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ABSTRACT: Natural killer (NK) cells are important in protection against virus infections, and many viruses have 
evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus 
infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, 
the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, 
affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with 
other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the 
exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated 
through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. 
Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and 
other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which 
NK cells enhance or suppress adaptive immune response and long-lived immunological memory. 
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I. INTRODUCTION 

Natural killer cells play an important role in immune 
defense against virus infections and cancer through 
their cytolytic activity and production of cytokines.1–4 
NK cells can respond to inflammation and recognize 
molecular cues on certain target cells, thereby facilitat-
ing the production of IFN-g or the direct cytolysis of 
those target cells to suppress virus replication.5 Targets 
of NK cell cytolysis, including infected cells, are usually 
distinguished by reduced expression of MHC-related 
ligands for NK cell inhibitory receptors and elevated 

expression of pathogen-derived or stress-activated host 
ligands for NK cell activating receptors.6 Infected cells 
can also be recognized and lysed indirectly by NK cells 
through a phenomenon termed antibody dependent 
cellular cytotoxicity (ADCC), wherein antigens on 
the target cells are bound by virus-specific antibod-
ies that subsequently engage Fc receptors on the NK 
cell. In addition to direct control of virus replication, 
NK cells have been implicated in modulating other 
aspects of the host antiviral response. 

NK cells are typically identified by their surface 
expression of NK1.1 and NKp46 (in mice) or CD56 
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(in humans). However, there are numerous molecules 
that are expressed on NK cells that influence their 
functions and can be used to follow their activation 
state after infection. NK cells develop in the bone 
marrow and seed the peripheral compartments, which 
include the blood, secondary lymphoid organs, non-
lymphoid organs, thymus, and mucosal sites.7–9 In 
the homeostatic state, NK cells are abundant (~5% of 
splenocytes in mouse; 5%–20% of peripheral blood 
leukocytes in healthy people), and they are capable of 
proliferating under inflammatory conditions. Mature 
NK cells are heterogeneous in terms of surface 
receptor expression in mice and in humans.7,10,11 
Part of this variation is due to genetic and epigenetic 
variation in germline-encoded activating and inhibi-
tory receptor expression. Other variation is due to 
environmental influences, such as recent infection. 
A recent analysis of human NK cell diversity in the 
peripheral blood used mass cytometry, or cytometry 
by time of flight (CyTOF), to simultaneously survey 
28 NK cell receptors in different individuals.11 That 
study showed that there are 6000–30,000 phenotypic 
populations of NK cells within an individual and 
>100,000 phenotypes across individuals. Based on 
a comparative analysis of NK cells in monozygotic 
twins compared to unrelated donors, it was concluded 
that inhibitory receptor expression was primarily 
driven by genetics whereas environmental factors 
regulate activation receptor expression.11 These dif-
ferences likely contribute to functional heterogeneity 
among NK cells in mice and man.10 For example, 
tissue resident NK cells differ phenotypically—and 
probably differ functionally—from NK cells in lym-
phoid organs or in circulation.12 This variation likely 
affects immune defense. NK cells in mucosal sites 
are a first line of defense against infections and are 
also involved in recruiting other cell types to those 
sites of infection.13–15 It is plausible that NK cells 
residing in each tissue have dedicated functions 
involved in limiting infection, inducing protective 
immune responses, dampening potentially harmful 
immune responses, or tissue repair. 

Historically, NK cells have been regarded as inte-
gral components of immune-mediated elimination of 
infected, damaged, or transformed cells. Soon after 
NK cells were discovered,16,17 it became apparent 

that NK cells are activated as a consequence of virus 
infection and type I IFN induction.18–22 The vital role 
of NK cells in antiviral defense was first described 
in the context of murine cytomegalovirus (MCMV) 
infection of mice,23 and later extended to poxvirus 
species such as ectromelia (mousepox) virus.23–25 The 
contribution of human NK cells to antiviral defense 
was revealed through the discovery of individuals 
with heightened susceptibility to virus infections 
due to deficiencies in the number or function of NK 
cells.26,27 The presence of NK cell receptors, known 
as killer immunoglobulin-like receptors (KIRs), and 
their ligands has also been epidemiologically or 
genetically linked to disease outcomes associated with 
infections with human cytomegalovirus (HCMV), 
human immunodeficiency virus (HIV), hepatitis 
C virus (HCV), and other viral pathogens.4,28 For 
example, an inhibitory NK cell receptor (KIR2DL3) 
and its ligand (HLA-C1) were associated with 
resolution of acute HCV infection.29 In a similar 
fashion, KIR3DL1 and KIR3DS1 interactions with 
HLA-B were correlated with a delayed progression to 
AIDS disease in HIV-infected individuals.30,31 These 
studies indicate that NK cells contribute to antiviral 
immunity during some infections; however, the exact 
contribution(s) of NK cells are not clear due to the 
confounding ability of NK cells to contribute to 
antiviral immunity by regulating other immune cells. 

Over the last several years, there have been sig-
nificant advances in our understanding of NK cells 
and their long-term influence on adaptive immunity. 
NK cells can directly interact with T cells, B cells, 
neutrophils, macrophages, and dendritic cells. There 
are wide discrepancies between model systems in 
terms of whether NK cell immunomodulatory activi-
ties improve or impair host immunity, in part because 
NK cell-mediated changes in adaptive immunity can 
either mediate protection or exacerbate pathogenic 
outcomes of infection. Moreover, the direct antiviral 
and indirect regulatory functions of NK cells have 
been difficult to discriminate in vivo. The complex 
role of NK cells in pathogenesis of virus infections 
almost certainly reflects the multi-functional nature 
of NK cells in a wide range of physiologic processes. 
This review summarizes recent findings concerning 
how NK cells influence other immune cell popula-
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tions to enhance or inhibit adaptive immunity, with 
an emphasis on persistent virus infections. 

II. NK CELL ACTIVATION AND 
PERSISTENCE AFTER INFECTION 

There is a diverse pool of resident NK cells that are 
present when infection occurs. The diversity of these 
NK cells is due to their variegated expression of 
germ-line encoded activating and inhibitory receptors 
and their prior exposure to environmental factors.11 
Before infection, NK cell responses against healthy 
cells are prevented by NK cell expression of a variety 
of inhibitory receptors including KIRs, the leukocyte 
Ig-like receptor 1, Ig-like transcript 2, and CD94/
NKG2A heterodimers in humans; and inhibitory 
Ly49, KLRG1, and CD94/NKG2A heterodimers 
in mice.1,32 The ligands for these receptors include 
classical and non-classical MHC molecules and 
other ligands expressed on healthy cells that protect 
against aberrant NK cell responses against normal 
self.33 NK cells also express activating receptors, 
which recognize stress-induced host receptors and 
pathogen-derived proteins. Furthermore, a variety of 
cytokine receptors are expressed by NK cells and can 
modulate their responses. Following infection, NK 
cell activity is determined by the net contribution 
of positive and negative interactions with target or 
accessory cells mediated by signals from the activat-
ing and inhibiting receptors and cytokine receptors. 

A. The Activation of NK Cells during 
Infection 

Broadly speaking, NK cells are activated by three 
distinct processes: (1) soluble factors including inter-
ferons and other cytokines, (2) elevated expression 
of activating ligands or reduced levels of inhibitory 
ligands on accessory or target cells, and (3) infection-
associated antigens that directly bind NK cell recep-
tors.6 Once activated, NK cells form immunologic 
synapses with target cells and move lytic granules 
toward the target, followed by degranulation to kill 
the target cell.34 Alternatively, NK cells may express 

cytokines (eg, IFN-g or IL-10) to influence the 
inflammatory environment. 

Type-1 interferons, which are produced within 
hours of infection, are critical for stimulating NK 
cell activation and killer activity.18–20,35–37 Other fac-
tors, such as IL-2, IL-12, IL-15,38–43 and IL-18,44–47 
are also potent activators of NK cells that can work 
cooperatively to stimulate NK cells. For instance, NK 
cells are induced to make IFNg through synergistic 
interactions between IL-18 and IL-12,44,48,49 type-1 
interferon and IL-12,50 and IL-2 and IL-12.40,47,51 
Different infections stimulate these cytokines to 
varying extents. For example, NK cells are activated 
by IL-18 and contact with infected dendritic cells 
during Listeria monocytogenes infection,52–54 whereas 
many virus infections tend to induce high amounts 
of IFN-α/b.55 Thus, NK cell functions likely differ, 
depending on the nature of the infection and the 
panel of cytokines that are encountered.

NK cells express an array of inhibitory and 
activating receptors that modulate their activity 
(Table 1).1,32,56 NK cells are inhibited by self-ligands 
that are expressed on healthy cells. However, viruses 
often target MHC molecules and reduce their 
expression to avoid detection by virus-specific CD8+ 
T cells. The reduction in MHC molecules reduces the 
inhibitory receptor signaling into NK cells, making 
the NK cells receptive to activation signals. Infected 
cells also increase their expression of stress-related 
ligands that engage activating receptors on NK 
cells. Activating receptors in humans include the 
natural cytotoxicity receptors NKp46,57,58 NKp44,59 
NKp30,60 NKG2D,61,62 and FcgRIII (CD16), which 
recognizes IgG-bound target cells. Similarly, NKp46, 
DNAM-1 (DNAX accessory molecule-1), NKG2D, 
CD94/NKG2E, CD94/NKG2C, activating Ly49, 
and FcgRIII (CD16) stimulate mouse NK cells. The 
ligands for these activating receptors include stress-
induced ligands on activated cells and pathogen-
derived factors.28,63 NK cell number and function are 
also influenced by cell-intrinsic processes, including 
their differentiation state due to prior exposure to 
inflammatory stimuli, their baseline expression of 
STATs64,65 and their counter-regulators,66 and NK 
cell expression of microRNAs.66–70 Importantly, as 
NK cells respond to infection, their expression of 
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TABLE 1. Receptors expressed by NK cells that have been implicated in antiviral responses or in the 
regulation of adaptive immunity

Species NK cell receptor Natural cellular ligands Effect on NK cell activity

Human

NKp30 B7-H6, BAT3 Activating
NKp44 Heparan sulfate proteoglycan, heparin, 

proliferating cell nuclear antigen
Activating

NKp46 Heparan sulfate proteoglycan, heparin, 
vimentin

Activating

CD94/NKG2A HLA-E Inhibitory
CD94/NKG2C HLA-E Activating

NKG2D MICA/MICB, ULBP1-6 Activating
KLRG1 Cadherins (E,N,R) Inhibitory

2B4 CD48 Activating or Inhibitory
ILT2 HLA class 1 Inhibitory

KIR2DS1 HLA-C Activating
KIR2DS2 ??? Activating
KIR2DS4 HLA-C Activating
KIR3DS ??? Activating

KIR2DL2/3 HLA-C Inhibitory
KIR3DL1/2 HLA-A/HLA-B Inhibitory

DNAM1 CD155, Nectin-2 Activating
NTB-A NTB-A Activating

CD16 (FcgRIII) IgG Activating

Mouse

NKp46 ??? Activating
NK1.1 (NKR-P1A) Lectin-like transcript-1 Inhibitory

NKG2D RAE-1a, -1b, -1d, -1e, -1g,  
H60a-c, MULT1

Activating

CD94/NKG2A Qa-1b Inhibitory
CD94/NKG2C Qa-1b Activating
CD94/NKG2E Qa-1b Activating

KLRG1 Cadherins (E,N,R) Inhibitory
2B4 CD48 Inhibitory or Activating

Ly49D H-2Dd Activating
Ly49H ??? Activating
Ly49P ??? Activating
Ly49A H-2Dd, H-2Dk Inhibitory
Ly49I H-2Dk Inhibitory

DNAM1 CD155, Nectin-2 Activating
CD16 (FcgRIII) IgG Activating

aThese reviews by Campbell and Hasegawa,63 Lee and Biron,28 and Lanier6 include a comprehensive list of NK 
cell receptors.
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activating and inhibiting receptors, cytokine receptors, 
and signaling molecules evolves, further influencing 
how the cells respond across time. 

As mentioned above, NK cells can directly rec-
ognize some proteins of viruses and other pathogens 
(Table 2). Ly49H/DAP12 heterodimer on NK cells 
in B6 mice recognizes MCMV-m157, a viral glyco-
protein that resembles MHC1, and contributes to 
NK cell killing of MCMV-infected cells.71–73 NK 
cell immunity to MCMV imposes a strong selec-
tive pressure on the virus to mutate m157 to evade 
NK cells.74 NK cells from the Ma/My mouse strain 
are activated by Ly49P/DAP12 heterodimers that 
recognize H-2Dk molecules on MCMV-infected 
cells,75 leading to NK cell-dependent protection. 
Other examples include the human NK cell receptors 
NKp46 and NKp44, which bind to hemagglutinin 
(HA) from influenza and Newcastle disease viruses, 
leading to NK cell-mediated lysis of HA-expressing 
infected cells.76–78 NK cells are also stimulated 
through NKp44 interactions with envelope glyco-
proteins from West Nile virus and Dengue virus.79 

In conjunction with the host evolution involved 
in viral protein recognition, viruses have evolved 
mechanisms to avoid activating NK cells. For 
example, NK cells from the MCMV-susceptible 
mouse strain, 129/J, recognize m157; however, the 
interaction is mediated through the inhibitory recep-
tor, Ly49I, leading to suppressed NK cell responses 
to MCMV.80 Several herpesviruses encode MHC-I 
homolog proteins and proteins that limit expression 
of NKG2D ligands in an effort to reduce NK cell 
cytotoxicity of infected cells.81–83 HIV-infected cells 
also selectively downregulate HLA-A and -B which 
serves to avoid detection by cytotoxic T  cells, but 
concomitantly maintain HLA-C and -E and thereby 
protect against NK killing.84,85 Other data show that 
NK cell killing of HIV-infected CD4+ T  cells is 
inhibited through HIV-Vpu-mediated downregula-
tion of NTB-A on the infected cells.86,87 Multiple 
viruses target the NK cell activating receptor NKp30 
to prevent cytotoxicity. The HCMV pp65 protein 
binds to NKp30 and prevents NKp30-mediated 
NK cell activation.88 Likewise, liver NK cells are 
impaired in function in HCV-infected individuals,89 
in part through HCV-mediated downregulation of 

NKp30.90 HCV-infected cells can also inhibit NK cell 
cytotoxicity and cytokine production by expressing 
HCV-envelope that binds CD81 on NK cells,91,92 
or by HCV-core peptide mediated stabilization of 
HLA-E to inhibit NK cells through NKG2A.93 In 
addition to interfering with NK cell receptor func-
tions, certain viral proteins impact cytokine signaling 
as well, i.e., IL-10 homologs and IL-18 binding 
proteins.94–97 The ability of viruses to evade NK cells 
likely arose due to selective pressures and indicates 
the critical role for NK cells in eliminating infections; 
for more detail please see these reviews.98,99

B. “Memory” NK Cells 

One of the biggest recent discoveries is that NK 
cells have memory-like phenotypes where their 
frequency and differentiation status is maintained 
for an extended time (Table 3). Typically, in unin-
fected mice NK cells are thought to survive 7–14 
days.3,100–103 However, it has been observed that 
HCMV induces a long-lasting selection for subsets 
of NK cells expressing particular KIRs.104 Other 
data show that a subset of FcRgamma-deficient NK 
cells persist for extended times in individuals with 
HCMV infection, and the cells exhibit enhanced 
functional abilities when compared to conventional 
NK cells.105 Memory NK cells have been detected 
in MCMV and genital herpes virus infections in 
mice,103,106 and in people exposed to HCMV or 
hantavirus.107,108 Liver NK cells that were sensitized 
to haptens in T  cell-deficient and B cell-deficient 
mice could be transferred to new mice and mediate 
hapten-specific ear swelling 4 weeks later.109 Liver 
NK cells isolated from mice vaccinated with influenza 
virus-like particles or UV-inactivated VSV could 
transfer protection to naïve mice and protect the mice 
against lethal virus challenge.109 Following primary 
infection with MCMV, activated NK cells show a 
slow decay in frequency, so that an increased number 
of activated NK cells is still observable for ~2 months 
after initial infection.110 The term “memory” applied 
to sustained populations of NK cells is ambiguous in 
the setting of latent herpesviruses, since the NK cells 
may be restimulated by reactivating virus as opposed 
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TABLE 2. NK cells directly recognize virus-encoded ligands or cellular ligands that are modulated by 
virus infection.a

Species Virus Viral ligand or virus-modulated cellular 
ligands

NK cell receptor

Human HCMV HLA-E CD94/NKG2C
Cell stress ligands: MICA/B, ULBP1-4b NKG2D

pp65 NKp30
UL18 LILRB1

??? KIR2DS4, KIR2DS2, 
KIR3DS1

HSV Unknown but associated with ICP0 
expression

NKp30, NKp40, NKp46

EBV HLA-C KIR2DS1
Ectromelia virus HA NKp30, NKp46
Vaccinia virus HA NKp30, NKp46
Dengue virus Envelope-protein NKp44

West Nile virus Envelope-protein, HA-neuraminidase NKp44
Influenza A virus HA, HA-neuraminidase NKp44, NKp46

Human parainfluenza 
virus

HA-neuraminidase NKp46

Sendai virus HA, HA-neuraminidase NKp44, NKp46
Newcastle disease 

virus
HA, HA-neuraminidase NKp44, NKp46

Ebola virus ??? NKp30
HCV ??? NKp30, NKp46, 

CD94/NKG2C
E2 CD81

HIV HLA-B KIR3DS1
??? NKp44, NKp46

Vpu reduces NTB-Ac NTB-A
Mouse MCMV m157 Ly49H/DAP12 

(C57BL/6)
m157 Ly49I (129)

H-2Dk with m04 Ly49P/DAP12
Virus-induced cell stress ligands: Rae1, 

H60a-c, Mult1b
NKG2D

m154 reduces CD48c 2B4
Ectromelia virus Qa-1b CD94/NKG2E
Influenza A virus HA NKp46

aPlease see these reviews of NK cell recognition of viral ligands.28,269

bCell stress ligands are induced when cells are infected.
cThis cellular ligand is downregulated by a viral protein leading to less NK cell activation.
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to persisting in a quiescent state. Nevertheless, it may 
be a general finding that herpesvirus infections result 
in activated NK cell populations that are elevated in 
number and sustained for extended periods of time. 

There is evidence that pro-inflammatory cyto-
kines are involved in the induction of memory NK 
cells. Human111 and mouse112,113 NK cells can be stim-
ulated by cytokines to have memory-like responses. 
For example, in vitro stimulation of NK cells with 
IL-12/IL-18/IL-15 enables them to survive several 
weeks upon transfer into uninfected mice,112,113 and 
these cells retain their ability to respond to tumors.112 
Other data show that MCMV-induced “memory” 
NK cells are dependent on proinflammatory cytokine 

signaling, in particular IL-12 and STAT4.114 Lym-
phopenia induces activation marker expression on 
NK cells, which is due to the increased abundance 
of IL-7 and IL-15 cytokines. Adoptive transfers 
of resting or activated NK into lymphopenic hosts 
demonstrated that cytokine-induced memory-like 
responses are maintained by homeostatic prolifera-
tion.115 These and other data indicate that experienced 
NK cells give rise to descendant populations that are 
epigenetically imprinted to express activation markers 
and rapid effector functions and are distinct from 
authentic naïve NK cells.116 

Most studies have examined memory NK 
cells during latent virus infection or have followed 

TABLE 3. Receptors implicated in NK cell memory.
NK cell Receptor Species Notes

Virus infectionin-
duced memory

CD94/NKG2C+ CD57+ Human Heightened reactivity to putative HCMV 
ligand(s). Other activating KIRs may be 
involved. This subset of NK cells is also 
expanded following hantavirus infection.

KIR2DS4, KIR2DS2, 
KIR3DS1

Human NK cells expressing these activating receptors 
are clonally expanded following HCMV but 

not other herpesvirus infections.
Ly49H+/DAP12 Mouse Confers specificity to m157 ligand and 

requisite signaling. Associated with memory to 
MCMV.

DNAM-1 Mouse Induces Fyn/PKCn signaling to potentiate 
Ly49H/DAP12 signals to allow memory to 

MCMV
CXCR6+ Mouse Vaccines can induce long-lived pools of liver-

homing NK cells that can quickly respond to 
live influenza challenge. Other virus-binding 

receptors may be involved.
Cytokine-induced 

memory
IL-12R, IL-15R, IL-18R Human and 

Mouse
In vitro stimulation with these cytokines 
induces a pool of long-lived NK cells 

that are maintained in vivo with enhanced 
cytokine reactivity and can kill tumor cells. 

Similarly, virus-induced mature NK cells 
undergo homeostatic cell division, establish 

a long-lived pool of cells, and maintain 
enhanced antiviral reactivity when placed into 

lymphopenic hosts.
Hapten-induced 

memory
NKG2D+ CXCR6+ Mouse These memory NK cells localize to the liver.
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cytokine-mediated NK cell longevity. Further 
studies are needed to explore how general those 
findings are. For example, do many memory NK 
cells develop following acute virus infection and 
how are those cells induced and maintained when 
inflammatory signals are transient? It is still not 
well defined how beneficial these memory NK 
cells are to the host. Some evidence shows that the 
presence of expanded populations of activated NK 
cells can be protective against homologous virus 
challenge.109 There is also evidence that elevated 
populations of NK cells can protect against het-
erologous challenges through bystander processes, 
although the underlying mechanisms are unclear. 
For example, mice with an elevated population of 
activated NK cells due to MCMV infection were 
better protected against co-infection with friend 
virus than MCMV-naïve mice.117 A similar effect 
was also seen following latent murid herpesvirus 4 
infection, as the persistence of cytolytic IFNg+ NK 
cells protected against a lymphoma challenge.118 The 
role of “memory” NK cells in immune protection 
is an exciting area, and further analyses are needed 
to explain how the presence of “memory” NK cells 
confers better protection than naïve NK cells. 

C. NK Cell Responses during Persistent 
Virus Infections 

NK cells respond within hours of infection, often 
preceding T  cell responses, but the responses can 
be concurrent, especially when the virus establishes 
persistence. We compared NK cell responses in 
mice that were either acutely infected with LCMV-
Armstrong or given a disseminating infection with 
LCMV-Clone13.119 These two strains of LCMV 
cause very different infections that depend in part 
upon the size of initial inoculum. Armstrong infec-
tion induces an interferon burst from plasmacytoid 
DCs at 18 hours followed by interferon production 
for 2–3 days from other infected target cells (macro-
phages and dendritic cells).120 The virus is eliminated 
within a week by vigorously proliferating cytolytic 
CD8+T cells. In contrast, LCMV-Clone13 infection 
disseminates widely, infects additional populations of 

cells, including CD4+ DC and reticular endothelial 
cells,121–124 and induces a larger amount of IFN that 
is sustained.120,125,126 Both Armstrong and clone 13 
infections induce NK cell maturation to a similar 
extent, as measured by CD11b, CD27, and KLRG-1 
expression.119 However, the frequency of NK cells 
within the blood and their expression of granzyme 
B are higher during the chronic viral infection.119 
Persistent clone 13 infection also induces the accu-
mulation of CD127+ NK cells that are responsive 
to IL-2 stimulation.127 Increased percentages of 
activated NK cells are also observed in HIV-infected 
patients,128 and highly activated hepatic NK cells 
are associated with severe hepatitis C virus-induced 
pathology.129 Thus, NK cells are activated early after 
infection, but an increased abundance of NK cells is 
evident for extended periods of time in association 
with persistent virus. 

NK cells that are present at later times during 
chronic infection may function similarly or differ-
ently from the NK cells that are induced soon after 
initial infection or the “memory” NK cells that per-
sist after the resolution of an acute infection. Some 
evidence shows there is an expanded population of 
dysfunctional NK cells in HIV+ patients that exhibit 
major alterations in expression of activation markers, 
cytokine production, and cytolytic function.130–133 It 
has been hypothesized that these changes in NK 
cells contribute to the generalized immune deficiency 
during HIV infection by perturbing dendritic cell 
function and inhibiting T cell responses.133,134 Fur-
thermore, NK cells mediate cytotoxicity against HIV-
infected CD4+ T cells, potentially contributing to the 
loss of this vital cell population.128,135 Additionally, 
there is a reduction in NK cell frequencies in chronic 
HCV- and HBV-infected individuals compared to 
healthy individuals or spontaneous resolvers.136–139 
Successful antiviral therapy for HCV leads to an 
increase in NK cell frequency and function,140,141 
consistent with a direct role for NK cells in limiting 
HCV replication. Thus, NK cells play a central role 
in immune defense during persisting virus infections 
in humans. This is best seen in HIV where immune 
pressure by NK cells has selected for HIV amino 
acid polymorphisms only in individuals who have 
the NK cell receptor KIR2DL2.142
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Despite their importance, the specific roles of 
NK cells and their immune-modulating functions 
are not completely understood. Antiviral NK and 
T cell responses occur at similar times and in similar 
locations, especially during persistent viral infec-
tions. In mouse models of chronic infection there 
is evidence that NK cells limit T cell responses. For 
example, NK cell depletion during the chronic stage of 
LCMV infection enhanced antiviral T cell responses, 
depending in part upon the viral load at the time 
of depletion and the presence of CD4+ T  cells.143 
Understanding how NK cells affect T cells at differ-
ent stages of infection is relevant in designing new 
treatments for chronic viral infections, particularly 
HIV and HCV, where there are perturbations in NK 
cell frequency and function. As discussed below, NK 
cells can enhance or impede T cell responses through 
a variety of different mechanisms. 

III. NK CELLS INFLUENCE T CELL 
RESPONSES TO INFECTION 

NK cells become activated following infections, and 
can contribute to host immunity by killing infected 
cells and making antiviral cytokines, such as IFN-g. 
While the direct antiviral role of NK cells is fairly 
well defined in murine CMV and ectromelia virus 
infections, it is difficult to discriminate among the 
variety of potential NK cell contributions to antiviral 
immunity in other infections in mice and humans. 
For example, though it is clear from the recurrent 
infections that plague patients with genetic deficien-
cies in NK cells numbers or functions that NK cells 
are important,26 it remains unclear whether this can 
be attributed to NK cell lysis of infected cells, the 
contribution of NK cell-derived IFN-g to subsequent 
immune reactions, the NK cell curtailing of excessive 
immune responses that could damage host tissues, or 
a combination of these activities. In most infections, 
the contributions of NK cells probably comprise a 
complex combination of these activities and their 
principle function for many infections is to reduce 
virus load. However, NK cells influence adaptive 
immune responses through a variety of mechanisms. 
NK cells can affect T cells directly by releasing or 

consuming cytokines or by killing T cells. NK cells 
can influence T cells through indirect mechanisms 
such as by regulating APC activity. This section high-
lights the various ways in which NK cells are capable 
of positively or negatively altering T cell responses.

A. Cytokine Production by NK Cells 

Though originally identified and named based on 
their ability to directly lyse target cells, the production 
of cytokines by NK cells is a separate effector func-
tion that can have direct effects on T cell responses 
[Figs.  1(A) and 1(B)]. The signature cytokine pro-
duced by NK cells is IFN-g, which can be made very 
rapidly (2–4 hours) upon activation.144,145 In addition 
to its role in virus control, IFN-g has direct effects 
on primary and memory CD4+ and CD8+ T  cell 
expansion.146–148 During Leishmania major infection 
and DC-based priming experiments, the production 
of IFN-g by NK cells was essential for driving Th1 
cell differentiation.149,150 Additionally, NK cells were 
shown to be important for CD8+ T cell responses to 
influenza infection, and one mechanism responsible 
for this was IFN-g-dependent recruitment of CD8+ 
T cells to the lymph node.151,152 These effects all have 
a positive influence on T cells, but NK cells can also 
negatively influence T  cells, particularly through 
IL-10 and TGF-b production.153,154 IL-10 is an anti-
inflammatory cytokine often produced by regulatory 
T cells (Treg) cells that can directly suppress T cell 
responses.155,156 A population of human regulatory 
NK cells has been described that produces IL-10 and 
reduces the in vitro proliferation of antigen-specific 
CD4+ T cells.157 Immunosuppressive IL-10 producing 
NK cells have also been detected in multiple systemic 
bacterial infections in mice including Toxoplasma gon-
dii, Listeria monocytogenes, and Yersinia pestis.158 These 
cells were dependent on IL-12 for their generation and 
were not found using attenuated strains that elicit local 
infections, suggesting that the nature of the pathogen 
shapes the NK cell response. Furthermore, MCMV 
infection of perforin-deficient mice led to a persistent 
infection and the generation of IL-10-producing NK 
cells that limit CD8+ T cell effector functions.159 Inter-
estingly, patients with chronic hepatitis C virus infec-
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tion have increased frequencies of IL-10-producing 
NK cells and these cells may also contribute to poor 
immunity during HIV infection.160–162 Thus, these 
studies point to a model wherein the IL-10-mediated 
regulatory capability of NK cells is triggered during 
disseminating infections in an effort to protect against 
T cell-mediated immunopathology. 

B. Competition for Cytokines 

Another mechanism through which NK cells may 
impact T cell responses is by competition for limit-
ing amounts of cytokines [Fig. 1(C)]. NK cells and 
T cells express many of the same cytokine receptors, 
including but not limited to those for IFN-α/b, 
IFN-g, IL-2, IL-12, and IL-15.3,163–165 These 
cytokines are often crucial for the expansion of 
primary and memory T cell responses and can also 
influence T cell differentiation. In particular, direct 
competition for IL-2 is known to occur between 
effector T cells and Tregs.166 Treg cells constitutively 
express CD25, the high affinity subunit of the IL-2 
receptor, and can induce apoptosis of CD4+ T cells 
through cytokine deprivation.167 Interestingly, rapid 
upregulation of CD25 by NK cells is observed 
during MCMV infection and contributes to their 
expansion.168 These data suggest that NK cells and 
T cells may directly compete for IL-2, though there 
have not been many reports directly testing this 
hypothesis. Some evidence supporting this theory 
is that in the absence of a CD8+ T cell response 
against LCMV-Armstrong in b2M–/– mice, there 
is a significant IL-2-dependent increase in the 
frequency of NK cells.169 A possible interpretation 
of these data is that NK cells and T cells compete 
for IL-2, with the T  cells having the advantage 
in WT animals. Additionally, NK cells have been 
shown to limit the homeostatic proliferation of 
CD8+ T cells in lymphopenic hosts.170 This effect 
is independent of NK cell perforin expression and 
reversed by addition of excess IL-15, showing that 
NK cells and T cells compete for limiting levels of 
IL-15. Further testing of this cytokine competition 
hypothesis is needed to understand its importance 
during infectious disease.

C. Direct Lysis of T Cells by NK Cells 

The ability of NK cells to directly lyse T cells has 
been known for some time, though only recently 
have the consequences started to be understood. One 
of the first documented in vivo targets for NK cells 
was thymocytes,171 and YAC-1 cells, which are com-
monly used in NK cell cytotoxicity experiments, are 
T cell lymphoma cells. While NK cells are capable 
of lysing thymocytes,172 this is typically prevented 
by thymocyte expression of MHC-1.173 In addition 
to MHC-I, mature T cells express many ligands for 
both activating and inhibitory NK cell receptors, 
and the dynamic regulation of their expression can 
affect the outcome of their interactions with NK 
cells. Recently, many studies have identified these 
key molecules involved in NK cell-mediated lysis of 
T cells and have started to uncover the physiological 
effects of this process during infection. As this sec-
tion shows, T cell lysis can have positive or negative 
effects on pathogen clearance and protection from 
immunopathology. 

1. Regulation of T Cell Lysis by NK Cell 
Activating Receptors

The recognition and lysis of both mouse and human 
T cells through NK cell activating receptors has been 
shown by a handful of studies [Fig. 1(D)].174–177 A 
consistent finding is that naïve cells are protected 
from killing while activated cells can be susceptible. 
One explanation for the increased lysis of activated 
T  cells is through the upregulation of NKG2D 
ligands. NKG2D is a homodimeric receptor with 
multiple ligands expressed by all NK cells in mice and 
humans, though the expression patterns on other cell 
types vary between species.178–180 The cross-linking 
of NKG2D in human and mouse NK cells results in 
the enhancement of NK cell-mediated cytotoxicity.181 
Cerboni et al. showed that upon activation, human 
CD4+ and CD8+ T cells upregulate surface expres-
sion of the NKG2D ligands MICA, ULBP1, ULBP2, 
and ULBP3 (Table 4).175 The activated T cells were 
then killed by autologous IL-2-activated NK cells 
in a NKG2D-dependent fashion, as the addition of 
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an anti-NKG2D neutralizing antibody completely 
abrogated killing. Further testing using human cells 
showed that both CD56dim and CD56bright NK cells 

are capable of mediating lysis of activated CD4+ 
T cells via NKG2D.177 

These data are consistent with data obtained 
using in vitro activated mouse T cells that are also 
lysed by NK cells via NKG2D.174 Additionally, in 
vivo data show that the amount of memory CD8+ 
T  cells following immunization is significantly 
higher in NK cell-depleted mice.176 This effect 
is dependent on NKG2D and perforin, implying 
a direct effect of the NK cells on T  cells. Taken 
together, these data clearly show that activated 
T cells can become susceptible to lysis by NK cells 
in humans and mice through the upregulation of 
ligands for NKG2D, and that this can have long-
lasting effects on T cell responses. 

In addition to NKG2D, NK cells express a 
number of other activating receptors. For example, 
a receptor known to be involved in the lysis of 
CD4+ T  cells is TNF-related apoptosis-inducing 
ligand (TRAIL).177 Similar to NKG2D ligands, the 
expression of TRAIL-R1 and -R2 are induced upon 
activation by naïve T  cells.177 TRAIL-expressing 
NK cells induced apoptosis through TRAIL-R1 
and TRAIL-R2 to selectively kill only activated 
T cells.177 This study also showed a heterogeneity in 
the ability of NK cells to mediate killing, as only the 
CD56bright subset of NK cells are capable of using 
this TRAIL-dependent pathway.177 In addition, as 
discussed below in Sec. 3, CD8+ T cells from patients 
chronically infected with HBV have also been shown 
to express TRAIL-R2.182 Therefore, TRAIL is a 
NK cell receptor involved in direct recognition and 
subsequent death of T  cells. Further experiments 
are needed to fully understand the contributions of 
any other NK cell activating receptors that may be 
involved in the regulation of T cell responses.

Ironically, the direct lysis of T cell subsets by NK 
cells may also promote other T cell responses. In in 
vitro experiments, activated Treg cells upregulated the 
NKG2D ligand UL16-binding protein 1 and became 
susceptible to NK cell lysis.183 Though further studies 
are needed to assess the relevancy of this finding in 
vivo, the potential for NK cells to promote effector 
T cell responses by ablating Treg cells is intriguing.

FIG. 1: NK cells regulate T cells through direct mechanisms. 
NK cells are located near virus-specific T cells and influence 
their activity and number. (A) Activated NK cells make 
IFN-g that can directly signal into T cells to stimulate their 
accumulation and differentiation into effector and memory 
cells. (B) During some persisting virus infections, NK cells 
make IL-10 that limits T cell proliferation and effector cy-
tokine production. (C) Virus-specific T cells need IL-2 and 
IL-15 signals during multiple stages of the T cell response. 
Activated NK cells express high levels of IL-2R and IL-15R 
and compete with virus-specific T cells for these vital survival 
cytokines. (D) NK cells can directly interact with effector 
T cells through multiple molecular interactions. NK cells can 
focus their cytolytic activity onto T cells when the balance of 
positive and inhibitory signals results in NK cell stimulation.
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2. Regulation of T Cell Lysis by NK Cell 
Inhibitory Receptors 

In addition to the effects of NK cell activating recep-
tors, inhibitory NK cell receptors have also been 
shown to regulate NK cell-mediated T  cell lysis 
[Fig. 1(D), Table 4]. In most cases, activated T cells 
express the ligands for these inhibitory receptors to 
protect themselves from NK cell-mediated killing. 
In the steady state, T  cell expression of MHC-I 
molecules can protect against basal NK cell activ-
ity. Upon activation, human CD4+ T  cells rapidly 
upregulate HLA-E, a ligand for NKG2A.184 This 
interaction was shown to be protective as block-
ing antibodies to either NKG2A or HLA-class I 
resulted in greatly increased NK cell killing.177,184 
The homolog to HLA-E in mice is Qa-1, which is 
primarily found presenting the Qdm peptide and 
interacts with NKG2A to deliver an inhibitory signal. 
Using either Qa1-knockout mice or a Qa1 mutant 
that is unable to bind to NKG2A, a study showed 
that this interaction was critical for protecting T cells 
from NK cell lysis in vivo.185 Importantly, a blocking 
antibody to Qa1 reduces the extent of paralysis in a 
CD4 T  cell-mediated autoimmune disease model, 
experimental autoimmune encephalomyelitis, in 

an NK-dependent manner.185 NK cell-dependent 
regulation of T cells has been seen in other autoim-
mune models. For example, depletion of NK cells 
accelerates CD4 T cell-mediated disease induction 
in a colitis model.186 Also, anti-NKG2A F(ab)′2 
treatment, which blocks this inhibitory receptor on 
NK cells, led to improved NK cell-mediated killing 
of pathogenic CD4+ T cell responses in a collagen-
induced arthritis model.187 Finally, NK cell depletion 
accelerates colitis in a model where disease is medi-
ated by CD4+ T  cells.186 In summary, these data 
using knockout mice and blocking antibodies have 
shown that T cell expression of ligands for inhibi-
tory receptors protects them against NK cell lysis. 
These findings highlight the potential of NK cells 
as therapeutic targets during autoimmune diseases 
or overactive responses to infection wherein lysis of 
T cells may significantly ameliorate symptoms.

3. T Cell Lysis during Chronic Viral 
Infections 

The in vivo ability of NK cells to directly regulate 
T cell responses has been shown recently in a mouse 
model of chronic viral infection with LCMV.188,189 

TABLE 4: NK cell interactions affect virus-specific T cell responses through direct and indirect 
mechanisms.

Intercellular 
interaction

NK cell receptor TargeT cell ligand Species Outcome

NK–T cell

NKG2D MICA, ULBP1-3 Human TargeT cell lysis
RAE-1, MULT-1 Mouse TargeT cell lysis

TRAIL TRAIL-R1/R2 Human TargeT cell lysis
NKG2A/CD94 HLA-E Human Block lysis

Qa-1b Mouse Block lysis
2B4 CD48 Mouse Block lysis

NK–DC

NKp30 BAT3 Human Activates DCs
NKG2D ? Mouse Activates DCs

DNAM-1 Nectin-2, CD155 Human, 
mouse

DC lysis

NKp30 ? Human DC lysis
NKG2A/CD94 HLA-E Human Block lysis
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While these two studies came to different conclusions 
regarding the nature of the cells targeted by NK cell-
mediated regulatory activities, they agree that CD8+ 
T cell responses are enhanced in the absence of NK 
cells. Lang et al. use NK cell deficient (Nfil3- or E4bp4-
knockout) mice to show that CD8+ T cells are regu-
lated by NK cells in a perforin-dependent fashion.189 
This enhanced T  cell response results in clearance 
of a viral strain that typically establishes persistence. 
Building on an earlier study that provided evidence 
that NK cells inhibit CD4+ T cell responses,190 the 
study by Waggoner et al. showed that NK cells restrict 
CD8+ T cell responses by targeting CD4+ T cells,188 
which are essential for sustaining CD8+ T cells during 
this infection.188,191–194 Using an in vivo cytotoxicity 
assay, it was observed that activated CD4+ but not 
CD8+ T cells are direct targets of NK cell lysis in a 
perforin-dependent manner.195 Although the exact 
mechanism which allows NK cells to discriminate 
between different T cell targets is not known, accu-
mulating evidence suggests that interactions between 
2B4/CD244 on NK cells and CD48 on T cells may 
play an important role. Specifically, CD48 expression 
was upregulated after activation of murine T  cells, 
wherein activated CD8+ T  cells expressed much 
higher levels of this receptor than their activated 
CD4+ T cell counterparts.195 While 2B4 is capable of 
mediating both activating and inhibitory signaling in 
NK cells,196,198 genetic ablation of this receptor in mice 
resulted in an increase in NK cell activity, particularly 
against CD48-expressing targets.199,200 This suggests 
that the elevated expression of CD48 on activated 
CD8+ T  cells may impair NK cell cytolysis better 
than the level of CD48 expressed on activated CD4 
T cells, and thereby contribute to differential killing. 
In fact, removal of 2B4 from NK cells or CD48 from 
T cells resulted in enhanced NK cell-mediated killing 
of activated CD8 T cells.195 

Interestingly, in this study the consequences of 
the NK cell activity varied depending on the amount 
of virus given to the mice. The LCMV-Clone13 
strain disseminates widely and establishes persisting 
infection whereas LCMV-Armstrong causes an acute 
infection. At a low virus dose of LCMV-Clone13, 
or when using LCMV-Armstrong, there is a small 
effect of NK cell depletion on T cell responses in WT 

mice, though little pathogenesis is detected in the 
presence or absence of NK cells.119,188–190 However, 
when given a medium dose of LCMV-Clone13, the 
mice succumb to a T cell-mediated disease.188 The 
removal of NK cells after anti-NK1.1 antibody injec-
tion results in enhanced T cell responses and prevents 
the fatal immune-mediated pathogenesis as the virus 
is cleared from the animals. In contrast, at a high dose 
of virus inoculum the NK cells contribute towards 
T cell dysfunction and host protection. At this dose 
of virus, the infection quickly spreads throughout 
the animal and into vital tissues. NK cell depletion 
in mice infected with a high dose of LCMV-Clone 
13 increases the T  cell number to a level where 
T cells respond excessively against the virus, leading 
to immune-mediated pathogenesis. These data show 
that NK cells are capable of severely limiting T cell 
responses and, depending on the strain and amount 
of virus present, can contribute towards protecting 
the host from fatal immunopathogenesis.188 

In addition to the mouse models of infection, a 
recent report showed evidence for direct NK cell-
mediated lysis of T cells in chronic HBV-infected 
patients.182 The peripheral and intrahepatic CD8+ 
T cells from these patients expressed higher levels 
of TRAIL-R2,182 which is a death receptor that 
results in caspase-8-mediated apoptosis when trig-
gered.182,201 TRAIL, the ligand for TRAIL-R2, was 
already known to be upregulated on NK cells during 
HBV-related liver inflammation.202,203 Culturing the 
T  cells with NK cells induced contact-dependent 
apoptosis, which was partially reduced by the blockade 
of TRAIL.182 These data suggest that NK cells may 
directly limit the antiviral capabilities of CD8+ T cells 
during chronic HBV infection. Thus, it appears that 
in both mice and humans NK cells regulate T cell 
responses during chronic virus infections to protect 
the host from immune-mediated damage, leading to 
prolonged virus persistence. 

D. NK Cells Affect Dendritic Cells to 
Influence T Cells 

Dendritic cells (DCs) are the primary cells responsible 
for initiating T cell activation through the presenta-
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tion of foreign peptides on MHC molecules.204 As 
such, the regulation of DCs by NK cells can have 
significant effects on the T cell response. NK cells 
and DCs are activated early during immune responses 
and subsets of each localize to lymphoid organs. In 
fact, intravital imaging shows that NK cells directly 
interact with lymph node DCs in vivo.205 The cross 
talk between these cells is complex and also crucial 
in determining the outcome of adaptive immune 
responses. Both cell types produce cytokines that can 
activate or inhibit the other cell type and their cell-
cell interactions can lead to either death or enhanced 
activation. The following section highlights the ability 
of NK cells to modulate DC activity and the posi-
tive and negative effects of this on T cell responses. 

1. Positive Effects of NK Cells on DCs 

The interactions between NK cells and DCs can have 
either positive or negative effects on the subsequent 
priming of T cell responses (Table 4). Many of the 
studies showing that NK cells promote DC activation 
were done in vitro using human cells. The co-culture 
of DCs with activated NK cells results in upregulation 
of MHC-II and the co-stimulatory molecules CD80, 
CD83, and CD86, and increased production of the 
pro-inflammatory cytokine IL-12 [Fig. 2(A)].206,207 
As expected, the increased DC maturation results 
in an enhanced ability of DCs to stimulate T  cell 
expansion.207 The induction of DC maturation was 
initially shown to be dependent on cell-cell contact 
with the NK cells, as well as on NK cell-mediated 
production of IFN-g and TNF-α.206,207 Further 
studies showed that the NK cell activating receptor 
NKp30 was also involved in this process.208 NKp30 
has multiple known ligands, though the only one 
thought to be expressed by DCs is HLA-B-associated 
transcript 3 (Bat3).209 Additionally, DC production 
of IL-18 triggers NK cell secretion of high-mobility 
group protein B1 (HMGB1) that acts on DC to 
promote their maturation.210 Changing the NK-DC 
ratio can also critically regulate the ability of NK 
cells to induce DC maturation, as a low NK-DC 
ratio is favorable for this process.206 However, the 
effects of the changes in this ratio that occur during 

infection in vivo are not understood. Taken together, 
these data clearly show that NK cells can enhance 
the ability of DCs to stimulate T  cells in vitro by 
inducing their maturation and cytokine production. 
Interestingly, the ability of NK cells to promote DC 
activity may be lost during a chronic viral infection. 
In a three-cell in vitro system using NK cells, DCs, 
and liver epithelial cells, NK cells from healthy donors 
promoted DC expression of MHCII, CD40, and 
CD86 and improved T  cell responses, while NK 
cells from chronically infected HCV patients were 
unable to improve DC function.211 This effect was 
dependent on signaling through the CD94/NKG2A 
inhibitory NK receptor complex and production of 
IL-10 and TGF-b by NK cells.211 

NK cells have also been shown to enhance the 
functional ability of DCs in vivo using mouse infec-
tion models, primarily through the production of 
IFN-g. The effects of NK cells can be seen in DC 
recruitment to lymph nodes, cytokine production, 
and maturation. For example, NK cell production 
of IFN-g has been shown to modulate DC recruit-
ment to lymph nodes during influenza infection in 
mice.152 Additionally, during a murine Chlamydia 
muridarum infection of the lung, NK cells strongly 
enhanced DC IL-12 production, which promoted 
T cell IFN-g production and a late reduction of the 
bacterial burden.212 The enhanced Th1 differentiation 
was dependent on NK cells and their ability to affect 
DCs through IFN-g production as well as NKG2D 
signaling.212 NK cells are also capable of promoting 
DC maturation (MHC, CD40, CD80, CD86 upreg-
ulation) in vivo, which results in enhanced CD4+ 
T cell priming.213 However, this has only been seen 
during MCMV infection of mice deficient in IL-10, 
and detection of this process in wild-type animals 
has remained elusive. Nevertheless, the ability of NK 
cells to enhance T cell responses by promoting DC 
maturation, cytokine production, and recruitment 
has been detected both in vitro and in vivo. 

An additional mechanism through which in vivo 
NK cell activity has been shown to improve T cell 
responses is by positively influencing the number of 
DCs during MCMV infection. The Ly49H activat-
ing NK cell receptor is expressed by certain mouse 
strains (B6) but not others (Balb/c), and can directly 
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interact with the m157 protein of MCMV.71–73 This 
interaction leads to a significant expansion of NK 
cells expressing this receptor and contributes to the 
early control of virus replication.80,101 Balb/c mice 
are unable to control the virus early during infection 
and have a significant loss in the number of DCs, 
while B6 mice have lower virus titers and higher 
DC numbers.214 Similarly, in comparing WT Balb/c 
mice to Balb/c mice congenic for the B6 NK cell 
locus that includes Ly49H,215 the presence of NK 
cell-mediated virus control preserves the number 
of DCs during MCMV infection.216 The enhanced 
population of DCs was partially due to a reduc-
tion in IFN-α/b and led to improved CD8+ T cell 
responses early during the infection.216 Thus, NK cell 
activity can promote T cell responses by preserving 
DC populations via controlling the virus titer and 
limiting IFN-α/b production.

Some CD8+ T cell responses are heavily depen-
dent on the presence of CD4+ T cells. For example, 
CD8+ T  cell responses against tumors, some vac-
cines, and some virus infections require CD4+ 
T cells.217–219 One mechanism of CD4 T cell help 
is through interactions with DCs that improve their 
ability to activate CD8+ T cells.220–222 Thus, there is 
a three-cell interaction (CD4-DC-CD8 T cell) that 
coordinates this response. However, there is some 
evidence that NK-DC interactions may substitute 
for CD4+ T cells in inducing antitumor CTL.223 In 
this study, NK cells were activated by DCs to destroy 
A20 lymphoma cells. However, the activated NK 
cells expressed IFNg that primed DCs to express 
IL-12 and antigen to stimulate CD8+ T cells.223 In 
other infection models, NK cells can enhance CD4-
independent CD8+ T  cell responses. For example, 
Toxoplasma gondii-infected CD4 T cell-deficient mice 
show a protracted NK cell response due to continued 
IL-12 production.224 NK cells in these mice express 
IFNg that is essential for priming of the T. gondii-
specific CD8+ T cell response.224 In addition, CD8+ 
T cell responses to HSV are reduced in the absence 
of CD4+ T cells, and engrafting additional NK cells 
into these mice rescues this response.225 Thus, while 
these examples show evidence that NK cell-DC 
interactions can substitute for CD4+ T cell help to 
facilitate CD8+ T cell responses, further studies of 

other model systems are needed to determine whether 
this is a generalizable mechanism.

2. Negative Effects of NK Cells on DCs 

Despite having clear positive effects on DC functions 
in some circumstances, NK cells can also have nega-
tive effects by directly lysing DCs or decreasing their 
antigen presentation functions.226–229 In vitro experi-
ments using human cells showed contact-dependent 
lysis of DCs by NK cells [Fig. 2(B)].227,229 The primary 
targets of NK cells in these reports were immature 
DCs, as mature cells were protected from lysis in 
part due to inhibitory signaling from MHC-I.228 
However, the direct lysis of mature DCs has also 
been detected via interactions of DC-expressed 
Nectin-2 and CD155 with the DNAM-1 receptor 
on NK cells (Table 4).230 Primary signaling through 
the NK cell activating receptor NKp30, which as 
mentioned above can also influence DC matura-
tion, also contributes to the lysis of both mature 
and immature DCs.228,230 The differing outcomes 
of NKp30 ligation may be explained by alterations 
in the NK-DC ratio. Consistent with the effects of 
NK cells on DC maturation, changing the NK-DC 
ratio can also critically regulate the direct lysis of 
DCs, with a high NK-DC ratio favoring NK cell-
mediated elimination of DCs.206 Thus, under certain 
conditions NK cells can impact T cell responses in 
vitro through the lysis of DCs.

Despite the plethora of reports showing in 
vitro lysis of DCs by NK cells, the detection of 
this phenomenon in vivo has been somewhat more 
elusive. In one study, the ability of a DC-based 
vaccine to induce CD8+ T  cells was enhanced in 
mice depleted of NK cells.231 This negative effect 
of NK cells was mediated by TRAIL-dependent 
killing.231 The lysis of DCs has also been shown 
during MCMV infection.232 In this case, NK cells 
lysed infected DCs in a Ly49H-dependent fashion 
and eliminated the availability of DCs to promote 
sustained T cell activation.232 On the other hand, in 
a cancer model where mice were challenged using 
TS/A mammary adenocarcinoma tumor cells, NK 
cell lysis of DCs surprisingly improved the T  cell 
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response as only immature DCs were removed and 
the more immunogenic DCs were selected.233 These 
mouse experiments show that NK cells are indeed 
capable of lysing DCs in vivo; however, further 
experiments are needed to understand the factors 
that regulate when this occurs and its outcomes on 
adaptive immune responses. 

An additional effect observed is that NK cells 
can reduce the stimulatory capacity of DCs, which 
we showed using a mouse model of chronic infec-
tion with LCMV.119 Consistent with earlier reports, 
we found that the depletion of NK cells enhanced 
T cell responses during chronic but not acute strains 
of LCMV infection.119 These effects on T cells cor-
related with changes in the ability of APCs from 
NK cell-sufficient and -deficient mice to stimulate 
the proliferation of naïve antigen-specific CD8+ 
T  cells.119 Despite the absence of changes in DC 

frequency or MHC and co-stimulatory molecule 
expression, NK cell depletion resulted in in vivo-
derived DCs with an enhanced capability of promot-
ing proliferation of LCMV-specific CD8+ T cells in 
vitro. Importantly in the case of LCMV, the effect 
of NK cells on DCs is likely independent of any 
direct effects on virus replication.23 Though there 
has been one report showing a small localized effect 
of NK cells on early viral burden in the peritoneal 
cavity after i.p. infection with LCMV,35 our data and 
that of many others indicate that NK cell depletion 
has no measurable effect on early virus load during 
LCMV infection. Moreover, NK cell depletion did 
not alter viral control in SCID mice, which lack an 
adaptive immune system.234 Thus, through an as-yet 
undefined mechanism, NK cells negatively regulate 
the function of DCs to limit T cell responses. 

FIG. 2: NK cells influence dendritic cell activation and number. Dendritic cells play a central role in initiating T cell responses 
and subsequent T cell differentiation. NK cells directly interact with DCs through multiple interactions. (A) Activated NK 
cells express TNF and other cytokines that increase DC antigen processing and presentation to T cells. These signals also 
lead to greater amounts of co-stimulatory molecule expression and the secretion of pro-inflammatory cytokines by DCs that 
contribute to T cell differentiation. (B) NK cells can recognize cell-associated ligands and mediate cytolysis of immature DCs. 
The reduction in DC number limits T cell expansion during infection.
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E. NK Cells Modulate Antigen Availability 
to Impact T Cells 

In addition to directly affecting T cells and DCs, NK 
cell activity can influence T cell responses simply by 
modulating the amount of antigen present. One of 
the first known functions of NK cells in host defense 
was the lysis of infected target cells to limit virus 
replication and spread.23 T cell responses are sensitive 
to changes in the amount of antigen and expression 
of co-stimulatory molecules and pro-inflammatory 
cytokines.235,236 At one end of the spectrum, T cells are 
tolerized at extremely low levels of antigen.237 At inter-
mediate levels of antigen, there is a dose-dependent 
enhancement of T  cell accumulation and function. 
When exposed to extremely high levels of antigen, 
T  cell activity is reduced through several processes, 
including T  cell exhaustion, T  cell apoptosis, and 
T cell anergy.237–239 Therefore, the ability of NK cells 
to limit antigen levels can enhance or impede T cell 
responses depending on the situation. For example, 
infection of mice with the Dm157 strain of MCMV 
fails to activate Ly49H+ NK cells, and the reduction 
in viral titer depends more upon CD8+ T cells. In this 
context, there is an enhanced CD8+ T cell expansion 
that is partially due to the increased antigen load in 
the absence of NK cell-mediated viral control.240 Thus, 
NK cell activity lowers the MCMV-specific T  cell 
response in WT animals by reducing the presenta-
tion of MCMV epitopes and diminishing associated 
inflammatory signals. On the other hand, at higher 
viral inoculum doses the NK cell-mediated reduc-
tion in antigen levels can promote T cell responses. 
For example, NK cells have clear roles in reducing 
the MCMV burden at high doses of infection,241 
which enhances the subsequent T cell response, per-
haps by preventing T cells from being overwhelmed 
and undergoing functional exhaustion or deletion. 
Additionally, mouse susceptibility to lethal infection 
with mousepox increases with age, consistent with 
greatly reduced T cell responses in older animals.242 
Interestingly, the reduced T cell response is not due 
to an intrinsic change in the ability of the T  cells 
from aged mice to respond, but rather a defect in 
NK cell activation in aged mice. In younger animals, 
the NK cell response limits the viral dose to a level 

that promotes a vigorous T cells response, while the 
high level of virus in older mice, where NK cells are 
less effective, overwhelms the ability of the T cells to 
respond. Therefore, depending on the initial amount 
of antigen present, the ability of antiviral activity of 
NK cells can have stimulatory or inhibitory functions 
on the T cell response. 

The two examples above involve NK cell-mediated 
reduction in antigen, which can have differing effects 
on T cells depending on the infection. However, NK 
cell cytolytic activity can lead to the release of more 
antigen to better stimulate T  cell responses. This is 
seen in a model where mice are given targets that 
express OVA but lack the MHC-I molecule Kb. In 
this scenario, the donor cells are killed by NK cells 
due to the absence of Kb. This NK cell-mediated kill-
ing of target cells releases OVA protein, resulting in 
a vigorous OVA-specific CD8+ T cell response.243 If 
the antigen-loaded target cells express MHC-I, then 
there is minimal lysis of the cells and a greatly reduced 
CD8+ T cell response.243,244 Taken together, these data 
show that NK cell lysis of target cells can indirectly 
influence the subsequent T cell response by altering 
antigen levels, though this phenomenon can have a 
positive or negative effect on T  cells depending on 
the amount of antigen and the inflammatory context. 

F. T Cell Regulation of NK Cells 

The interaction of NK cells with T cells is a “two-way 
street” and these interactions can inhibit or enhance 
NK cell functions. Treg cells limit NK cells through 
two mechanisms. One involves Treg expression of 
TGF-b to inhibit NK cells,245 and there is evidence 
that Treg cells and TGF-b regulate murine NK cells 
during MCMV infection.246 Another mechanism is 
related to Treg cell expression of higher amounts of 
CD25, a component of the IL-2R, than is expressed 
by NK cells. Thus, Treg cells compete for IL-2 and 
starve NK cells of this important growth factor.247 
Immature CD127+ NK cells upregulate IL-2R when 
activated by IL-12, thereby permitting subsequent 
exposure to IL-2 to further induce these immature 
NK cells to transition into mature NK cells.127 
IL-2 signaling into NK cells boosts their ability to 
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respond to weak stimuli, and this is enhanced by the 
depletion of Treg cells.248 In support of this mecha-
nism, a recent study showed that Treg cells reduce 
the bioavailability of IL-2 in the pancreatic islets 
to inhibit NK cell proliferation and expression of 
IFNg, thus protecting against NK cell contributions 
to the diabetogenic process.249 Thus, therapies that 
manipulate IL-2 levels can affect NK cells directly 
or by modulating Treg activity. 

Memory CD4+ T  cells can also enhance NK 
cell functions after infection. It has been proposed 
that one of the main functions of IL-2 made by 
activated memory T cells within the first hours of 
infection may be to initiate NK cell responses. For 
example, memory CD4+ T cells that are induced after 
Pneumocystis murina infection act during reinfection 
to improve NK cell-mediated activity against the 
pathogen.250 Furthermore, CD4+ T  cells produce 
IL-2 that activates NK cells to make IFNg during 
Plasmodium falciparum infection and primed CD4+ 
T  cells are needed to induce or maintain NK cell 
responses against Leishmania major infection.251,252 
In a rhesus macaque model, there is evidence of 
cooperation between central memory CD4+ T cells 
and NK cells.253 NK cell effector functions are main-
tained in macaques that are “controllers” whereas 
“non-controllers” show diminished NK cell activity. 
In vitro evidence in this model suggests that SIV-
GAG-specific memory CD4 T cells produce IL-2 
to prime NK cells functions.253 Similar findings are 
seen when circulating NK cells and memory T cells 
are examined in rabies-vaccinated people.254 NK cells 
show sustained cytokine production and degranula-
tion when co-cultured with memory T cells that are 
stimulated to make IL-2 by inactivated rabies virus.254 
In contrast, NK cells are not activated when mixed 
with T cells from unvaccinated individuals, who do 
not make IL-2 in response to rabies antigen. Memory 
T cell expression of IL-2 is implicated in these stud-
ies, but further studies are needed to determine how 
memory cell expression of IFNg and other cytokines 
affects early NK cell responses. Currently, no studies 
have explored the interplay between memory T cells 
and memory NK cells. 

IV. NK CELLS AFFECT HUMORAL 
IMMUNITY 

In addition to their effects on T cells, NK cells directly 
and indirectly influence B cell responses as well. 
These interactions are complex and can be beneficial 
or detrimental depending on the model system. For 
example, cloned mouse NK cells can recognize and 
kill B cells.255 Likewise, in vivo induction of NK cells 
with poly(I:C) leads to reduced antibody responses 
to phosphorylcholine of R36a pneumococcal vac-
cine or sheep red blood cells.256 Other data show 
that human NK cells can kill B cells depending on 
the activation state of the B cells.257 However, there 
is evidence that NK cells inhibit B cells indirectly 
by killing essential dendritic cell populations that 
are needed to sustain the B cell response.256,258 In 
contrast to those findings, other data show that 
activated NK cells can promote B cell responses.259 
NK cells release IFNg that drives class switching in 
B cells and stimulates B cell proliferation. NK cells 
can also stimulate IgG class switching in B cells 
through cell-cell contact in vitro,260 while in vivo NK 
cell depletion reduces antibody responses to Brucella 
abortus infection in mice.261 Additionally, NK cells 
can increase antigen presentation by B cells through 
direct cell-cell contact,262 which likely improves their 
interaction with CD4+ T cells. The role of NK cells 
in humoral immune responses to virus infection is 
not well explored. 

In the LCMV model, CD4+ T follicular helper 
cells (TFH) cells that enter the B cell follicle are 
needed to induce antibody responses.263–265 We 
observed that primary LCMV-specific CD4+ 
T  cells were increased in NK cell-depleted mice 
compared to the NK cell-replete mice.119,188 If NK 
cells specifically target CD4+ TFH cells, then there 
will likely be reductions in CD4 T cell-dependent 
humoral immune responses, including germinal 
center reactions and the development of memory 
B cells and plasma cells. CD4+ TFH cells begin to 
form by day 3 of infection.266 Thus, early NK cell 
elimination of activated CD4+ T cells might result 
in lower antibody levels or poor recall responses 
long-term. Further studies are needed to determine 
whether NK cell depletion leads to a sustained 
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CD4+ T cell response or changes in Th1 versus TFH 
lineage commitment, or increases antibody levels. 
Such information is relevant to vaccine design, since 
vaccines stimulate CD4+ T  cells and B cells and 
most vaccines are evaluated based on their induc-
tion of antibody. 

V. CONCLUSIONS 

The immediate early functions of NK cells during 
infection are well established. There are continuing 
efforts to identify factors that regulate or activate NK 
cells. Recent studies demonstrate that NK cells affect 
adaptive immune responses. Additionally, it is now 
appreciated that NK cells persist for far longer than 
previously appreciated. NK cells also show aberrant 
phenotypes in the context of persisting virus infec-
tions. In light of these new findings, there are new 
questions that should be addressed. 

NK cells can be activated through multiple 
pathways, but we do not know whether these dis-
tinct signaling events lead to distinguishable NK cell 
phenotypes. For example, are certain interferons or 
cytokines needed for NK cell regulation of adap-
tive immune responses, or does the engagement of 
activating receptors accomplish the same function? 
What activation pathways result in long-lived or 
short-lived NK cell populations? Memory NK cells 
can protect against CMV infection, but it remains 
to be seen whether memory NK cells are beneficial 
or harmful to memory T  cell responses in other 
models. While the ability of NK cells to regulate 
T cell responses to protect against immune-mediated 
pathology has recently been described, NK cells can 
also contribute to pathogenesis. For example, NK cells 
contribute to the lung pathology induced by influenza 
infection in mice.267 The pathogenesis of infection 
was diminished when NK cells were depleted with 
antibodies and adoptive transfer of activated NK 
cells into influenza-infected mice worsened disease 
in the recipients.267 Further experiments are needed 
to understand the contributions of NK cells toward 
pathogenesis as well as the potential role of memory 
NK cells in viral pathogenesis. 

Antigen-specific T cells lose functionality dur-

ing persisting virus infection and cancer, in part 
due to T  cell expression of inhibitory receptors. 
There is considerable interest in targeting these 
immunoregulatory pathways by treating patients 
with antibodies that interfere with ligand-receptor 
interactions. However, NK cells express many of 
these receptors, including LAG-3, PD-1, and TIGIT. 
These receptors are induced on NK cells by cytokines 
such as IL-10, IL-12, TGF-b, and interferons that 
are expressed during chronic infection and in the 
tumor environment.268 These data raise the specter 
that blockading these interactions to revive exhausted 
CD8+ T  cell responses may also increase NK cell 
responses, which could be detrimental to immune 
control of antiviral or antitumor immunity. NK cells 
resist tumor growth and are engaged in several anti-
tumor therapies where antibody-directed NK cells 
kill tumor cells. Now that it is clear that NK cells 
affect T  cell responses, there is the dire possibility 
that the immediate benefits of NK cell-inducing 
therapies are countered by the detrimental long-term 
effects of NK cell activation on tumor-specific T cell 
exhaustion. Thus, there is a need to better understand 
the interplay between NK cells and other protective 
wings of the immune system. 
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