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Abstract
The continuum regression technique provides an appealing regression framework connecting
ordinary least squares, partial least squares and principal component regression in one family. It
offers some insight on the underlying regression model for a given application. Moreover, it helps
to provide deep understanding of various regression techniques. Despite the useful framework,
however, the current development on continuum regression is only for linear regression. In many
applications, nonlinear regression is necessary. The extension of continuum regression from linear
models to nonlinear models using kernel learning is considered. The proposed kernel continuum
regression technique is quite general and can handle very flexible regression model estimation. An
efficient algorithm is developed for fast implementation. Numerical examples have demonstrated
the usefulness of the proposed technique.
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1. Introduction
Regression is one of the most fundamental and useful statistical techniques. It helps to relate
explanatory variables with a response variable and build predictive models. Ordinary Least
Squares (OLS) regression estimates the conditional mean of the response variable given
covariates and is commonly used in practice. Despite its simple implementation and good
interpretability, OLS may face numerical unstability when there exists multi-collinearity
among covariates or when the dimension of covariates is relatively high. In that case, Ridge
Regression (RR), which can be viewed as a penalized approach, may serve as an alternative.

Another popular group of regression techniques is to perform regression analysis based on a
small number of linear transformations of the explanatory variables. For example, Principal
Component Regression (PCR) first summarizes multiple explanatory variables, which can

✩This article has supplementary material online.

© 2013 Elsevier B.V. All rights reserved.
*To whom correspondence should be addressed. Tel: 1-970-491-6682, Fax: 1-970-491-7895, mhlee@stat.colostate.edu (Myung Hee
Lee), yfliu@email.unc.edu (Yufeng Liu).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 01.

Published in final edited form as:
Comput Stat Data Anal. 2013 December ; 68: 190–201. doi:10.1016/j.csda.2013.06.016.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be high dimensional, into a few principal component directions and then performs regression
on those principal component directions. These principal component directions are
orthogonal to each other, yet contain most of the variations in the explanatory variables.
Thus, PCR can circumvent the potential numerical difficulty of OLS. Partial Least Squares
(PLS) is a related regression technique and it has been widely used in the field of
chemometrics. Similar to PCR, PLS also uses a small number of linear transformations of
the covariates for regression. The main difference of PLS from PCR is that PCR finds those
transformations without the use of the response variable while PLS makes use of both
covariates and the response variable to seek for suitable transformations.

With various regression techniques available, it would be desirable to study the differences
and connections among these methods. Stone and Brooks (1990) pointed out that the
seemingly different regression procedures such as OLS, PLS, and PCR differ only in one
aspect: the target quantity maximized at the first step when finding linear transformations of
the explanatory variables. Based on this analogy, they formulated a richer family of
regression methods, Continuum Regression (CR), by introducing a continuum parameter
which connects these three methods.

Similar to other methods, CR also aims to find directional vectors to transform the
explanatory variables into new latent predictors which are orthogonal to each other and are
constructed as linear combinations of the original predictors. There are two aspects of the
latent predictors: one is the variation of the original predictors explained by each latent
predictor and the other is the correlation between each latent predictor with the response.
The quantity for the CR to maximize involves both variance and correlation of the latent
variable with a parameter controlling the relative proportion of two terms. With its flexible
construction, the CR is quite general and it contains OLS and PCR as the two extremes and
PLS in the middle. In particular, the OLS ignores the variance of the latent variable and
maximizes the correlation between the observed response vector and the predicted response
vector. In contrast, PCR finds the regression directional vector so that the variance of the
latent predictor is maximized. Interestingly, PLS essentially maximizes the covariance
between the observed and the predicted response vectors. Besides these three special cases,
CR also covers many other methods in the whole spectrum. Frank and Friedman (1993)
provides a nice overview of CR and other related regression techniques. Sundberg (1993)
and Björkström and Sundberg (1999) reveal some close connection between the RR and the
set of CR. Chen and Cook (2010) investigated some asymptotic properties of CR.

The CR approach is potentially useful when the relationship between the response and the
explanatory variable is linear. However, when the true relationship is nonlinear, the
predictive performance of the CR family can be improved if the model is built as a nonlinear
function of the explanatory variables.

In the literature, there has been some work in this direction which generalizes some special
cases of CR via kernel learning. The nonlinear generalization of the building blocks for
PCR, i.e., nonlinear Principal Component Analysis (PCA) has been studied in the field of
pattern recognition, where lower dimensional feature extraction of high dimensional data
becomes an important task. See Schölkopf et al. (1998),Mika et al. (1999), and Shawe-
Taylor and Cristianini (2004) for more details.Rosipal et al. (2000b) andRosipal et al.
(2000a) deal with nonlinear generalization of PCR, which uses nonlinear PCA as the latent
variables in the regression analysis. As in the linear case, the feature extraction based on
PCA is done not specifically to the regression problem at hand, and consequently the
predictive performance of PCR is usually not as good as PLS. Walczak and Massart (1996)
and Rosipal and Trejo (2001) generalize the PLS to incorporate nonlinear cases.
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In this present paper, we extend the linear CR model to nonlinear CR model using the
powerful kernel trick concept in machine learning. The proposed kernel CR (kCR)
incorporates the special cases such as kernel OLS, kernel PLS and kernel PCR in one
unified framework. If a linear kernel map is chosen, the kCR is the same as the ordinary CR.
Section 2 provides mathematical formulation of kCR. The first part is devoted to present
systematic ways to construct latent variables from an optimization point of view, and the
second part is to run a regression analysis with the selected latent variables. Section 3 gives
the details of the algorithm for solving the optimization problem in the first step. Numerical
performance of the proposed method is investigated in Section 4 through simulation
examples and real data analysis. We conclude the paper with some brief discussion in
Section 5.

2. Continuum Regression and Its Kernel Extension
In this section, we first briefly review the linear CR in Section 2.1 and then introduce its
kernel extension in Section 2.2.

2.1. Review of Linear Continuum Regression

Suppose that we have n pairs of data points for regression, , where xi ∈ ℝd are the
explanatory variables and yi ∈ ℝ is the response variable. Define the n × d input data matrix
as X = [x1,…, xn]T, where each row vector xi represents a d-dimensional input vector for i =
1, …, n. The output data vector is denoted by y = (y1, …, yn)T. We assume that the data are
mean-centered so that each column sum of the matrix X is 0. Denote X and Y as the random
predictor vector and response variable respectively. Furthermore, define the scatter matrix of
the data X as Sd×d = XTX and the cross covariance matrix between X and y as s = XTy.

We now describe the linear CR technique in terms of its optimization criterion. CR is
essentially a two-step regression procedure where in the first step, one finds a set of
direction vectors in the input variable space, ℝd, and makes projections of data onto the
subspace generated by these vectors. In the second step, we use these extracted features as
regressors to build a regression model to predict the value of the response variable Y. In
particular, for a given parameter α ∈ [0, 1], suppose that the first k direction vectors c1, …,
ck have been constructed and we want to find ck+1 by maximizing

(1)

subject to the constraints ‖c‖2 = 1 and Corr .

Stone and Brooks (1990) showed that CR includes OLS and PCR at the two extremes, α = 0
and α → 1, respectively. Specifically, OLS can be viewed as maximizing correlation. In
particular, the multiple correlation coefficient is maximized over all direction vectors c of
the correlation between y and Xc. When α = 0, the optimization criterion in (1) reduces to
the multiple correlation coefficient for OLS. For the other extreme of this family with α →
1, the variance term in (1) dominates the optimization criterion and the role of y will be
ignored. In that case, CR finds PCR directions which give linear combinations of d
covariates with maximum variations. In this family, PLS can be viewed as a compromise of
the two extremes at α = 0.5. Once these direction vectors are obtained, one can construct the
corresponding latent predictors and build regression models using these new predictors. In
this case, the regression models are linear as the latent predictors are linear combinations of
the original predictors.
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PLS has been extensively used in the field of chemometrics since it was first introduced by
Wold (1975). It was presented in an iterative algorithmic form as an alternative to OLS in
the presence of high multicollinearity among input variables. Since its introduction, there
have been various algorithms proposed for PLS (Helland, 1990; Naes and Martens, 1985),
but we will stick to the version given as an optimization solution in Stone and Brooks
(1990). PLS shares similarity with PCR in the sense that it extracts potential regressors by
creating a set of orthogonal transformation of input variables. It is different since it directly
makes use of the output variable when creating a set of latent variables - the selected latent
variable maximizes the covariance between the output variable among all linear
combinations of input variables. A least squares regression technique is applied once the
latent variables are constructed.

As discussed earlier, the optimization problem (1) covers many regression techniques,
including OLS, PLS, and PCR as special cases. In the next section, we discuss the extension
of CR to the more general kernel framework.

2.2. Kernel Continuum Regression
Linear CR introduced by Stone and Brooks (1990) provides a nice regression framework
which includes several well known regression methods as well as many other new
techniques in this family. It helps us to better understand regression tools. Despite its
usefulness, the original proposal was restricted to the linear setting. In this section, we
explain how to extend the linear CR to a general kernel version.

Consider a mapping ϕ from X ∈ Rd to a feature space, ℱ, and we propose to build a linear
regression model using a set of latent variables in the feature space. Let 〈·, ·〉 be the inner
product defined in ℱ. For presentation of the algorithm, we use some matrix notations for
the feature mapped data. Denote the feature mapped data matrix as ϕ(X) = [ϕ (x1), …, ϕ
(xn)]T and the n × n kernel matrix as K(i,j) = 〈ϕ (xi), ϕ (xj)〉. The n × 1 vector storing the
projection of each data vector onto the direction vector c ∈ ℱ as entries will be denoted by
〈c, ϕ (X)〉. Note that our use of the kernel function relates to the kernel trick concept used in
machine learning. For example, the well known Support Vector Machine (Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000) utilizes the kernel trick to achieve nonlinear learning.

Let us define the transformed continuum parameter as γ = α/(1−α) > 0. Then the problem of
finding direction vectors (1) in the feature space can be modified to the following:

(2)

subject to the two constraints: 〈c, c〉 = 1 and 〈c, ϕ(X)〉T 〈cj , ϕ(X)〉 = 0, j = 1, …, k.

Next we show that the maximum value can be always achieved in the subspace generated by
the mapped data vectors, ℛϕ(X) = ϕ(x1), …, ϕ(xn)} ⊂ ℝ∞. Let c be any unit vector in the
feature space and P and Q be the projection and the orthogonal projection maps onto ℛϕ(X),
respectively. Consider the projection of c onto ℛϕ(X) and let us compare the objective
function Tϕ evaluated at c and c̃ = Pc/‖Pc‖, then we have

Projection of any direction vector onto the subspace, ℛϕ(X), will result in an improvement to
achieve the maximization of Tϕ. Consequently, we can restrict the solution c to be in ℛ ϕ(X),

i.e., we search for the maximizer of the form . Using this
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representation, a simple algebraic calculation shows that the i-th data vector projected on the
j-th direction vector cj can be expressed as a matrix multiplication with 〈cj, ϕ(xi)〉 = i-th row
of K · aj. This means that if we use these transformed data in the analysis, a direct mapping
ϕ(xi) is not necessary to acquire as long as the kernel matrix K and the weight vector aj's are
available.

Based on the above considerations, the objective function (2) can be written as the
following:

Furthermore, the orthonormality constraints can be rewritten as

and

where cj = ϕ(X)Taj for some aj ∈ ℝn, j = 1,…, k, are the k previously constructed continuum
direction vectors. Consequently, for a given γ > 0, the optimization problem (2) in the
feature space ℱ, can be formulated as an n-dimensional optimization problem:

(3)

subject to aTKa = 1 and aTK2aj = 0 for j = 1,…, k. Note that the problem depends on the
data vectors only through the kernel matrix K. The detailed algorithm on how to solve this
dual problem (3) is presented in Section 3.

Once a1,…, ak are solved, we can get the first k kernel continuum directional vectors c1,…,
ck ∈ ℱ via cj = ϕ(X)Taj. Next, we extract information by projecting the mapped data onto
these direction vectors and use them as regressors for the regression fit procedure in the
second step. Specifically, we use the continuum latent variables, 〈(X), c1〉,…, 〈ϕ(X), ck〉, as
regressor variables in a linear regression model as Y = β1 〈(X), c1〉 + … + βk 〈ϕ(X), ck〉 + ε.

Utilizing transformed data, a simple expression for the OLS estimate of the coefficient
vector β = (β1,…, βk) is obtained as β̂ = (X̃TX ̃)−1X̃Ty, where (i, j)-th entry of X̃n×k is the
projection of the i-th data vector onto the j-th continuum direction vector, 〈cj, ϕ(xi)〉, i.e.,
X̃n×k = K[a1,…, ak].

Prediction of the level of the response variable can be made on any input data point x ∈ ℝd,

Ŷ = β̂1〈ϕ(x), c1〉 + … + β̂k〈ϕ(x), ck〉. Suppose that we have a set of testing points 
to make predictions on y values, then the vector representation of the set of predicted values
is given as follows:
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where Kt is an nt × n matrix whose (i, j)-th element is  for i = 1,…, nt and j = 1,
…, n. Therefore, we can achieve nonlinear regression modeling building and prediction
using the kernel function, without the necessity of having explicit ϕ(·). The kernel
representation of the function can also be shown using the famous Representer Theorem by
Kimeldorf and Wahba (1971) when a reproducing kernel is applied. In that case, the
corresponding functional space is a reproducing kernel Hilbert space.

3. Construction Algebra for Kernel CR
Fast and simple implementation is essential for most statistical techniques. In this section,
we discuss how to implement kCR. Note that our proposed kCR includes the original linear
CR as a special case when the linear kernel is applied.

If the kernel matrix K is not a full rank matrix, the representation of the solution of a in (3)
is not uniquely defined. In order to avoid ambiguity in the representation, we write the
solution as the linear combination of the eigenvectors of the kernel matrix corresponding to

nonzero eigenvalues. Let  be the eigen-decomposition of the
kernel matrix K where m is the rank of K and E is the diagonal matrix of positive
eigenvalues of K. Then, the solution of the optimization problem can be expressed as ak+1 =
UE−1/2z, for some z ∈ ℝm. It can be directly checked that the maximization problem (3) can
be formulated as the following:

(4)

subject to zTz = 1 and zTEZk = 0, where d = E1/2UTy and Zk = [z1,…, zk].

The problem above is equivalent to the maximization of its Lagrangian form:

subject to zTz = 1 and zTEZk = 0, where Λk = [λ1,…, λk] and λ, λ1,…, λk are the Lagrange
multipliers. The maximizer should be the solution to the following equation:

(5)

Now pre multiply zT to (5), then we have

Since zTz = 1 and zTEZk = 0, we can express λ in terms of the data as λ = γ(zTd)2(zTEz)γ−1.
Plugging this back into the equation (5), we obtain

(6)

For the sake of simplicity, let us write the scalars as

(7)
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Writing the equation (6) along with the linear constraint, zTEZk = 0, in a matrix form, we
obtain the following:

(8)

To simplify the expression, we introduce partitioned matrix notations, and rewrite the
equation above as

where . Using the following fact on the
inverse of the partitioned matrix,

and imposing the unit vector condition, the unit vector solution z to (8) becomes

(9)

where M = A−1 − A−1B(BTA−1B)−1BTA−1. Note that z does not depend on τz since this
quantity is canceled out when normalized. It is important to point out that everything in (9)
is known except for the scalar τz, which is determined by z.

Combining the iterative updating scheme between z and ρ using the relationship (7) and (9),
we are given a fixed point problem ρ = g(ρ), where g(ρ) = z(ρ)TEz(ρ) and z(ρ) is the vector
evaluated at ρ as in the function on the right hand side of (9). From the equation (7), it is
clear that the solution ρ lies between [em, e1], where e1 (em) is the largest (smallest)
eigenvalue of E. This observation essentially brings down our solution search into a 1-
dimensional closed space.

A nutshell to summarize the kCR algorithm to find the maxima z for the problem (4) is
shown below.

Step 1. Fix τ as an arbitrary value, say τ = 1.

Step 2. Fix the ρ ∈ [em, e1].

Step 3. Compute , where

Step 4. Evaluate g(ρ) = z(ρ)TEz(ρ).

Step 5. Based on Steps 1-4, solve the nonlinear equation ρ = z(ρ)TEz(ρ).

Let the solution be ρ*.
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Step 6. If there exist multiple roots for the nonlinear equation in Step 5, take the value
that actually gives rise to z(ρ*) which achieves the largest objective function value (4)
among all the roots ρ*'s. Let this optimal value be ρ*.

Step 7. Complete search for the k-th continuum weight vector ak by computing z(ρ*) as

in Step 3 and let .

Note that the main challenging step is Step 5 of the algorithm where a numerical equation
needs to be solved. However, since the equation is only a one-dimensional problem,
typically it can be computed efficiently.

4. Numerical Study
In this section, we examine the performance of the proposed kCR using both simulated and
real data examples. Our goal is to show the flexibility of kernel learning to achieve nonlinear
regression function estimation as well as to examine the effect of the kCR parameter α.

4.1. Simulation
We generate an n × d dimensional X data matrix from a t-dimensional factor model,

where T is an n×t random matrix and P is a fixed d×t orthonormal matrix and E is a noise
matrix. We set k = 3, d = 7, n = 100, β1 = … = βd = 1. Each row of T is generated from the t
dimensional Gaussian distribution Nt(0, ∑), where ∑ = diag(3, 3, 3, 1,…, 1), and each row of
E is generated from Nd(0, .52I).

For the relationship between X and Y, we consider four different nonlinear regression
problems and investigate the finite sample performance of kCR as described below. Let

With these f functions, we consider four different settings as follows.

Setting 1: Y = X1β1 + … + Xdβd + ε;

Setting 2: Y = 5f2(X1)+5f1(X2−5)+f4(X3)+X4β4+…+ Xdβd+ε;

Setting 3: Y = 2f2(X1) + f1(X2/3) + f2(X2) + X3β3 + … + Xdβd + ε;

Setting 4: Y = 5f2(X1)+10f3(X2)+f5(X2,X3)+X4β4+…+Xdβd+ε.

Clearly, Setting 1 contains a linear regression problem. Settings 2-4 contain nonlinear
functions. To illustrate this, Figure 1 displays scatter plots between (Xi, Y) for i = 1, 2, 3 for
Setting 2. The true nonlinear relationship between Xi's and Y are also shown as dotted red
curves. Clearly, the relationship between Xi and Y is nonlinear.

When fitting the kCR, we consider three different choices of kernels: i) the linear kernel
K(x, y) = xTy, ii) the polynomial, K(x, y) = (xTy+c)m, and iii) the Gaussian kernel K(x, y) =

e−‖x−y‖2/h. For the polynomial kernel, we set m = 2, choose , and scale the
kernel matrix so that the entries of K do not exceed 1. This step was needed to make the
polynomial kernel stable. For the Gaussian kernel, the parameter h is chosen as the first
quartile of all pairwise squared distances between X data vectors. There are two tuning
parameters in kCR, α ∈ [0, 1] and the number of components to be used in the regression,

Lee and Liu Page 8

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



denoted by k. The parameter k can be as large as the rank of the kernel matrix K in theory,
but in practice we want to keep k relatively small to avoid overfitting. We ran kCR with α
ranging from 0 to 1 with an increment of 0.1 and k from 1 to 5. The tuning parameters are
selected to minimize the validation error on an independent tuning set of size n = 100. Once
the tuning parameters are selected, the test error is validated on an independent dataset of
size m = 1000.

In order to see the effect of tuning parameter α, we present fitted values using the Gaussian
kCR with three different values of α = 0, 0.5, and 1 in Figure 2. Scatter plot of Y against X1
for Setting 2 is shown in Figure 2. The fitted Y values using the Gaussian kernel are overlaid
as magenta squares. We set the number of latent variables as k = 1. The top (middle and
bottom) panel shows kCR with α = 0 (α = .5 and α = 1). The predicted value on the top
panel is very wiggly since it incorporates the sampling artifact greatly whereas the α = 1
case does not pick the relationship with Y well since the latent variables are extracted to
explain most variability of X data.

Figures 3 and 4 show the boxplots of the test errors for kCR over 50 replications. For Setting
1 (top panel in Figure 3), the linear kernel gives better performance. This is expected since
the underlying relationship is linear. In Setting 2, all three kernels show similar
performance. In both cases considered, the family of kCR does not vastly improve the
performance from the individual regression fit (either α = 0, 0.5 or 1), possibly because the
nonlinearity is relatively mild. In Settings 3 and 4, the Gaussian kernel is the best, followed
by the polynomial kernel, and the linear kernel shows the worst performance. As the true
relationship is highly nonlinear, using a model that accounts for nonlinearity greatly
improves the performance. Results from the two nonlinear kernels, Polynomial and
Gaussian, are comparable.

Table 1 reports the average selected tuning parameters for kCR over 50 replications. The
standard errors are reported in parentheses. The linear kernel tends to find a smaller number
of latent variables than the Gaussian kernel does.

For the remaining section, in an effort to evaluate the computational cost of the algorithm
developed in Section 3, we consider different combinations of (n, d) and compare the
computation time. We use Setting 2 to create the data set. In this set up, the first 4 factors
relate to Y in nonlinear fashions whereas the other factors have a linear relationship with Y.
Dimensions of X are set as d = 7, 14, 28, 56, 112, 224, 448 and three different sample sizes
are considered with n = 50, 100 and 200. We used the tic/toc function in MATLAB to
measure the computation time in seconds and the average time over 5 repeats are reported in
Figure 5. In the algorithm, one needs to perform eigen-decomposition of the kernel matrix,
K. For this reason, the computational time increases as n increases, however, the
computation cost does not increase rapidly with dimensions.

4.2. Real Data Analysis
In this section, we examine the performance of the proposed kCR using two publicly
available data sets; diabetes (available at http://www.stanford.edu/~Hastie/Papers/LARS/)
and Boston housing (available at http://archive.ics.uci.edu/ml/datasets/Housing). In the
diabetes data set, 10 clinical variables (age, BMI, serum measurements, etc.) as well as a
quantitative measurements for the progress of the disease (the response variable) were
collected from n = 442 diabetes patients. A detailed explanation can be found inEfron et al.
(2004). The Boston housing data set contains n = 506 census tracts of Boston from the 1970
census, which includes 12 continuous and 1 binary covariates (per capita crime rate by town,
average number of rooms per dwelling, full-value property-tax rate, etc). The quantitative
response variable is the median house value in USD.
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We randomly split each data set into a training set and a test set, each of which
approximately contained 2/3 and 1/3 of the whole data, respectively. Then, all methods were
tuned by 10-fold CV within the training set. Once the tuning parameters get selected, the
tuned methods are fit and tested on the test set. Shown in Figures 6 and 7 are the box plots of
test error rates over 50 random splits. From the results, we can see that for the Diabetes data,
all methods perform similarly while linear methods give the best overall performance.
However, kCR gives comparable performance, despite the use of a much larger functional
space through kernel learning. For the Boston housing data example, kCR methods yield
much better performance than linear methods. This indicates that the underlying relationship
is likely to be nonlinear. Our finding matches the previous analysis of this dataset in the
literature, see for exampleZhang et al. (2011).

5. Discussion
Regression analysis is one of the most fundamental statistical tools. CR offers an attractive
framework connecting many linear regression techniques in a spectrum. In this paper, we
extend linear CR into a much more flexible kernel setting. Our proposed kCR covers the
linear CR as a special case. Furthermore, the proposed kCR includes the kernel PLS and
kernel PCR as members as well. An efficient algorithm is developed for fast computation.
Our numerical examples demonstrate the usefulness of our proposed methodology.

Our current kCR does not perform variable selection. In many applications, variable
selection can be useful to obtain accurate and interpretable models. To achieve that goal, one
may consider more flexible forms of kernel functions to allow the method to automatically
remove variables. Existing literature in nonlinear variable selection, for example, the
COSSO (Lin and Zhang, 2007) and KNIFE (Allen, 2013), can be useful here. In that case,
the corresponding computational algorithm can be much more challenging. Further
investigation will be pursued.

Another line of extension is to rubustify kCR. The sample covariance and the sample
variance used to extract features in the first construction step may not be robust in the
presence of outliers, which may affect estimation of the regression coefficients at the second
step. For the linear continuum regression case, a robust version was introduced by Serneels
et al. (2005). A robust counterpart for kCR will be useful for practical problems.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors would like to thank the editor, the associate editor, and three anonymous reviewers for their
constructive comments and suggestions. Yufeng Liu’s research was partially supported by the NIH grant NIH/NCI
R01 CA-149569.

References
Allen GI. Automatic feature selection via weighted kernels and regularization. Journal of

Computational and Graphical Statistics. 2013 To Appear.

Björkström A, Sundberg R. A generalized view on continuum regression. Scandinavian Journal of
Statistics. 1999; 26(1):17–30.

Chen X, Cook D. Some insights into continuum regression and its asymptotic properties. Biometrika.
2010; 97(4):985–989.

Lee and Liu Page 10

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press; 2000.

Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics. 2004;
32(2):407–499.

Frank I, Friedman J. A statistical view of some chemometrics regression tools. Technometrics. 1993;
35(2):109–135.

Helland IS. Partial least squares regression and statistical models. Scandinavian Journal of Statistics.
1990; 17:97–114.

Kimeldorf G, Wahba G. Some results on tchebycheffian spline functions. Journal of Mathematical
Analysis and Applications. 1971; 33(1):82–95.

Lin Y, Zhang HH. Component selection and smoothing in multi-variate nonparametric regression.
Annals of Statistics. 2007; 34(5):2272–2297.

Mika S, Schölkopf B, Smola AJ, Müller K-R, Scholz M, Rätsch G. Kernel pca and de-noising in
feature spaces. Advances in Neural Information Processing Systems. 1999; 11:536–542.

Naes T, Martens H. Comparison of prediction methods for multi-collinear data. Communications in
Statistics - Simulation and Computation. 1985; 14(3):545–576.

Rosipal R, Girolami M, Trejo LJ. Kernel PCA for feature extraction and de-noising in non-linear
regression. Neural Computing and Applications. 2000a; 10:231–243.

Rosipal R, Trejo LJ. Kernel partial least squares regression in reproducing kernel hilbert space. Journal
of Machine Learning Research. 2001; 2(2):97–123.

Rosipal, R.; Trejo, LJ.; Cichocki, A. Kernel principal component regression with EM approach to
nonlinear principal components extraction. Tech. rep. 2000b.

Schölkopf B, Smola A, Müller K-R. Nonlinear component analysis as a kernel eigenvalue problem.
Neural Computation. 1998; 10:1299–1319.

Serneels S, Filzmoser P, Croux C, Van Espen PJ. Robust continuum regression. Chemometrics and
Intelligent Laboratory Systems. 2005; 76:197–204.

Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis. Cambridge University Press;
2004.

Stone M, Brooks RJ. Continuum regression: cross-validated sequentially constructed prediction
embracing ordinary least squares, partial least squares and principal components regression.
Journal of the Royal Statistical Society Series B. Methodological. 1990; 52(2):237–269. with
discussion and a reply by the authors.

Sundberg R. Continuum regression and ridge regression. Journal of the Royal Statistical Society.
Series B (Methodological). 1993; 55(3):653–659.

Vapnik, VN. Statistical Learning Theory. Wiley-Interscience; 1998.

Walczak B, Massart D. The radial basis functions - partial least squares approach as a flexible non-
linear regression technique. Analytica Chimica Acta. 1996; 331:177–185.

Wold S. Soft modeling by latent variables; the nonlinear iterative partial least squares approach.
Perspectives in Probability and Statistics. Papers in Honour of M. S. Bartlett. 1975:520–540.

Zhang HH, Cheng G, Liu Y. Linear or nonlinear? automatic structure discovery for partially linear
models. Journal of the American Statistical Association. 2011; 106:1099–1112. [PubMed:
22121305]

Lee and Liu Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Scatter plots of (Xi, Y) for Setting 2. Top: Y against X1, Middle: Y against X2, Bottom: Y
against X3.
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Figure 2.
Fitting results for Setting 2: fitted Y against X1 with α = 0 (top), .5 (middle), and 1 (bottom)
Gaussian kCR. The kCR with small α captures the relationship with Y.
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Figure 3.
Box plots of test errors for the tuned kCRs over 50 replications. Top: Setting 1. Bottom:
Setting 2

Lee and Liu Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Box plots of test errors for the tuned kCRs over 50 replications. Top: Setting 3. Bottom:
Setting 4
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Figure 5.
Plot of running time (in seconds on y-axis) versus dimensionality (d on x-axis) and the
sample size n. The symbols *, ○ and · are for n = 50, 100 and 200 respectively.
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Figure 6.
Diabetes data set: Box plots of test errors for the tuned kCRs over 50 replications.
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Figure 7.
Boston Housing data set: Box plots of test errors for the tuned kCRs over 50 replications.
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