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Abstract
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density
partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the
HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of
arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing
molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with
their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better
reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic
increase in precision for reproducing ab initio electrostatic properties is demonstrated by
increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic
hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly
reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular
dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared
with reference ab initio values. Significant errors in reproducing ab initio molecular dipole
moments are found if only HD or HD-I atomic charges used.
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Introduction
Models for partial atomic charges provide an approximate description of a molecular charge
distribution, which often lead to chemically useful concepts. For example in most models,
atomic charges on highly electronegative atoms, such as nitrogen or oxygen, are usually
negative when bonded to less electronegative atoms, such as hydrogen and carbon, which
are usually positively charged. Aside from being a useful conceptual device, partial atomic
charges have also been used extensively in the development of simple models [1–7] for
inter-molecular forces. Partial atomic charges are capable of providing a minimum
description of electrostatic molecular properties, such as molecular dipole moment and
electrostatic potential outside van der Waals radii on each atom, in which the bulk of
molecular charge density is contained. In addition, the anisotropy of the electron charge
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density around an atom can be more accurately described by including higher order atomic
multipoles [8–11]. Both atomic charges and atomic multipoles have played a crucial role in
developing models for inter-molecular forces, which have been used for example, to model
water [12–16].

Many different schemes for calculating partial atomic charges have been developed. One
popular method for calculating atomic charges is by fitting the charges to the ab initio
electrostatic potential (ESP) surrounding a molecule, as described for example, in the
ChelpG procedure [1]. In a second type of method for calculating atomic charges, the
molecular electron charge density ρmol(r) is partitioned into atomic charge densities ρa(r) by

(1)

The total atomic charge qa on atom a is given by the difference of the positive nuclear
charge Za and the negative integral of atomic charge density

(2)

The two main methods for exactly partitioning ρmol(r) into atomic density contributions
ρa(r) are basis set partitioning (e.g. Mulliken charges [17]) and real space partitioning (e.g.
Bader’s Atom In Molecules [18] and Hirshfeld charge [19] methods).

In the Hirshfeld (HD) charge scheme, the ab initio molecular electron charge density ρmol(r)
is partitioned into atomic density contributions ρa(r) by

(3)

where ρa
0(r) is the ab initio atomic charge density of the isolated atom a in vacuum. Note

that eqn. 1 is exactly satisfied and the HD atomic charges are calculated from eqn. 2. One of
the major shortcomings of HD charges is that the predicted molecular dipole moments are
underestimated, i.e. the charges are too small in magnitude. Davidson and Chakravorty [20]
pointed out that the choice of isolated atomic charge densities ρa

0(r) is arbitrary and
suggested that fractional atom charge densities  might overcome the problems with HD
atomic charges. Bultinck and co-workers [21–23] developed a Hirshfeld-Iterated (HD-I)
atomic charge model, in which fractional atomic charge densities  replace the isolated
atomic charge densities ρa

0(r) in eqn. 3. The fractional atomic charge density  for atom
a is constructed from the present atomic charge qa and the ab initio atomic charge density of
the isolated atom and its atomic ions. The fractional atom charge densities  lead to a
new partitioning of the atomic charge density ρa(r) (eqn. 3), which then lead to a new set of
atomic charges qa (eqn. 2). In this way, the charges qa are calculated iteratively until self-
consistency is achieved. A more detailed description of the HD-I partitioning scheme is
provided in the following section. The HD-I atomic charges are larger in magnitude and
more accurately reproduce ab initio molecular dipole moments, when compared to HD
atomic charges. Lillestolen and Wheatley [24] have developed a similar iterative type charge
method, which does not require separate calculation of the isolated atomic charge and
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atomic cation/anion charge densities. In addition, atomic multipoles can be calculated from
the partitioned atomic charge densities. Recently, Harrison [25] calculated atomic charges,
dipoles, and quadrupoles from the partitioned HD-I atomic charge densities ρa(r) for linear
halogenated acetylene molecules X-C≡C-H (X = H, F, Cl, Br, I).

In this work, we describe an extended implementation of the HD and HD-I atomic charge
density partitioning procedure in order to calculate atomic multipoles Qlm

a of arbitrary
multipole rank l for molecules of arbitrary shape and size. The HD and HD-I atomic
charges/multipoles can be calculated at the HF, DFT, MP2, or CCSD levels using ab initio
Gaussian basis sets that include up to s, p, d, f, g functions for either closed shell or open
shell molecules. The HD and HD-I atomic charges/multipoles are tested on a variety of
small closed shell molecules by comparing molecular multipole moments and the
electrostatic potential surrounding a molecule with their ab initio reference values. In
addition, ChelpG atomic charges are compared with HD and HD-I atomic charges only by
calculating molecular dipole moments and comparing with ab initio reference values. As
most widely used force fields [26–28] employ atomic charges only, it is important to point
out the properties and limitations of HD and HD-I atomic charges.

Calculating HD and HD-I atomic multipoles from the Hirshfeld partitioned charge densities
offers more possibilities for exploring new models for inter-molecular forces, at least for
long range electrostatic properties. In inter-molecular interactions, both atomic charges and
atomic multipoles do not capture the short range penetration error [29], which is associated
with the inter-molecular overlap of charge densities. However, damping functions [30–32]
have been proposed as a short-ranged correction to atomic multipoles in order to overcome
the penetration error. In addition, models based on charge density, such as Gaussian
multipoles [33–37], have many properties similar to atomic point multipole models. Further
analysis of atomic point multipole models should lead to a better understanding of current
models and provide a useful guide for the development of future models.

Methods
1. Hirshfeld-Iterated (HD-I) Atomic Charge Scheme

Suppose ρmol(r) ≥ 0 is an ab initio molecular charge density. Let ρa
(n)(r) be the isolated ab

initio atomic charge density of atom a with n electrons, i.e.  where n is a
positive integer. If n ≠ Za, then ρa

(n)(r) corresponds to an atomic ion charge density with net
atomic charge Za − n. Suppose qa is the present Hirshfeld-Iterated (HD-I) net atomic charge
of atom a. The fractional number of electrons Na for atom a is

(4)

Note that Na need not be an integer. However, Na may be expressed as an integer
contribution na and a real number contribution Δa i.e. Na = na + Δa where 0 ≤ Δa ≤ 1. The
fractional atomic charge density  of atom a corresponding to net atomic charge qa and
fractional number of electrons Na is defined as a linear interpolation between

 by

(5)

Note that .
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The molecular charge density ρmol(r) is partitioned into HD-I atomic charge densities ρa(r)
by

(6)

Given a partitioned atomic charge density ρa(r), a new set of atomic charges qa′ can be
calculated by

(7)

Starting with qa = 0, eqns. 4 – 7 are solved iteratively for the HD-I charges until self-
consistency is achieved, i.e. the new charges qa′ are then substituted back into eqn. 4 to give
a new set of fractional numbers of electrons Na = na + Δa. The fractional numbers of
electrons are then substituted into eqn. 5 to generate a new set of fractional atomic charge
densities , which is then substituted into eqns. 6 and 7 to generate a new set partitioned
atomic charge densities ρa(r) and a new set of atomic charges qa. The HD atomic charges
and partitioned atomic charge densities are obtained at the end of the first iteration after the
qa are initially set to 0. For each iteration, note that ρa(r) is an exact partition of the total
molecular charge density ρmol(r), i.e. eqn. 1 is always satisfied.

2. Numerical Grids
The integrations over atomic and molecular charge densities are performed numerically
using grids, i.e.

(8)

where ri and wi are the grid positions and weights, respectively. The ab initio atomic and
molecular charge densities ρ(r) are evaluated at the grid positions ri (see eqn. 21 below). We
have written code to generate the grids using the scheme proposed by Becke [38]. For each
atom, Gauss-Chebyshev radial grids of arbitrary order and Lebedev [39–44] angular grids of
orders 9, 11, 17, 23, 25, 27, 41, 47, 53, and 131 have been implemented. Multiple atomic
grids have been merged together into molecular grids using Becke’s smoothing function
method [38]. The number of radial points and the order of angular quadrutaure are
adjustable parameters in our code.

In general, the ab initio atomic charge densities are not spherically symmetric for open shell
atoms or ions. For example, this can be seen by calculating the ab initio quadrupole moment
for an oxygen atom O(3P). Spherically symmetric atomic charge densities  are
obtained by averaging over solid angle Ω

(9)

where r = |r| is the radial distance with respect to the origin. The integrations over solid
angle are calculated numerically using the Lebedev grids. If the ab initio atomic densities
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are not averaged over solid angle and made spherically symmetric, then the resultant HD
and HD-I atomic charges may have a slight dependence on molecular orientation.

3. Multipoles
The total partitioned atomic charge density ηa(r) for atom a is defined as the sum of a
positive nuclear charge contribution and the negative partitioned atomic charge density ρa(r)
by

(10)

where Za is the nuclear charge of atom a, Ra is the nuclear center of atom a, and δ(r − R) is
a Dirac-delta function [45]. Spherical tensor atomic multipole moments Qlm

a of the total
partitioned atomic charge densities ηa(r) are calculated as [29]

(11)

where Clm(r) is a solid harmonic function [46] (eqns. A.3 and A.6). Molecular multipole

moments  are defined with respect to a molecular center R by

(12)

where ηmol(r) is total molecular charge density given by

(13)

Typically, the molecular center R is taken to be the origin (R = 0) in ab initio calculations.
In this work, the molecular center is the origin, which also coincides with the center of

nuclear charge. The molecular multipole moments  can be expressed in terms of atomic
multipole moments Qlm

a by first substituting eqn. 13 into eqn. 12

(14)

An addition theorem for solid harmonic functions [47] CLM(r1 + r2) (eqn. A.5) with r1 ≡ r −
Ra and r2 ≡ Ra − R is substituted into eqn. 14 to give

(15)

In ab initio calculations, molecular multipoles are often calculated in ‘pure’ Cartesian form

(16)
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where (l ≡ lx + ly + lz) and R ≡ (X, Y, Z). In addition, traceless Cartesian multipoles [29] with
respect to the origin (R = 0) are defined by

(17)

where  is a traceless Cartesian multipole operator defined by

(18)

Expressions for converting multipole moments between ‘pure’ Cartesian, traceless
Cartesian, and spherical tensor conventions have been given in previous works [48–50]. The

conversion formulae follow from the polynomial properties [50] of  (see
eqns. A.6 – A.11). The expressions needed in this work are summarized below. ‘Pure’
Cartesian multipoles can be converted to spherical tensor multipoles by

(19)

where  is a constant defined in eqn. A.7. Spherical tensor
multipoles can be converted to traceless Cartesian multipoles by

(20)

where  is a constant defined in eqn. A.10.

4. Computational Details
All ab initio calculations are performed at the B3LYP/aug-cc-pVTZ level using Gaussian 09
[51]. The molecules are initially geometry optimized at the B3LYP/aug-cc-pVTZ level. We
have written code to read in the ab initio density matrix Pμν and the real atomic basis
functions χμ(r) from ‘formatted checkpoint’ files obtained from Gaussian 09. The ab initio
(molecular or atomic) charge density ρ(r) is evaluated as

(21)

The ab initio molecular charge density is evaluated on a grid for the molecule, while the ab
initio atomic and atomic ion charge densities are evaluated on atomic grids for the isolated
atoms. The ab initio atomic charge densities are averaged over solid angle using eqn. 9 and
stored as a tabulated function of radial distance r from the atomic center. The spherically
symmetric ab initio atomic charge densities are evaluated on the molecular grid using an
exponential type interpolation between neighboring radial points [ri, ri+1]. In this work, all
calculations are done using a 100 point radial grid and a Lebedev grid of order 41 with 590
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points angular points. The HD and HD-I partitioned atomic charge densities are evaluated
numerically on a grid from the ab initio charge densities of the molecule and the isolated
atomic charge densities using the procedure described in section 1.

The molecules studied in this work are closed shell with a spin multiplicity of 2S+1 = 1 (S =
0). However, the spin multiplicities of the isolated atoms and atomic ions are chosen which
minimize the ab initio atomic energies. The spin multiplicities of the various atomic species
used in this work are given in Table I. For the open shell atomic species, the atomic charge
densities are obtained from unrestricted self consistent field calculations using the B3LYP
density functional.

Atomic charges and atomic multipoles are calculated from the partitioned HD and HD-I
atomic charge densities using eqns. 7 and 11, respectively. The spherical tensor molecular
multipole are calculated from the atomic charges/multipoles using eqn. 15 and converted to
their traceless Cartesian forms using eqn. 20. The ab initio ‘pure’ Cartesian molecular
multipoles are obtained from Gaussian 09 output and converted to their spherical tensor and
then traceless Cartesian forms using eqns. 19 and 20, respectively. In addition, ChelpG
atomic charges are calculated with Gaussian 09.

The HD and HD-I atomic charges/multipoles are further tested by calculating the ESP
surrounding a molecule and comparing with ab initio reference data. The ESP calculated by
atomic multipoles is given by

(19)

where r is the field point, Ra is the atomic center of atom a, and lmax is the maximum rank
of the multipole expansion. The ab initio ESP is calculated with Gaussian 09. In general, a
necessary condition for the multipole approximation to be valid, is that the ab initio charge
density ρ(r) evaluated at the field point r should be small. The ESP is sampled on a surface
surrounding a molecule where the density is small and defined by 10−4 e/Å3 ≥ ρ(r) ≥ 10−5

e/Å3. The distance from a point on the surface to the closest atomic center is calculated and
averaged over the surface. For each element, the distances are then averaged over the 24
molecules studied in this work (see Table III) and given in Table II. For comparison, the
inner ChelpG radii are also given in Table II for the elements H, C, N, O. ChelpG atomic
charges are fit to the ab initio ESP on a grid of points defined between inner and outer vdW
radii (2.8 Å) on each atom.

Results
1) Hirshfeld (HD) and Hirshfeld-I (HD-I) Atomic Charges

HD, HD-I, and ChelpG atomic charges are calculated for a variety of small molecules and
listed in Table III. The molecular dipole moments are calculated from the atomic charges
and compared to their ab initio reference values. In general, the HD atomic charges
underestimate the molecular dipole moment, while the HD-I atomic charges often
overestimate the molecular dipole with respect to reference ab initio results. In comparison,
molecular dipole moments calculated by ChelpG atomic charges closely reproduce the ab
initio molecular dipole moments. For example, the molecular dipole moments of water
calculated by HD, HD-I, and ChelpG atomic charges are 0.818, 2.42, and 1.904 D, which
can be compared to the reference B3LYP/aug-cc-pVTZ result of 1.847 D. The Root Mean
Square Deviation (rmsd) in molecular dipole moment is calculated for each molecule and
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averaged over all of the molecules. For HD, HD-I, and ChelpG atomic charges, the averaged
rmsd in molecular dipole moment are 0.68, 0.31, and 0.030 D, respectively.

The ChelpG atomic charges are fit to the ESP on a grid of points. Points near the nuclear
centers are removed from the fit. For most small and medium sized molecules, there is
sufficient ESP data to result in a numerically robust fit. However, for larger molecules with
‘buried atoms’ [4], such as that found in neopentane C-(CH3)4, most or all of the grid points
near the central carbon have been removed, which results in a numerically less stable fit.
Relatively large fluctuations are found in the ChelpG methyl carbon charges (e) of
neopentane {−0.3184, −0.3073, −0.2993, −0.3120} when compared to HD-I charges
{−0.39450, −0. 39450, −0.39449, −0.39449}. The fluctuations in the ChelpG charges cause
a non-zero molecular dipole moment of 0.003 D, which should be zero because of
symmetry. In comparison, the HD and HD-I atomic charges/multipoles are rigorously
calculated through numerical integration without any fitted parameters.

2) Hirshfeld and Hirshfeld-I Atomic Multipoles
Atomic multipoles Qlm

a are calculated from the HD and HD-I partitioned atomic charge
densities ρa(r) using eqn. 11 for the 24 molecules listed in Table III. Traceless Cartesian
molecular multipoles are calculated using eqns. 15 and 20 and compared to their ab initio
reference values calculated by eqns. 19 and 20. As an example, the molecular dipole (L = 1)
moment of hydrogen fluoride is given in Table IV for HD-I atomic charges (lmax = 0) and
HD-I atomic charges + dipoles (lmax = 1). The molecular dipole moments of −2.2389 and
−1.8124 D calculated by HD-I atomic charges only and HD-I atomic charges + dipoles,
respectively, can be compared to the ab initio reference value of −1.8124 D. Note that while
HD-I atomic charges predict a relatively large error of 0.3 D in the molecular dipole, HD-I
atomic charges + dipoles reproduce the exact ab initio molecular dipole.

Similar examples are given in Tables V and VI for the molecular quadrupole and octupole
moments of hydrogen fluoride, respectively. Note that HD-I atomic charges + dipoles +
quadrupoles (lmax = 2) exactly reproduce the ab initio molecular quadrupole, while HD-I
atomic charges + dipoles + quadrupoles + octupoles (lmax = 3) exactly reproduce the ab
initio molecular octupole moment (up to the numerical precision of the calculation, which is
typically 10−4 DÅL−1). This property follows from the atomic charge densities ρa(r) being
exact partitions of the molecular charge density ρmol(r) as shown in eqn. 1. In addition,
atomic multipoles of rank l do not contribute to molecular multipoles of rank L for l > L, as
shown in eqn. 15. For example, atomic quadrupoles (l = 2) do not contribute to the
molecular dipole (L = 1).

The rmsd errors in molecular multipole moment calculated by HD and HD-I atomic
multipoles are averaged over the 24 molecules listed in Table III and given in Table VII.
The average errors in molecular multipole moment are smaller for HD-I atomic charges
(lmax = 0) and HD-I atomic charges + dipoles (lmax = 1) when compared to the
corresponding HD charges/multipoles. For example, the average errors in molecular
quadrupole moments are 0.587 and 1.065 DÅ for HD-I and HD atomic charges,
respectively. However, there is no significant difference in reproducing molecular multipole
moments when comparing HD and HD-I atomic multipoles for lmax ≥ 2. For example, the
average errors in molecular octupole moments calculated by HD and HD-I atomic charges +
dipoles + quadrupoles (lmax = 2) are 0.362 and 0.384 DÅ2, respectively. Note that the errors
for molecular multipole moment of rank L are zero for atomic multipoles of rank lmax for
lmax ≥ L. Consequently, the results for atomic hexadecapole (lmax = 4) are not listed in Table
VII, as the errors in molecular dipole – molecular hexadecapole are zero.
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The electrostatic potential is calculated for both HD and HD-I atomic charges/multipoles on
a surface surrounding a molecule defined from the molecular charge density ρ(r) by 10−4 e/
Å3 ≥ ρ(r) ≥ 10−5 e/Å3. The rmsd error in ESP is calculated for each molecule over the
surface and averaged over the 24 molecules studied in this work and given in Table VIII.
For the atomic charges models, the average rmsd errors are 1.082, 0.530, and 0.262 (10−2 e/
Å) for HD, HD-I, and ChelpG atomic charges, respectively. Van Damme et al. [23] have
performed a similar analysis with HD, HD-I, and Merz-Kollman-Singh (MKS) [3] atomic
charges by calculating the ESP on a grid of points and comparing with ab initio reference
values. MKS atomic charges are similar to ChelpG atomic charges in that both charge
models are fit to the electrostatic potential on a grid of points surrounding the molecule. The
average rmsd errors reported by Van Damme et al. [23] are 1.53, 0.831, and 0.415 (10−2 e/
Å). Despite using different grids and different sets of molecules, the results reported here
agree, at least qualitatively, with those reported by Van Damme et al. [23].

The average rmsd errors have also been calculated for HD and HD-I atomic multipoles for
lmax = 0, 1, 2, 3, 4. The average magnitude of the ESP on the grids is given by <|V|> = 5.35
10−2 e/Å. Percent errors are defined by rmsd/<|V|>. For atomic charges, the percent errors
are 20.21%, 9.90%, and 4.89% for HD, HD-I, and ChelpG atomic charges respectively. A
systematic decrease in error is obtained by increasing the atomic multipole rank lmax. The
percent errors in HD atomic multipoles are 20.22%, 5.31%, 1.42%, 0.42%, and 0.34% for
lmax = 0, 1, 2, 3, 4, respectively. In comparison, the corresponding percent errors in HD-I
atomic multipoles are 9.90%, 3.12%, 1.31%, 0.32%, and 0.16% lmax = 0, 1, 2, 3, 4,
respectively. The rmsd errors in ESP for HD-I atomic multipoles are smaller than the
corresponding errors in HD atomic multipoles by a factor of ~1.5x on average. A scatter plot
of the ESP calculated by HD-I atomic multipoles as compared to its ab initio reference
values is given in Figure 1 for lmax = 0, 1, 2, 3. As expected, a systematic increase in
accuracy and precision is obtained by increasing the atomic multipole rank from lmax = 0 to
lmax = 3.

Conclusions
A method for calculating atomic charges and multipoles from HD and HD-I partitioned
atomic charge densities have been described in this work. When compared to HD atomic
charges/multipoles, it is shown that HD-I atomic charges/multipoles represent an
improvement in reproducing ab initio molecular multipole moments and the ESP
surrounding a molecule. Since the HD and HD-I atomic charge densities are exact partitions
of the molecular charge density, atomic multipoles of rank lmax exactly reproduce molecular
multipoles of rank L for L ≤ lmax. For both the HD and HD-I atomic multipoles, a systematic
increase in precision and accuracy in reproducing ab initio electrostatic properties is
demonstrated by increasing the atomic multipole rank lmax from lmax = 0 (atomic charges) to
lmax = 4 (up to atomic hexadecapoles). When compared to HD atomic charges/multipoles,
HD-I atomic charges/multipoles are found to give smaller errors in electrostatic properties
by a factor of 1.0 – 2.0x on average.

In addition, HD and HD-I atomic charges only (lmax = 0) are compared to ChelpG atomic
charges by calculating molecular dipole moments and the ESP surrounding the molecules
and comparing with their ab initio reference values. The errors in ESP for HD-I atomic
charges are twice as large as the errors in ChelpG charges, while the errors in HD atomic
charges are four times as large as the errors in ChelpG charges. Significant errors in
molecular dipole moment are found for both HD and HD-I atomic charge only models (lmax
= 0), when compared to ChelpG atomic charge models. However, ChelpG atomic charges
are fit to the ESP surrounding a molecule and may suffer from numerical instabilities, if
insufficient ESP data is available, as in the case of a molecule containing ‘buried atoms’. In
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contrast, HD and HD-I atomic charges/multipoles are rigorously calculated by integration up
to the precision determined by the grids.

The hpam program and the methods for calculating HD and HD-I multipoles described in
this work may be used in force field development and in the study of models for inter-
molecular forces. However, we suspect the relatively large errors in reproducing ab initio
molecular dipole moments for the HD and HD-I atomic charges only (lmax = 0) may limit
the use of HD and HD-I atomic charges in force fields.
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Appendix

A. Mathematical Background
A spherical harmonic function Ylm(θ,ϕ) is defined on a unit sphere (θ,ϕ) in terms of
Associated Legendre functions [45,46] Plm (cos θ) by

(A.1)

Hobson [46] has derived an especially useful polynomial expression for Plm (cos θ) as

(A.2)

for 0 ≤ m ≤ l. A regular solid harmonic function Clm is defined over all space r by

(A.3)

An important symmetry relation for solid harmonic functions is given by

(A.4)

An important addition theorem for solid harmonic functions is given by [47]

(A.5)

From eqns. A.2, A.3, and A.4, a polynomial expression for Clm(r) can be found as
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(A.6)

where m± ≡ (|m| ± m)/2 and

(A.7)

and . From the polynomial expressions for Clm(r) in eqn. A.6,

interconversion formulae between  (eqn. 18) can be derived [50] as

(A.8)

(A.9)

where  are constants given by

(A.10)

(A.11)
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Fig. 1.
Comparison of the ESP calculated by HD-I atomic multipoles on a surface of points with ab
initio reference values for the 24 molecules listed in Table III. The surfaces of points are
defined by the ab initio densities ρ(r) (e/Å3) by 10−4 ≥ ρ(r) ≥ 10−5.
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Table II

Average Atomic Distance to the ESP Surface Resp
a and Inner ChelpG Radii RChelpG

Element Resp(Å) RChelpG (Å)

H 1.69 1.5

Li 1.77

C 1.81 2.0

N 1.88 2.0

O 1.83 2.0

F 1.76

Na 1.80

Mg 1.86

Cl 1.90

a
Average distance of the ESP surface to the closest atom Resp. The ESP surface is defined as the volume surrounding the molecule in which the ab

initio electron density ρ(r) (e/Å3) satisfies 10−4 ≥ ρ(r) ≥ 10−5.
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Table III

Molecular Dipole Moments (Da) calculated by Hirshfeld, Hirshfeld-I, and ChelpG atomic charges

Molecule Hirshfeld Hirshfeld-I ChelpG QMb

Acetone 2.131 2.854 3.069 3.080

Acetylaldehyde 1.984 2.735 2.851 2.882

Ammonia 0.478 1.664 1.550 1.492

CH3CO2
− 2.378 3.593 3.568 3.623c

CH3NH3
+ 1.913 2.184 2.163 2.158c

Chloromethane 1.211 1.290 2.027 1.986

Dichloromethane 1.032 1.395 1.842 1.678

Difluoromethane 1.313 2.034 2.017 1.975

Dimethyl Ether 0.704 1.228 1.305 1.266

Fluoromethane 1.281 1.787 1.877 1.872

Formaldehyde 1.516 2.418 2.372 2.389

Formamide 2.886 3.737 3.916 3.950

Hydrogen fluoride 0.932 2.239 1.831 1.812

LiCl 5.029 9.051 7.107 6.982

LiF 4.327 7.276 6.230 6.230

Methanol 0.789 1.928 1.609 1.656

Methyl Amine 0.332 1.230 1.216 1.287

MgF+ 6.357 10.35 8.946 9.011c

MgO 4.848 9.224 7.461 7.463

NaCl 6.610 10.51 8.719 8.859

NaF 5.831 9.001 8.019 8.134

neopentane 0.000 0.000 0.003 0.000

N-methyl formamide 2.917 3.922 3.888 3.991

water 0.818 2.420 1.904 1.847

Average rmsd error 0.68 0.31 0.030

a
1 D = 0.20822678 e·Å = 3.336 ×10−30 C·m

b
B3LYP/aug-cc-pVTZ

c
For charged molecules, the dipole moments depends on origin R = 0, which are taken to be the center of nuclear of charge.
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Table IV

Molecular Dipole Momenta (D) of hydrogen fluoride oriented along the z-axis calculated by HD-I atomic
charges (lmax = 0) and HD-I atomic charges + dipoles (lmax = 1)

Z

lmax = 0 −2.2389

lmax = 1 −1.8124

QM −1.8124

a
B3LYP/aug-cc-pVTZ
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Table V

Molecular Quadrupole Momenta (DÅ) of hydrogen fluoride oriented along the z-axis calculated by HD-I
atomic charges (lmax = 0), HD-I atomic charges + dipoles (lmax = 1), and HD-I atomic charges + dipoles +
quadrupoles (lmax = 2).

XX YY ZZ rmsd

lmax = 0 −0.8276 −0.8276 1.6552 0.238

lmax = 1 −1.0467 −1.0467 2.0934 0.019

lmax = 2 −1.0659 −1.0659 2.1319 0.000

QM −1.0660 −1.0660 2.1319

a
B3LYP/aug-cc-pVTZ
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Table VI

Molecular Octupole Momenta (DÅ2) of hydrogen fluoride oriented along the z-axis calculated by HD-I atomic
charges (lmax = 0), HD-I atomic charges + dipoles (lmax = 1), and HD-I atomic charges + dipoles +
quadrupoles (lmax = 2), and HD-I atomic charges + dipoles + quadrupoles + octupoles (lmax = 3).

XXZ YYZ ZZZ rmsd

lmax = 0 0.6979 0.6979 −1.3957 0.023

lmax = 1 0.8917 0.8917 −1.7833 0.127

lmax = 2 0.8949 0.8949 −1.7899 0.129

lmax = 3 0.7279 0.7279 −1.4558 0.000

QM 0.7279 0.7279 −1.4558

a
B3LYP/aug-cc-pVTZ
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Table VII

Average rmsd errorsa in molecular dipoles (Δdip), molecular quadrupoles (Δquad), molecular octupoles (Δoct),
and molecular hexadecapoles (Δhex) calculated by atomic multipoles of maximum rank lmax (HD = Hirshfeld
atomic multipoles, HD-I = Hirshfeld-Iterated atomic multipoles).

Δdip (D) Δquad (DÅ) Δoct (DÅ2) Δhex (DÅ3)

HD (lmax = 0) 0.675 1.065 1.588 2.850

HD (lmax = 1) 0.0 0.582 1.314 2.875

HD (lmax = 2) 0.0 0.0 0.362 1.814

HD (lmax = 3) 0.0 0.0 0.0 0.456

HD-I (lmax = 0) 0.314 0.587 0.952 1.761

HD-I (lmax = 1) 0.0 0.348 0.762 2.267

HD-I (lmax = 2) 0.0 0.0 0.384 1.833

HD-I (lmax = 3) 0.0 0.0 0.0 0.419

a
rmsd error averaged over 24 molecules listed in Table III.
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Table VIII

Averageda Root Mean Square Deviation (rmsd) in Electrostatic Potential Surroundingb a Molecule

Model Averaged rmsd Error
(10−2 e/Å)d

Percent Errorc (%)

ChelpG 0.262 4.89

HD (lmax = 0) 1.082 20.22

HD (lmax = 1) 0.284 5.31

HD (lmax = 2) 0.0761 1.42

HD (lmax = 3) 0.0222 0.42

HD (lmax = 4) 0.0184 0.34

HD-I (lmax = 0) 0.530 9.90

HD-I (lmax = 1) 0.167 3.12

HD-I (lmax = 2) 0.0702 1.31

HD-I (lmax = 3) 0.0170 0.32

HD-I (lmax = 4) 0.0086 0.16

<|V|> = 5.35 (10−2 e/Å)

a
The rmsd errors are averaged over 24 molecules listed in Table III.

b
The surface surrounding the molecule is defined as the volume in which the ab initio electron density ρ(r) (e/Å3) satisfies 10−4 ≥ ρ(r) ≥ 10−5.

c
1 e/Å = 0.5291772083 au

d
The percent error is defined as rmsd /<|V|>.
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