 

or a few viral sequences, or may provide target cells for free virus already present in the 

CNS that would usually be abortive for a lack of T cells found in the CNS under normal 

conditions. In either case, these R5 T-tropic compartmentalized populations contain little or 

no diversity [16].

Although R5 T-tropic viruses preferentially target activated CD4+ T cells, it is possible for 

these viruses to enter macrophages [16, 95], which express both CD4 and CCR5, but the low 

levels of CD4 on macrophages make the probability of entry very low for viruses adapted to 

the high levels of CD4 on T cells. It is possible that this very low frequency infection of 

macrophages by R5 T-tropic cells may provide the seed for the evolution of R5 M-tropic 

viruses, because even a low probability infection will occur if the low-efficiency target is in 

the presence of a sufficiently large population of viruses, which may be provided by the 

burst of viral replication in the CNS observed with pleocytosis.

Exactly how viruses evolve to enhanced low CD4 usage is still less clear. Though several 

groups have found single or double mutations that modulate R5 M-tropism in specific viral 

genomes (reviewed in [3]), none of the currently proposed mutations appear in all R5 M-

tropic viruses [98, 6, 3]. This could be for several reasons. First, the interaction between 

HIV-1 Env and CD4 is complex and may require a large constellation of mutations that have 

not all been identified yet. Alternatively, because R5 M-tropic variants are not transmitted 

and so must evolve independently anew in each case, each viral population may evolve 

along a slightly different path and achieve the same phenotype with a different set of 

mutations.

Compared to the modifications required for coreceptor switching (for X4 T-tropism), which 

are mostly in the V3 region (the main interface with coreceptor) and somewhat predictable 

using different algorithums [99, 100], the complexity of enhancing CD4 usage (for R5 M-

tropism) appears to be more complex. Until genetic determinants of R5 M-tropism are more 

fully understood, it will be difficult to compare the evolutionary paths to X4 T-tropism and 

to R5 M-tropism, but two important differences are notable. First, each of these paths is 

solving a different problem: switching from CCR5 to CXCR4 means a difference of protein 

shape or contact, but switching from using a high density of CD4 to a low density of CD4 is 

a difference of adapting to abundance of the same target. Second, the coreceptor binding site 

is generally hidden from immune surveillance until the virus has made contact with the 

target cell and is only exposed for a short time before fusion and so can evolve in relative 

safety, but the CD4 receptor binding site has to be generally available to make that first 

contact with the cell.
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Animal models of neuropathogenesis

Two animal models for HIV-1 infection are widely used: humanized mice and nonhuman 

primates. Humanized mice are generated from genetically immunocompromised mice that 

are engrafted with human lymphoid tissues to reconstitute cells of the human immune 

system (reviewed in [101]). Studies using NOD/scid-IL-2Rγc
null mice reconstituted with 

human hematopoietic stem cells obtained from cord blood (hNSG mice) show that human 

macrophages can be detected in the mouse brain, and HIV-1 proteins are found in a small 

number of cells [102, 103]. Yet the use of humanized mice for studying HIV-1 

neuropathogenesis is an incompletely developed method, in part because human microglia 

are not reconstituted in humanized mice. Microglia largely originate in early stages of in 

utero development independent of bone marrow hematopoiesis and remain in the brain 

throughout life with limited cell division (reviewed in [104]). Current humanized mouse 

models do not permit investigating the relative importance of infected macrophages versus 

microglia in HIV-1 neuropathogenesis.

Simian immunodeficiency virus (SIV) infection of nonhuman primates is also widely used 

as an animal model for HIV-1 infection. SIV isolates from old world primates represent a 

diverse set of viruses. In some cases an isolate from one species will cause AIDS-like 

pathogenesis in a different species. The most popular model that uses this concept is the 

pathogenic infection of Rhesus macaques with SIVsm (isolated from sooty mangabeys). 

These models have been used to study neuropathology in the context of independent 

(compartmentalized) SIV replication in the CNS or CSF compared to the peripheral blood 

and other lymphoid tissues.

SIVsmE543-3 is a SIVsm molecular clone that causes encephalitis in a fraction of infected 

macaques, starting as early as four months post-infection [105]. SIVsmE543-3 infects both 

CD4+ T cells and, with modest efficiency, monocyte-derived macrophages (MDMs) in 

culture, and is found in various immune cells within perivascular cuffs in the meninges and 

the parenchyma of the brain [105]. Macaques inoculated with SIVsmE543-3 or its 

derivatives display either conventional or rapid progression to AIDS, with encephalitis in 

some animals [106]. Conventional, but not rapid, progressors can have compartmentalized 

virus in the CSF that replicates better in MDMs compared to the parent SIVsmE543-3, 

which supports the idea that these viruses must evolve to replicate efficiently in 

macrophages in the CNS [106].

A neurovirulent viral swarm, SIVsmH783Br, is a derivative of SIVsmE543-3 that has 

recently been used to study compartmentalization of SIV in the CSF as compared to the 

CNS of macaques [107]. SIVsmH783Br-infected macaques, with rapid or conventional 

disease progression, were shown to have compartmentalized virus in the CSF [107]. 

Phylogenetic analyses demonstrated that virus was also compartmentalized within different 

regions of the brain. CSF viral sequences were most closely genetically related to sequences 

obtained from the meninges, and both compartments contained sequences with a truncated 

gp41 cytoplasmic domain. These data suggest intermixing of SIV between the CSF and the 

meninges [107]. Rapid, but not conventional, progressors had at least one CSF viral 

sequence that clustered with parenchymal viral sequences, whereas conventional progressors 
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had a distinct cluster of parenchymal viral sequences [107]. Collectively these data suggest a 

model were virus enters the CSF and replicates in the meninges, and may enter and replicate 

in the deeper brain tissues of the parenchyma depending on viral replication kinetics. Thus, 

each respective CNS compartment can harbor distinct viral populations compared to the 

periphery, with the parenchymal viruses being the most distinct from any other 

compartment.

Although the CSF-producing choroid plexus is considered a site of HIV-1 production in the 

CNS [108, 109], it is likely that SIV replicates throughout the brain, and undergoes selective 

pressure depending upon the environment of a specific brain region. Indeed, macaques 

infected with a molecular viral clone, SIVmac239, develop encephalitis of varying degrees 

marked by infiltration of peripheral viral species into different regions of the brain [110]. In 

another primate model, macaques infected with two viruses (a neurovirulent SIV clone and 

an uncloned immunosuppressive SIV strain) progress rapidly to disease and exhibit 

compartmentalization of SIV in the CNS that appears to have undergone selective pressure 

upon entry to the brain [111].

At least two macaque models of SIV neurovirulence support the theory that 

compartmentalized virus in the CSF plays a role in neuropathology [107, 112]. Macaques 

inoculated with SIVsmE660 viral swarm have elevated levels of MCP-1 (CCL2), a CNS 

inflammation marker, when CSF virus is compartmentalized [112]. The study by Matsuda et 

al. described above shows that distinct, compartmentalized viral populations are found in the 

meninges versus parenchyma and are likely responsible for meningitis and encephalitis, 

respectively [107]. However, compartmentalization is not a prerequisite for neuropathology, 

as rapid disease progression marked by encephalitis can occur in the absence of 

compartmentalized CSF virus [107]. Naturally SIV-infected African green monkeys exhibit 

CSF/CNS virus compartmentalization and robust viral replication without associated 

neuropathology, although peripheral infection does not cause simian AIDS either [113]. 

Still, CSF/CNS compartmentalization usually correlates with length of infection, as 

conventional and long-term progressors consistently demonstrate a higher degree of 

compartmentalization associated with strong phylogenetic statistics, as compared to rapid 

progressors [106, 107, 110]. Thus nonhuman primate models demonstrate that SIV 

compartmentalization occurs in the CSF and CNS of animals with neuropathogenesis, but 

additional studies are needed to clarify the origin of viral populations within specific brain 

compartments and the relative contribution of these respective viral populations to CNS 

disease.

Conclusion

The brain is a unique compartment for viral evolution and latency. In-depth analysis of the 

virus isolated for the CSF of humans and the use of monkey models has illuminated viral 

tropism evolution in relation to neurocognitive effects and compartmentalization, as well as 

illustrated the possibility for a large isolated viral reservoir that could present an obstacle for 

a functional cure. Limitations in the penetration of small molecules across the blood brain 

barrier will likely have important consequences in eliminating the latent reservoir. Future 

efforts to better understand HIV-1 infection of the CNS will need to focus on subjects 
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receiving therapy. Generating more sensitive measurement techniques for evaluating latent 

reservoirs as well as evaluating drug penetration into the CNS will be important waypoints 

on the trip to eradicate viral populations throughout the body.
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