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Abstract
This study compares methods for analyzing correlated survival data from physician-randomized
trials of health care quality improvement interventions. Several proposed methods adjust for
correlated survival data however the most suitable method is unknown. Applying the
characteristics of our study example, we performed three simulation studies to compare
conditional, marginal, and non-parametric methods for analyzing clustered survival data. We
simulated 1,000 datasets using a shared frailty model with (1) fixed cluster size, (2) variable
cluster size, and (3) non-lognormal random effects. Methods of analyses included: the nonlinear
mixed model (conditional), the marginal proportional hazards model with robust standard errors,
the clustered logrank test, and the clustered permutation test (non-parametric). For each method
considered we estimated Type I error, power, mean squared error, and the coverage probability of
the treatment effect estimator. We observed underestimated Type I error for the clustered logrank
test. The marginal proportional hazards method performed well even when model assumptions
were violated. Nonlinear mixed models were only advantageous when the distribution was
correctly specified.
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1. Introduction
Physician-randomized trials are clinical trials where each physician is randomized to a
treatment or control intervention. Although the intervention is delivered at the physician
level, effectiveness of the intervention is often measured at the patient level, so that patient
data are clustered by the randomized physician. This serves to reduce contamination among
participants and allows physicians to provide consistent treatment to all their patients.
However, the design induces correlations in the data which must be accounted for in the
analysis. Performance of these methods depends upon: the number of clusters, the cluster
size, and the correlation structure. Typically the correlation structure is unknown, the
number of clusters exceeds one hundred, and the cluster sizes vary greatly [1].

Usual methods of analysis for survival data: the logrank test, the Cox proportional hazards
model, and the accelerated failure time model, assume the data are independent. If these
methods are applied to correlated data the estimation of effect size may be correct, but
standard errors will not be adjusted for the correlations in the data and Type I error will
exceed nominal size. Several methods have been proposed to correct the standard errors in
these analyses. Jung and Jeong recently published a method for the clustered logrank test
[2]. Lee, Wei, and Amato [3] popularized the marginal proportional hazards model with
robust standard errors. Alternatively, one could model the frailty with a nonlinear mixed
model as a counterpart to the parametric accelerated failure time approach [4].

Few studies have attempted to compare methods for analyzing clustered survival data.
Glidden et al. [5] performed a simulation study of a clustered design where randomization
occurred within cluster and found that conditional models performed better than marginal
models. Loeys et al. [6] compared marginal and conditional methods for cluster randomized
trials and found that the power was similar between the marginal and conditional methods.
Cai et al. [7] compared the clustered permutation test to the usual logrank test and found that
the clustered permutation test improved preservation of Type I error.

In this simulation study we compare marginal, conditional, and nonparametric methods for
clustered survival analysis under the conditions of fixed cluster size, variable cluster size,
and various random effects. We examine power, Type I error, bias, coverage, and mean
squared error to determine the best method of analysis for physician-randomized trials. All
data are simulated using the design and characteristics of two physician-randomized trials of
an educational intervention for osteoporosis management. In section 2 we begin with a
description of two example studies. In section 3 we discuss the application of the shared
frailty model to the physician-randomized trial. In section 4 we review the various
estimation methods that may be used to analyze the data. In sections 5 and 6 we perform a
simulation study to evaluate the methods. Actual results from the example studies are
presented for comparison in section 6.2. In section 7 we make recommendations on how
best to analyze physician-randomized trials based on this research.

2. Example Studies
Osteoporosis is a disease of the elderly that makes bones prone to fracture. According to
practice guidelines, all patients at moderate to high risk of osteoporosis should either receive
a bone mineral density scan to rule out osteoporosis or be prescribed a preventive
medication to treat the disease [8]. Despite these guidelines many patients do not receive
adequate treatment [8]. Physician education or “academic detailing” programs have been
designed to improve management and prevention of this disease, however the effectiveness
of this education effort as an intervention is unknown. We attempted to evaluate the
effectiveness of the education program on improving osteoporosis management in two trials,
one occurring in Pennsylvania, the other in New Jersey [9, 10]. Data were analyzed by
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survival analysis to determine if the physician education program significantly improved a
patient’s chances of being correctly managed to prevent disease. Both trials served as
models in the design of the simulation studies.

The PACE study enrolled Pennsylvania Medicare beneficiaries who were eligible for a
state-run pharmaceutical benefits plan. Patients at risk of osteoporosis were selected for the
physician-randomized trial with a two-way factorial design. A total of 828 physicians with
13,455 patients participated in one of four groups: 1) physician education, 2) patient
education, 3) patient education plus physician education, or 4) usual care [9]. For the
purposes of this simulation we focused on comparing two groups: group 3, patient education
plus physician education and group 4, the usual care group. The average age of this study
population was 82. Patient claims data were used to measure the outcome of a bone mineral
density scan or prescription for a preventative osteoporosis medication. Patients were
followed using insurance claims data for 487 days or until they lost insurance coverage,
were admitted to a nursing home, or died. From this, approximately 10% of the patients was
censored. On average there were 16 patients per physician with a range of 2 to 65 patients
per physician. See figure C.1 for distribution of the number of patients per physician.

The HORIZON study enrolled patients at-risk of osteoporosis from the Horizon New Jersey
health insurance plan. This population was slightly younger than the PACE study with an
average age of 68. Loss due to lack of coverage, nursing home admittance, or death was
15%. The trial randomized 434 physicians with a total of 1973 patients to a combination
treatment of physician and patient education. Patients were followed using patient claims
data to determine if they received osteoporosis management (bone mineral density scan or
preventive osteoporosis medication). On average there were four patients per physician with
a range of 1 to 148 patients per physician (see figure C.1) [10].

3. The Model
We used a shared frailty model to represent the example physician-randomized trials [11].
We defined k = 1, ..., K physician clusters assigned at random to either treatment (X=1) or
control (X=0) group. Each physician contributed i = 1, ..., nk patients to the study so that

 was the total number of patients in the study. Let (Tki; k = 1, ..., K, i = 1, ..., nk)
be the time until each patient received either a bone mineral density scan or preventive
osteoporosis medication. Let (Dki; k = 1, ..., K, i = 1, ..., nk) be the censoring time for patient
i of physician k. Xk; k = 1, ...K is a binary indicator for treatment assignment at the physician
level. We assumed that time until osteoporosis management and censoring were
conditionally independent given the physician cluster and that the patients in each treatment
group shared a common survival distribution, hazard, and cumulative hazard function
conditioned on the physician visited. We observed the minimum follow-up time  between
Tki and Dki and indicated if censoring occurred by Cki, where  so that our
data consisted of ( , Cki; k = 1, ..., K, i = 1, ..., nk).

A random effect wk with density fθ (.) is included in the model to measure physician to
physician differences in treatment of patients at risk of osteoporosis. In the shared frailty
model for the hazard,

λki(t); k = 1, ..., K, i = 1, ..., nk, predicts the patient specific hazard at time t given Xk and wk.
λ0(t) is the baseline hazard and β is the coefficient for the treatment effect [11]. If we were to
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combine wk with the baseline hazard λ0(t), we could interpret the shared frailty model as a
hazard model where the baseline hazard is shared among patients with the same physician.

4. Estimation Methods
We examined four different methods of estimation and hypothesis testing to evaluate the
educational intervention. These included a parametric approach (nonlinear mixed effect
models), a semi-parametric approach (marginal proportional hazards models with robust
standard errors), and two nonparametric methods (the clustered permutation test and the
clustered logrank test). Each of these methods uses a different means to adjust for the
correlations in the data.

4.1. Parametric Method
Nonlinear mixed effect models use a parametric approach to fit the data. Users specify the
distribution of the baseline hazard and random effect to fit the shared frailty model.
Estimates are solved for by maximum likelihood estimation. If the distribution of the
baseline hazard and random effect is correct, estimates should be asymptotically efficient
and unbiased [12]. However, in applied situations these distributions are usually unknown.
Common distributions selected for fitting the baseline hazard include the Weibull, log
logistic, lognormal, and generalized gamma distribution [11]. The random effect is often
fitted with the gamma, lognormal, positive stable, and inverse Gaussian distributions [11].

For a full description of the estimation method see Duchateau and Janssen [4]. Estimates are
obtained from the likelihood, which is the product of the probability distribution function
(p.d.f.) of the baseline hazard for the patients who receive treatment for osteoporosis, the
survival function for the patients who are censored prior to receiving treatment, and the
distribution of the random physician effect [4, 13]. The likelihood for cluster k is:

Parameter estimates may be obtained using the NLMixed procedure in SAS [14]. There is
no closed form solution for the likelihood so integration of the likelihood is approximated by
Gaussian quadrature [15].

4.2. Semi-parametric Method
Marginal proportional hazards with robust standard errors is a semi-parametric method for
analyzing clustered survival data. For details on this method see Lee et al [3]. The marginal
proportional hazards model does not assume a distribution for the baseline hazard or random
effect but it does assume marginal proportional hazards. Only shared frailty models with a
Weibull baseline hazard and a positive stable distribution for the random effect are known to
satisfy the marginal proportional hazards assumption [11]. The positive stable distribution is
highly skewed and may not be an appropriate assumption for all clustered data.

The marginal proportional hazards approach is one of the most popular methods of analysis
for its ease of interpretation and application to survival data. Parameter estimates are derived
by ignoring the clustering. This is also called an “independence working model” [3]:
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λ0 is an average estimate of the baseline hazard for all patients (distinct from the conditional
model where the baseline hazard was physician specific).

Estimation of the treatment effect, β, occurs as in usual Cox proportional hazards regression
with a partial likelihood function. The partial likelihood is a ratio of the likelihoods for
patients who receive osteoporosis management relative to patients who have not been
managed for osteoporosis. For an ordered set of times t1 < t2 < ... < tJ without ties the
partial likelihood is based on the jth time [11]:

where Qj and Rj represent the respective set of doctors and patients at risk at time j. Since
the baseline hazard is assumed to be marginally proportional across treatment groups it
cancels out from the likelihood equation. Usual maximum likelihood estimation is applied to
the ratio to solve for the parameter estimates. Lee et al. [3] proved that estimates from the
working independence model are consistent and asymptotically Normal(0,V). A sandwich
estimator is used to adjust the covariance matrix V for the correlation within physician post
hoc [3].

4.3. Nonparametric Methods
Two nonparametric methods were tested on the simulated datasets: the clustered
permutation test [16] and the clustered logrank test [2, 17]. Both tests do not estimate the
hazard ratio however they may be used for significance testing. The advantage to these
methods is that they make no assumptions about the structure of the variance, the
distribution of the baseline hazard, or random effect.

The clustered logrank test adjusts the variance of the usual logrank test for the clustering in
the data. See Jung and Jeong [2] for details on the method. In brief, the authors expanded the
following formula for the usual logrank test statistic (R):

to demonstrate that the within cluster statistic is asymptotically distributed as N(0, σ2). W is
a weight specific to the logrank test which is non-preferential to early or late occurring
events. Y is the total number of events occurring in each treatment group. S represents
ordered intervals of time and H1 and H2 are the cumulative hazards for groups 1 and 2
estimated at time s. The within cluster mean squared error is summed across independent
clusters to obtain the variance of the clustered logrank test. Since the distribution of the test
statistic relies on asymptotic assumptions it may not perform as well for small samples.
Under large sample conditions results should be comparable to results from the marginal
proportional hazards method with robust standard errors [2].

The clustered permutation test is an exact method that can be applied to any test statistic.
See Stedman et al. [16] for details on the method. The clustered permutation test permutes
the treatment assignment while keeping the clusters intact to generate a distribution for the
test statistic under the null hypothesis. (The null hypothesis assumes that the distribution of
the outcome is the same for both treatment groups so that observations are equally likely to
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be assigned to either treatment group.) The significance of the observed test statistic is
measured with respect to the distribution of permuted test statistics.

5. Simulation Study
We performed four simulations to replicate the example data described in section 2. For all
simulated datasets we assumed a shared frailty model (section 3) with a Weibull distribution
for the baseline hazard. The Weibull distribution was selected for its flexibility because
parameters have both proportional hazard and accelerated failure time forms. Observation
time was censored at 296 days, the maximum follow-up time in the HORIZON study. Each
simulation includes two treatment groups with 229 physician clusters per treatment group.
Within physician correlation was simulated by including a physician specific random effect
in the model.

For all simulations the baseline hazard, λ0(t), followed a Weibull distribution with a shape of
0.9. In the first simulation, “fixed cluster simulation”, we generated 458 physician clusters
with 8 patient observations per cluster. The conditional parameters simulated for the
treatment effect were: 0.00, -0.04, -0.09, -0.18, -0.21, -0.45, and -0.72. The frailty was
simulated from the lognormal distribution. For the second and third simulation “variable
cluster simulations”, we varied the cluster size to match the distributions of cluster sizes in
the PACE and HORIZON datasets. See figure C.1 for the distribution of cluster size for
these datasets. In the fourth simulation “random effect simulation” we fixed the cluster size
at eight patients while varying the distribution of the frailty to include: the uniform(0,1),
Gamma, Bernoulli, T, and Positive Stable [18] distributions. The Bernoulli and T random
effects were exponentiated before being added to the model. The positive stable distribution
(β = 1, α = 0.5) was simulated from two independent uniform random variables as described
by Chambers [18] and Shu [19]. The Bernoulli distribution was included to represent a
scenario where there are two groups of doctors: those that respond well to treatment and
those that respond poorly to treatment. In the random effect simulation we tested three levels
for the treatment parameter: 0.00, -0.21, and -0.45. 1000 datasets were generated for each
treatment effect. 6000 additional datasets were generated to evaluate Type I error. All data
for this project were simulated with the IML procedure in SAS v9.1.

Each of the methods described in section 4 was applied to the simulated datasets. Nonlinear
mixed effect models were fitted with a Weibull distribution for the baseline hazard and a
lognormal distribution for the random effect [14]. The marginal proportional hazards model
was implemented with the PHREG procedure in SAS assuming Breslow method for tied
outcomes [20]. See Appendix A for examples of the SAS code for these methods. The
clustered logrank test was applied using a SAS Macro [17]. The clustered permutation test
[16] entailed 100 permutations of the Wald test statistic for each analyzed dataset.

Each estimation method was evaluated for Type I error, power, coverage probability, bias,
and mean squared error (MSE) based on at least 1000 simulations. Power and Type I error
were determined by the proportion of the results with a significant treatment effect.
Coverage probability was estimated as the proportion of results where the 95% confidence
interval included the simulated treatment effect (based on the marginal estimates). Bias was
defined as the average difference between the estimated marginal treatment effect and the
simulated marginal treatment effect. MSE was estimated from the average of the squared
difference between the estimated marginal treatment effect and the simulated marginal
treatment effect. Confidence intervals were based on normal approximations of the statistics
mentioned. To test for differences in the methods we paired results by simulation and
summarized our findings using the McNemar and paired t-tests.

Stedman et al. Page 6

Contemp Clin Trials. Author manuscript; available in PMC 2013 December 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.1. Marginal versus Conditional Estimates
Parameters from nonlinear mixed effect models give conditional estimates of effect,
meaning that the estimates depend on the physician visited. For example, by exponentiating
β̂ we obtain the hazard ratio for the risk of osteoporosis management in the treated group
compared to the control group predicated on the primary care physician. Additionally,
physician specific predicted hazards can be obtained from the model to describe the
physician to physician variability in osteoporosis management with and without the
intervention.

Marginal proportional hazards models compute marginal estimates of effect, meaning that
the treatment effect of the educational intervention, β, is averaged across physicians.
Population averaging results in “marginal estimates” that are shifted towards the null
compared to conditional estimates [21]. Interpretation of marginal estimates is less complex
than conditional models because there is a single estimate to describe the hazard ratio for the
treatment effect. For example, by exponentiating β̂ we obtain the hazard ratio for the risk of
osteoporosis management in the treated group compared to the control group for the entire
study population.

Choice of estimate depends upon the study question and the model assumptions. The
estimates differ from both a computational and a conceptual perspective. If the goal is to
examine physician to physician variability in response to treatment, this can only be
evaluated with a conditional model. If the purpose of the study is to measure the average
response to treatment, this is more easily estimated from a marginal model. A conditional
estimate cannot be obtained from a marginal model and a marginal estimate cannot be easily
obtained from a conditional model.

Since marginal proportional hazards models yield marginal estimates and the nonlinear
mixed models yield conditional estimates we encounter some difficulties when attempting to
make direct comparisons between the two. Conditional estimates from binary and survival
outcomes tend to be more extreme and have greater variability than their marginal
counterparts. Estimates from the marginal model tend to be biased towards the null. The
problem is akin to the issue of collapsibility in nonlinear models [22–24]. In this case, the
random effect, wk from the shared frailty model is a conditional confounder. The marginal
model averages over the omitted physician covariate which results in a biased estimate of
the treatment effect. The degree of bias also depends on the amount of censoring and the
distribution of the random effect [22, 25]. In order to compare like with like we have to
convert all conditional estimates to marginal estimates. See Appendix B for the method used
to convert conditional parameters from the simulated dataset and conditional estimates from
the frailty model to marginal estimates.

6. Results
6.1. Results from Simulation

Table 1 displays results from the fixed cluster simulation where the random physician effect
is lognormally distributed and the cluster size is fixed. The effect size listed in the first
column is the conditional parameter for the treatment effect from the simulation. See
Appendix C for a table of the hazard ratios for each effect size listed. The MSE and bias
have been rescaled by a factor of 10. All results are based on at least 1000 iterations. We
find that Type I error is below 0.05 for the clustered logrank test. The marginal proportional
models with robust standard errors (MPHM) and nonlinear mixed models (NLMM) are
slightly more powerful than the nonparametric methods. We found no significant difference
in power between the MPHM and the NLMM (p=0.11). MSE is also similar between these
methods (p=0.7163). Most intervals contains 95% coverage except for the NLMM result
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with effect size −.72 where coverage exceeds 95% and the MPHM result with effect size 0
where coverage is below 95%. For both models the bias is consistently negative and shifts
away from the null for all treatment effects. Also, the bias appears to decrease with larger
effect sizes. NLMM yields less biased estimates than MPHM even after they are converted
to population averaged estimates of effect (mean difference=−0.004, p < 0.0001).

Tables 2 and 3 present results from the variable cluster simulations where the cluster sizes
varies according to the observed study distributions presented in Figure C.1. The results are
similar to those reported for the fixed cluster simulation except that the NLMM appear to be
more powerful than the MPHM. Again, we find an underestimate of Type I error for the
clustered logrank test in the HORIZON pattern. Also, NLMM underestimates Type I error in
the PACE pattern. All other intervals contain the nominal Type I error of .05. Across cluster
size patterns most intervals contain a coverage probability of 95%. There were a few
exceptions for the NLMM results with effect sizes −0.45 and −0.72 where coverage
exceeded 95% and the MPHM null effect size, where coverage is below 95%. Overall, the
NLMM had lower MSE than the MPHM (HORIZON mean difference= .0072, PACE mean
difference=.0015, p < 0.0001 for both cluster size patterns). Again both methods tend to
give negatively biased estimates. NLMM yield less biased estimates than the MPHM even
after they are converted to population averaged estimates of effect (HORIZON mean
difference = −0.005, PACE mean difference = −0.003, p < 0.0001 for both cluster patterns).

Table 4 displays results from the random effect simulation where the distribution of the
random effect is varied and the cluster size is fixed. Only three treatment effects are
simulated for each distribution of the random effect: 0, -.21 and -.45. Across all distributions
for the random effect intervals for Type I error contained .05. The MPHM and the clustered
logrank test are equally as powerful as the NLMM under non-lognormal random effects.
Coverage is much more consistent with the MPHM than the NLMM. Many of the NLMM
confidence intervals for the gamma, T, uniform, and positive stable distributions range
slightly above 95%. Mean squared error is slightly less overall for the MPHM method than
the NLMM method (mean difference=−92 ×10−5, p < .0001). This difference is apparent in
the gamma, T, and positive stable distributions. Bias is inconsistent across methods and
distributions. The simulated uniform random effect results in the most biased estimates with
bias close to 0.05. In previous simulations the bias was consistently negative. Here we find a
positive bias for the gamma, T, and positive stable simulated distributions. Although
generalizations should be made with caution, overall the MPHM have less biased estimates
than the NLMM (mean difference=−0.008 p < 0.0001).

6.2. Results from Example Studies
Each of the four estimation methods was tested on actual data from the PACE and
HORIZON studies (see section 2). The HORIZON study randomized 434 physicians to
physician education or the control intervention. Treatment was targeted to the physician and
the patients of the physician. Number of patients at risk per physician ranged from 1 to 148
patients. Patients were followed for osteoporosis management over a duration of 296 days
[10]. In Table 5 we show that there is an improvement in receiving osteoporosis
management of at least 21% greater in the physician education group than in the control
group (MPHM HR=1.48, NLMM HR=1.21). All methods except NLMM found the
improvement to be significant (p < 0.05).

The PACE study enrolled 828 physicians into a 2-way factorial design of education for
osteoporosis management. For the purpose of this study we simplified the design to compare
only the group receiving the combined treatment of patient and physician education to the
group with usual care (414 PCPs). The number of patients at risk per physician was between
2 and 65. The maximum follow-up time was 487 days [9]. Irrespective of the method
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selected, no difference in risk of osteoporosis management was detected between the
education group and the control group (see Table 5).

7. Discussion
Our findings show that the marginal proportional hazards models with robust standard errors
and nonlinear mixed models perform better than the nonparametric methods. The nonlinear
mixed effect model has a slight advantage over the marginal proportional hazards method
when the distribution of the random effect is lognormally distributed. When the distribution
of the random effect is not lognormally distributed the marginal proportional hazards
method performs better with respect to coverage, bias, and MSE. It is interesting that the
positive stable distribution does not significantly favor the marginal proportional hazards
model, although it is the only frailty distribution with marginal proportional hazards. Type I
error is preserved across most methods and scenarios tested. It is somewhat surprising that
the clustered logrank test does not perform better since it is asymptotically equivalent to the
marginal proportional hazards model [2]. It is possible that it might perform better with
larger cluster sizes.

Our results differ from some results reported in the literature. Glidden et al. [5] compared
methods of analysis for trial randomization within cluster. They found that marginal
proportional hazards underestimate coverage when there are under 5 clusters and relative
efficiency declines for frailty models when cluster size is small. It is possible that the
marginal method may perform worse in cluster randomized trials where there are fewer
clusters, but this cannot be confirmed by our results. We did not experiment with fewer
clusters because physician-randomized trials typically randomize many physicians. We did
experiment with cluster size. Typically we randomize small clusters in physician
randomized trials and our results show that the relative efficiency of the nonlinear mixed
model declines when we imposed the cluster pattern of the PACE and HORIZON studies.
(In these simulations many of the clusters only contained one or two patients.) However, we
find that the decline in efficiency is worse for the marginal model than for nonlinear mixed
model. van Breukelen et al. [26] compared equal and unequal cluster sizes and found that
highly skewed cluster sizes can decrease efficiency by 10%. We find the decline in
efficiency to also depends on the estimation method selected.

Both Glidden et al. [5] and Hsu et al. [27] found the gamma random effect model was robust
to misspecification of the distribution. We found that the lognormal conditional model was
not as robust as the marginal proportional hazards model under the various random effect
distributions of the data simulated. A gamma distributed random effect offers more
parameters than the lognormal random effect we tested. SAS methods exist to test a
conditional model with a gamma random effect however convergence of the estimates may
be less reliable [13].

In this study we found that most estimates converged under the conditions tested. The
clustered logrank test underestimated Type I error. The clustered permutation test had
reliable Type I error but it was not as powerful as the other methods considered. Based on
these results, we recommend either the marginal proportional hazards with robust standard
errors or nonlinear mixed effect models for analysis of physician-randomized trials with
survival outcomes depending on if it is reasonable to assume a lognormal random effect.
The nonlinear mixed effect model is the most powerful and is the least biased when it is safe
to assume lognormal random effects. Results from the nonlinear mixed effect model
additionally allow one to obtain physician specific estimates. This may be useful for
characterizing individual clusters and developing a more targeted intervention.
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We did not include the penalized quasi-likelihood (PQL) approach among the methods
tested. In a previous analysis with binary outcomes we found PQL to perform poorly under
the conditions of our physician randomized trials [1]. Others have reported estimation
convergence problems with PQL and cluster randomized trials [6]. We also did not consider
bootstrap methods for adjustment of standard errors. Others have reported reasonable results
with this method [27]. In previous studies with a binary outcome we found the method may
need further refinement for variable cluster sizes [1]. Since the nonparametric methods
tested were not as powerful, we expect that the bootstrap method would not be as powerful
as the nonlinear mixed models and the Cox method. We did not consider other methods for
handling tied data with Cox proportional hazards. It is possible that performance may vary
depending on the number of tied outcomes in the dataset. Our results are limited to the
design structures that were tested. It is likely that these methods would perform differently
for community intervention trials where there are few clusters of large cluster size. We did
not consider different censoring patterns, left censoring, or informative censoring. More
studies are needed to test the methods under various censoring conditions.

This study demonstrates performance of several methods for analyzing physician-
randomized trials with survival outcomes. The marginal proportional hazard method has
become popular for its ease of use and interpretability. This study confirms that marginal
proportional hazards models perform as well as the other methods available for analyzing
these data.
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Appendix A. SAS code for analytic methods
The clustered permutation test and clustered logrank test are freely available SAS macros.
See Stedman et al. [16, 17] for documentation of the software.

Examples of the code to implement nonlinear mixed models and the marginal proportional
hazards models are copied below. For documentation of these methods see the SAS manual.
[15]

*****Nonlinear mixed 
models*******************************************************
proc nlmixed data=example tech=quanew update=bfgs;
bounds gamma > 0;
parms b0=7
b1=0
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gamma=1.0
logsig=1;
linp = b0 + b1*treat + z;
alpha = exp(-linp);
G_t = exp(-(alpha*time1)**gamma);
g = gamma*alpha*((alpha*time1)**(gamma-1))*G_t;
ll = ((cens1=0)*log(G_t)) + ((cens1=1)*log(g));
model time1 ~ general(ll);
random z ~ normal(0,exp(2*logsig)) subject=drid;
estimate ’b1_ph’ (-1) * b1 / gamma;
estimate ’b0_ph’ (-1) * b0 / gamma;
run;

*******Marginal proportional hazards 
models***************************************
proc phreg data=example covs (aggregate);
model time1 * cens1 (0)= treat;
id drid;
run;

Appendix B. Converting Conditional Estimates to Marginal Estimates
The conditional hazard from the shared frailty model at time t is:

Then the marginal hazard function at time t is:

In survival analysis bias in the marginal estimates depends on the form of the frailty and the
degree of censoring in the data. For a positive stable frailty distribution the marginal model
is of a proportional hazards form so that unbiased marginal estimates may be obtained from
the conditional estimates [25]. For other distributions marginal proportional hazards are not
maintained and the integral in intractable so that bias can be more substantial. We suggest
the following Monte-Carlo simulation method to approximate the integral:

1. Using the parameters simulated (or estimated from the nonlinear mixed models)
simulate a large dataset with one observation per cluster. We simulated 40,000
clusters with one observation per cluster (20,000 clusters per treatment group). A
random effect was added to each observation according to the distribution
simulated (or estimated).

2. Apply regular Cox proportional hazards regression to estimate marginal parameters
from the large dataset in part 1.

Stedman et al. Page 12

Contemp Clin Trials. Author manuscript; available in PMC 2013 December 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix C. Translating conditional estimates from frailty models to
hazard ratios

In all simulated and applied models a Weibull distribution was specified for the baseline
hazard. Estimates from the Weibull model may be converted to either a proportional hazards
or accelerated failure time form by applying the following formula. To distinguish the
parameters we will denote the proportional hazards parameter as βph and the accelerated
failure time parameter as βaf. The scale, represented by σaf, of the Weibull distribution is the
inverse of the shape of the distribution.

To facilitate interpretation of the failure time estimates presented in tables 1 through 4 we
have translated the treatment effects simulated into hazard ratios (see table 6).
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Figure C.1.
Distribution of cluster size
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Table 5

Actual Results from PACE and HORIZON Studies by Study and Method

Description PACE HORIZON

Number of Clusters 414 434

Cluster Size 2–65 1–148

ICC 0.04 0.03

% Censored 10% 15%

mean follow-up time 381.45 days 263.53 days

MPHM p=0.59, HR=1.06 95%CI:(0.87, 1.28) p=.02, HR=1.48 95%CI:(1.05, 2.07)

NLMM p=0.47, HR=1.11 95%CI:(0.84, 1.46) p=.14, HR=1.21 95%CI:(.90, 1.51)

Clustered Logrank p=0.59 p=.04

Permutation Test p=0.52 p=.02
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Table 6

Hazard ratio for conditional hazard ratio parameters

Conditional β1 Conditional HR

0.00 1

−0.04 1.04

−0.09 1.09

−0.18 1.18

−0.21 1.21

−0.45 1.51

−0.72 1.92
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