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Abstract
New analytic forms for distributions at the heart of internal pilot theory solve many problems
inherent to current techniques for linear models with Gaussian errors. Internal pilot designs use a
fraction of the data to re-estimate the error variance and modify the final sample size. Too small or
too large a sample size caused by an incorrect planning variance can be avoided. However, the
usual hypothesis test may need adjustment to control the Type I error rate. A bounding test
achieves control of Type I error rate while providing most of the advantages of the unadjusted test.
Unfortunately, the presence of both a doubly truncated and an untruncated chi-square random
variable complicates the theory and computations. An expression for the density of the sum of the
two chi-squares gives a simple form for the test statistic density. Examples illustrate that the new
results make the bounding test practical by providing very stable, convergent, and much more
accurate computations. Furthermore, the new computational methods are effectively never slower
and usually much faster. All results apply to any univariate linear model with fixed predictors and
Gaussian errors, with the t-test a special case.

Keywords
Adaptive designs; Power; Sample size re-estimation

1. Introduction
1.1. Motivation

For a linear model with Gaussian errors, finding a valid error variance value often provides
the biggest barrier to an appropriate choice of sample size. Wittes and Brittain (1990)
introduced the concept of an internal pilot design to avoid the uncertainty. Data collection
begins based on the sample size chosen with the best guess for the variance. An internal
pilot design uses a fraction of the data to re-estimate the variance. An interim power analysis
is then conducted based on the revised variance estimate and the initially specified effect of
interest. The interim power analysis allows adjusting the sample size up or down to help
achieve the target power and not waste resources. Such designs differ from traditional
(external) pilot studies in that the observations used to estimate the variance are included in
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the final analysis. In contrast to a group sequential design, an internal pilot design involves
only an interim power analysis, with no interim hypothesis testing allowed.

Jennison and Turnbull (2000, Ch. 14) reviewed internal pilot designs in clinical trials.
Proschan (2005) as well as Friede and Kieser (2006), provide more recent reviews of
internal pilot designs when the outcome is continuous or dichotomous. In the case of
continuous outcomes, most research involves only the independent groups t-test setting.
Obviously, not all designs, or even all clinical trials, involve only two groups. Therefore,
Coffey and Muller (1999, 2000b, 2001) described methods and many exact results,
including a computable form of the distribution of the test statistic, for any univariate linear
model with fixed predictors and Gaussian errors. Many t-test results are special cases.

One potential drawback to utilizing an internal pilot design is that the final sample size
becomes a random variable. Wittes and Brittain (1990) proposed an unadjusted test which
ignores the randomness of the final sample size and uses the fixed sample test statistic and
critical value. The approach can have great benefits in terms of either increasing power if the
original variance value was too small or reducing the expected sample size if the original
variance value was too large. However, the risk of Type I error rate inflation may offset the
benefits in the minds of many researchers (Kieser and Friede, 2000) and regulatory agencies
(ICH Topic E9 Guideline, Sec. 4.4).

Coffey and Muller (2000a) showed that the amount of Type I error rate inflation for the
unadjusted test varies directly with the degree of downward bias in the final variance
estimate. For any final sample size, n+, the final variance estimate equals a weighted sum of
independent and unbiased estimates

(1.1)

with  and  the variance estimates from the internal pilot sample and the observations
orthogonal to the internal pilot sample, respectively, and w1(n+) + w2(n+) = 1. With a fixed
sample size, it is well known that the above expression will provide an unbiased estimate of
the variance. However, with internal pilots, the randomness of the final sample size leads to
random weights and, as a consequence, the unconditional final variance estimate is biased
downward (Miller, 2005; Proschan and Wittes, 2000). Upward bias in the Type I error rate
results from the downward biased variance estimate residing in the denominator of the
unadjusted test statistic. Any approach with comparable power and expectedsample size
which preserves the Type I error rate at or below the target level will be preferred to the
unadjusted approach. Consequently, the focus in the two independent group univariate
setting has shifted to retaining most benefits of an internal pilot design while controlling the
Type I error rate.

Several methods have been proposed for controlling the Type I error rate. In general, the
methods fall into two categories corresponding to whether it is necessary to maintain the
blind for treatment group allocation at the time of the interim sample size re-estimation. For
blinded sample size re-estimation, Gould and Shih (1992) and Zucker et al. (1999) suggested
using the one-sample variance estimator, with a simple adjustment based on the planned
treatment effect of interest. When the true treatment difference is close to the prespecified
difference, Kieser and Friede (2003) showed that this approach approximately controls the
Type I error rate. From a regulatory standpoint, methods that keep the treatment group
allocation blinded may be preferred to those that require unblinding (ICH Topic E9
Guideine, Sec. 4.4). However, as Miller (2005) pointed out, the decision as to whether a
blinded or unblinded procedure should be used must be made on a case by case basis. In
many instances, an unblinded procedure may be appropriate provided that steps are taken to
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minimize the number of individuals who have access to the unblinded information, e.g., the
use of an independent statistician. For this work, we focus on methods which require
unblinding of the data.

For unblinded sample size re-estimation, two general approaches replace the downward
biased unadjusted variance estimate with an unbiased estimate in the denominator of the test
statistic to control the unconditional Type I error rate. Both use all of the available data for
estimating the numerator of the test statistic (mean effect), but differ in the amount of
information used in the denominator (variance estimate). The first approach, based on
Stein’s (1945) two-stage procedure, uses a variance estimate based only on the internal pilot
sample. The second uses an opposite approach, with the final variance estimate based only
on that part of the final sums of squares error orthogonal to the internal pilot sample. Zucker
et al. (1999) showed that this approach controls Type I error rate both conditionally and
unconditionally. Both tests just described control the Type I error rate at the cost of ignoring
some of the observed data. Coffey and Muller (2001) proposed using the unadjusted test
statistic, but increasing the critical value to ensure that the maximum possible Type I error
rate is no greater than the target level. They referred to the approach as a bounding test since
it guarantees an upper bound on Type I error rate: The test may be conservative, i.e., the
observed Type I error rate may be less than the target level.

Coffey and Muller (2001) compared the performance of the three approaches in terms of
maintaining the benefits of the internal pilot design while controlling Type I error rate across
a range of conditions. They varied: (1) the rule for sample size re-estimation; (2) the true
variance value; (3) the size of the internal pilot sample; (4) whether or not the final sample
size was allowed to decrease if the original variance value was too large; and (5) whether or
not a finite maximum sample size was specified. With large samples, the choice of method
had little impact on the power. However, in small to moderate samples, the choice of
method had a big impact on the power. For the conditions considered in Coffey and Muller
(2001), the bounding test controlled Type I error rate at or below the target rate while always
achieving a power of at least 88% of the power observed with the unadjusted test. On the
other hand, the worst case scenarios for the Stein-like and Zucker tests resulted in achieved
powers of only 15% and 2%, respectively, of the powers achieved with the unadjusted test.
In general, the bounding test best maintained the benefits of an internal pilot design while
controlling the Type I error rate across the entire range of conditions considered.
Furthermore, since the bounding and unadjusted tests use the same sample size re-estimation
rule and differ only in critical values, both lead to the same expected sample size. Other
approaches for controlling the Type I error rate have been suggested in the literature.
Proschan and Wittes (2000) propose the use of an unbiased estimator that combined the
internal pilot variance estimate and the orthogonal variance estimate using fixed weights
which are not a function of the observed data. Miller (2005) proposed a correction to the
unadjusted variance estimate such that the actual Type I error rate does not exceed the
nominal level. However, since the Proschan and Wittes estimator is only appropriate if the
final sample size is not allowed to decrease below the originally planned sample size and the
Miller estimator is only applicable to the two sample t-test setting, only the bounding test
has the appeal of being widely applicable in the general linear model setting.

Unfortunately, the bounding test algorithm introduced by Coffey and Muller (2001)
sometimes fails to converge, and is relatively slow. The instability comes from the difficulty
of determining when to set any one of a large number of integrals to zero. In addition, the
algorithm used to find the maximum Type I error rate for a fixed variance value was found
to have slight numerical inaccuracies stemming from various round-off errors causing the
maximum Type I error rate for the bounding test to be slightly incorrect. The slowness
comes from the need to sum a two-dimensional series of integrals. Ideally, numerical
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integrations would be eliminated by finding simpler analytic expressions for the
probabilities of interest. Such new forms would have many side benefits in allowing better
analytic understanding and evaluation of internal pilot design performance.

1.2. Notation and Known Results
An r × 1 vector (always a column) is written a, and an r × c matrix is written A = {aj,k},
with transpose A’. Furthermore, 1r represents an r × 1 vector of 1’s and Dg (x) represents a
diagonal matrix with (j, j) element xj. The direct product is defined as A ⊗ B = {aj,kB}.

All results depend directly on properties of central and non central chi-square, central, and
non central F, beta (one), and quadratic form random variables. See Johnson et al. (1994,
Ch. 18; 1995, Ch. 25, 27, 29, and 30) for details not mentioned here. Writing X ~ χ2(ν, ω)
indicates that X follows a chi-square distribution, with ν degrees of freedom and non
centrality ω. Likewise, writing X ~ F(ν1, ν2, ω) indicates that X follows a noncentral F
distribution with numerator degrees of freedom ν1, denominator degrees of freedom ν2, and
non centrality ω. Writing χ2(ν) and F(ν1, ν2) implies ω = 0. More generally, writing

 indicates that X follows a doubly truncated central chi-square distribution,
with ν degrees of freedom, truncated to the interval [tL, tU] (Coffey and Muller, 2000a).
Writing X ~ β(ν1, ν2) indicates that X follows a beta (one) distribution with ν1 and ν2
degrees of freedom.

We study the model introduced in Coffey and Muller (1999), which includes the two sample
t-test as a special case:

(1.2)

The internal pilot design leads to interest in two different but intimately connected models.
The combined model for the final analysis may be written as

(1.3)

with partitioning corresponding to the n1 and, random, N2 observations in the internal pilot
and second samples, respectively. For computational convenience, we increment random
total sample size, N+ = n1 + N2, only in multiples of a replication factor, m. For some X0(m
× q), we assume X1 = 1k1 ⊗ X0 and X2 = 1K2 ⊗ X0, with k1 and K2 the number of
replications in the first and second samples, respectively. Consequently, the columns of X1
and X2 span the same space and hence rk(X1) = rk(X2) = rk(X+) = r.

We test H0 : θ = Cβ = θ0, with C a fixed a × q contrast matrix. Without loss of generality
assume θ0 = 0. We seek a sample size large enough to ensure target power (Pt) and Type I
error rate (αt) for a ‘scientifically important’ effect of interest (θ = θ*). Table 1 summarizes
notation, while Coffey and Muller (1999, 2001) give additional details. We use functional
notation in many places to emphasize the dependence on an observed realization of the

random N+. For example,  and  represent the final, estimates of θ and σ2

conditional on N+ = n+. Similarly, with , if , then

 is the observed hypothesis sum of squares at the end of the
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study. Hence, the unadjusted conditional test statistic is .
With ν+ = ν+ – r, the unadjusted test uses the critical value from a fixed sample F-test based

on n+ observations: .

The distribution of the unadjusted test statistic is more complex under an internal pilot
design. This complication is due solely to the denominator of the test statistic since, as for
fixed samples, the numerator of the test statistic is a scaled noncentral chi square,

(1.4)

Here , the ratio of the true to planning variance. The distribution of the
denominator is more complex under an internal pilot design. For fixed Pt, the value of ωt(n+)
is found which satisfies the equation Pt = 1 – FF[f(n+); a, ν+, ωtt(n+)]. With ν1 = n1 – r, a

well-known result from linear models theory implies that .
From Coffey and Muller (1999), conditional on n+, truncation points

(1.5)

and q(n+ – m, γ) define a bin into which SSE1/σ2 must have fallen, i.e.,

(1.6)

For this reason, in contrast to fixed samples, the conditional final variance estimate is the

scaled sum of a doubly truncated chi square, , and an
independent chi square, Xe˔ ~ χ2(n2). In the remainder of the article we use the abbreviations
qL+, qU+, and f+ for q(n+ – m, γ), q(n+, γ), and f(n+) whenever no confusion results.

With a mix of positive and negative weights, {λj}, and mutually independent yj ~ χ2(νj, νj),

define . Davies (1980) algorithm allows computing the exact
cumulative distribution function for any such weighted sum by numerical integration of the
characteristic function. If c+ = ν+/(af+), λ*+ = [c+ – 1]’, ν*+ = [a n2]’, and

, then the conditional cumulative function the unadjusted test statistic
may be written

(1.7)

Removing the conditioning, and hence computing the desired general result, merely requires
a weighted summation over the support of the discrete random variable N+. Our previous
free SAS/IML® code (GLUMIP version 1.0) computed the probability in Eq. (1.7) directly
by nesting two numerical integrations.

Although a definitive proof is not available, Coffey and Muller (2001) provided substantial
evidence in support of the hypothesis that there is a single maximum Type I error rate as a
function of γ. The α-adjusted bounding test (Coffey and Muller, 2001) controls the Type I

error rate by using a critical value of , with α*(≤αt) chosen such that the
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maximum Type I error rate across γ equals αt. Finding α* requires a doubly iterative search.
The inner iteration finds the maximum Type I error rate across γ for a fixed critical value.
The outer iteration searches for the α* value such that the maximum Type I error rate across
γ equals αt. Once the value of α* is determined, a test based on the critical value

 will bound Type I error rate at or below αt for all γ. Unfortunately, the
computational tools utilized in previous versions of the GLUMIP software for this method
were often very slow and unstable, limiting the practicability of doing large numbers of
calculations. New results in Sec. 2 allow much faster calculations of exact Type I error rates
and power and, as a consequence, make the bounding test easier to implement.

2. Analytic Results
2.1. New Exact Distributions

Theorem 2.1. If  independently of Y ~ χ2(νy), Z = X + Y, then

(2.1)

for z ≥ tL and is zero otherwise. Of course Fβ(tU/z; νx/2, νy/2) = 1 if z ≤ tU. Proof. With b =
min(z, tU and νz = νx + νy, the convolution theorem gives

(2.2)

The transformation u = x/z (which implies x = z∂u and z∂u = ∂x) gives

(2.3)

which can be seen to equal the desired result.

The theorem is interesting from a purely theoretical standpoint. More importantly, it
provides much simpler forms for key expressions encountered with internal pilot designs.
Corollary 2.1 gives the density of a scaled form of the denominator of the conditional test
statistic, Corollary 2.2 gives the unconditional cumulative distribution function (cdf) of the
unadjusted test statistic.

Corollary 2.1. When n2 > 0, the density of  is

(2.4)

Hence, the conditional density under an internal pilot design equals the fixed sample density
times a weighting function.

Corollary 2.2. The unconditional cdf of the internal pilot test statistic is
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(2.5)

Proof. If Z = Xe1 + Xe˔ then it follows that

(2.6)

Applying Eq. 1.4 and Corollary 2.1 gives the cumulative distribution of the internal pilot test
statistic, conditional on N+ = n+:

(2.7)

Use the law of total probability to write the unconditional cdf of the test statistic as

(2.8)

Finally, recall that , which cancels out term the
denominator of conditional cdf and gives the desired result.

While the new forms still require numerical integration for each term, they reduce to a series
of single integrations with well-behaved function evaluations. The expressions should be
faster, more stable, and more accurate than the previous versions, which require Davies’
algorithm.

2.2. Improving Accuracy for the Bounding Test
Practical implementation of the previous version of the code led to the discovery of three
important limitations. First, the algorithm for finding the maximum Type I error rate for a
given value of γ sometimes failed to converge. Second, the computed Type I error rate was
not always a locally monotone function of γ, as it should be. Third, although always very
close, the desired bound on Type I error rate was often not fully achieved. Each problem
needed a distinct solution.

The previous algorithm for finding the maximum Type I error rate used the derivative of the
cdf of the test statistic, with respect to γ. Setting the derivative equal to zero gives an
equation that, in theory, may be solved for γ. Unfortunately, the algorithm was sometimes
unstable and slightly inaccurate due to several numerical issues. As a consequence, the
bounding algorithm failed to converge in some instances. We first attempted to fix the
problem by using Theorem 2.1, which can be extended to develop a simpler expression for
the derivative. However, using the new derivative expression did not noticeably reduce
numerical inaccuracies and instabilities. Our second attempt succeeded by replacing a
derivative algorithm with a Fibonacci search (Kiefer, 1953). In contrast to the derivative
based approach, the Fibonnaci search should prove robust to nearly flat function regions that
are potentially a concern in finding the maximum Type I error rate.
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The problem with the lack of monotonicity for Type I error rate as a function of γ arises as a
consequence of the stopping rule used for finding the distribution of sample size. The
original algorithm starts from n+ = n+,min and stops when it first encounters either n+ =
n+,max or n+ large enough such that Pr{N+ = n+} is negligible. The underlying problem is
due to the lack of consistency of stopping values among γ values. The solution came from
modifying the algorithm for finding the distribution of N+. First, for the maximum γ of
current interest, the original algorithm is used to find the value satisfying the stopping rule,
nγ,max. For every other γ of interest, the modified algorithm stops when it first encounters
either n+ = nγ,max or a Pr{N+ = n+} meeting a much lower threshold for defining a negligible
value.

The outer iteration searches for the critical α* value such that the maximum Type I error rate
across γ equals αt. Success of the outer iteration depends directly on the accuracy in
achieving Type I error rate bounded at or below αt. The previous version of the code iterates
until either (1) α* is found with maximum Type I error rate sufficiently close in absolute
difference to αt, or (2) the lower and upper limits of α* are sufficiently close to each other.
In the latter case, the average of the limits is returned. Although the approach works well for
significance levels of 0.01 or larger, it fails to adequately control accuracy for small target
Type I error rates, as in the CLAHE example introduced in Sec. 3.1. This problem was
addressed by modifying the stopping rule in several ways. The new version of the code stops
in only one direction: The code iterates until either (1) α* ≤ αt is found with maximum Type
I error rate sufficiently close in relative difference to αt, or (2) the lower and upper limits of
α* are sufficiently close to each other relative to αt. In the latter case, rather than taking the
average of the upper and lower limits, the new version of the code reports the lower limit.
Taken together, the modifications guarantee a proper bound on the Type I error rate.

2.3. Improving Numerical Integration: Quantile Transformations
Gluecka and Muller (2001) described the use of quantile transformations in order to obtain
finite regions of integration and greatly improve the speed and accuracy of numerical
integrations. Applying the transformation p = Fχ2(z; ν+), with, dp = fχ2(z; ν+)dz, to the
integrand in Eq. (2.5) gives a finite region of integration:

(2.9)

Further improvements can often be achieved by basing the transformation on a random
variable truncated to the region of integration, i.e., a doubly-truncated quantile
transformation. Here

(2.10)

has . Then Eq. (2.9) gives

(2.11)
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with .

3. Numerical Results
3.1. Examples Considered

Example 3.1. CLAHE. We illustrate our new methods with a study designed to compare
observers’ abilities to detect breast cancer in mammograms as a function of two within-
subject image processing factors, clip value and region size, each having three levels (Pisano
et al., 1998). Here clip value and region size are parameters for an image processing
algorithm known as Contrast Limited Adaptive Histogram Equalization (CLAHE; Pizer et
al., 1984). A detailed description of the study is contained in earlier papers (Coffey and
Muller, 2001, 2003). The primary analysis included a test of the clip value × region size
interaction and a set of nine paired t-tests comparing each clip value × region size
combination to an unprocessed condition. Since the interaction test was a repeated measures
test, we consider only the nine paired t-tests in this article. In planning a study, we seek the
required sample size to ensure some level of target power (Pt) for a specified effect of
interest (θ*) at a given significance level (αt). The true sample size required to meet the
conditions depends on the unknown variance (σ2), a nuisance parameter. With αt = 0.01/9 =

0.0011, Pt = 0.90, θ0 = 0.1, and using  = 0.0065 from an unpublished earlier study, a fixed
sample power calculation suggested n0 = 20 radiologist observers were required; however,

an error in the images from the earlier study caused concern about the validity of . The
difficulty and expense of obtaining qualified radiologist observers led to a desire to use as
few radiologists as possible, and certainly no more than 30. Hence, we consider an internal
pilot design with the following specifications: (1) a pre-planned sample size of n0 = 20
radiologists; (2) the first n1 = 10 radiologists comprise the internal pilot sample; (3) the final
sample size is allowed to decrease if the original variance value overestimates the true
variance (n+,min = n+); and (4) a finite upper bound of n+,max = 30 radiologists. We also
illustrate the impact of the alternate assumptions of disallowing total sample size to decrease
(n+,min = n0 = 20) and infinite maximum sample size (n+,max = ∞).

Example 3.2. Three-Group One-Way Analysis of Variance. A three-group one-way analysis
of variance example previously described by Coffey and Muller (1999) illustrates the
advantages of the new methods in more complex designs. For the two degree-of-freedom

test of differences among groups with αt = 0.05, Pt = 0.90, θ*= [0.5 1.0]’, and , a fixed
sample size power calculation suggests 27 subjects per group (n0 = 81). We consider an
internal pilot design with 13 subjects per group (n1 = 39) in the internal pilot sample, and all
combinations of n+,max ∈ {1.5·n0 = 123, ∞} and n+,min ∈ {n1, n0}.

3.2. Timing Advantages of New Exact Method for Unadjusted Test
Table 2 displays the times necessary to compute various Type I error rates and powers for
the examples described above. The times are the sums across γ ∈{0.25, 0.5, 1, 2, 4} for both
the old and new algorithms. All integrations used the QUAD function (SAS Institute, 2004).
The integration for the new algorithm used the quantile transform described in Sec. 2.3.
Furthermore, only the second of the three numerical problems mentioned earlier affect
calculations for the unadjusted test. The new algorithm ranged from 4–18 and 5–27 times
faster for power and Type I error rate, respectively. Interestingly, computing times for Type
I error rate and power were virtually identical for the new algorithm, while Type I error rate
took longer to compute with the old algorithm.

We explored the use of a doubly-truncated quantile transformation based on a random
variable truncated to the region of integration, as described in Sec. 2.3. For the examples
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considered here, there were no perceived benefits; however, it is possible that extreme
parameter combinations exist for which the doubly-truncated quantile transformation would
prove more stable.

The last column in Table 2 displays the ratio of the maximum Type I error rate for each
condition to the target Type I error rate. The ratio quantifies the severity of Type I error rate
inflation. Adding an internal pilot to Example 3.2 inflates the Type I error no more than 11%
over the target level. In contrast, adding an internal pilot to Example 3.1 inflates the Type I
error rate up to 75% if the sample size is allowed to decrease.

3.3. Accuracy
Although speed matters, the algorithm must still provide sufficient accuracy. For all
conditions in Table 2, as well as all others we have examined, the new and old algorithms
agree to at least three decimal places. In fact, most agree to four decimal places except for
slight discrepancies due to the increased stability and accuracy of the new algorithm. Given
the elimination of the nested numerical integration requiring Davies’ algorithm, we believe
the new method to be more accurate than the old. This proposition was verified via
simulation for the examples of interest. We used 1,000,000 replications per condition for the
CLAHE example since it has a stringent Type I error rate (0.0011). All other examples
utilized 250,000 replications per condition. For both examples detailed here, and the others
we have examined, all simulated values were within three standard deviations of the values
computed using the new exact algorithm.

3.4. Advantages of New Exact Method with Bounding Test
Table 2 also displays the computing performance for the bounding test. It is important to
note that the old algorithm failed to converge in a number of conditions, and convergence
was relatively slow. Furthermore, the calculations with the old algorithm do not achieve a
uniform level of accuracy. In contrast, convergence to a uniform standard of accuracy was
obtained for all conditions with the new algorithm. When both bounding algorithms
converged, the new algorithm ranged from 1–4 times faster. The relative speed of the new
algorithm is masked by the simultaneous imposition of solutions to the numerical analysis
problems mentioned earlier. In particular, the computing times are most similar for the
CLAHE example, which has a more stringent target Type I error rate and requires a more
rigorously controlled stopping rule to ensure the precision of the bound on Type I error rate.
The improved speed, stability, and accuracy of the new algorithm makes the bounding test
both dependable and convenient.

New and better algorithms are one alternative to improve timing. An alternative solution
would be to simply wait for faster computers. For example, using the old algorithm, some
computations that took nearly 900 s several years ago (Coffey and Muller, 2001) now take
only 90 s. Hence the new algorithm’s times of 30 s introduces the equivalent of several
generations of computer advances.

Figures 1 and 2 display the Type I error rate and power, respectively, computed as a
function of γ for the condition that introduces the maximum amount of potential Type I error
rate inflation: Example 3.1 with n+,min = 10 and n+,max = ∞. The three lines indicate values
for design, + max a fixed an internal pilot unadjusted test, and an internal pilot bounding
test. Our consulting experience has convinced us of the tremendous value of these types of
plots to visually illustrate the benefits of internal pilot designs to colleagues. For example,
the power curves in Fig. 2 show that internal pilot designs can dramatically reduce the
distance between the expected and target powers when the original variance estimate was
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incorrect. The figures also demonstrate that the bounding test controls the Type I error rate
at or below the target level while maintaining nearly the same power as the unadjusted test.

The luxury of fast calculations becomes a necessity when producing plots such as Figs. 1
and 2 to examine ranges of study designs. The speed of the new algorithms allows
visualizing the tradeoffs among a variety of internal pilot designs. Generating the entire set
of Type I error rate values for the unadjusted and bounding tests shown in Fig. 1 took
approximately 5 and 20 s, respectively. In contrast, we estimate that the old algorithm, if it
always converged, would take 10–20 min for each curve.

4. Conclusions
The new and much simpler density and cdf open new avenues for determining previously
unknown exact and approximate analytic properties of internal pilot designs. Notable
improvements in computing stability, speed, and accuracy illustrate the point emphatically:
The bounding test becomes practical and convenient even in the small sample studies where
it has the most value. The new algorithms are available in GLUMIP version 2.0, free SAS/
IML® code available at www.soph.uab.edu/coffey.

The improved speed also allows quickly plotting power and expected sample size over wide
ranges of design parameters. The ability to produce such plots in a timely manner has many
advantages. For example, there is an obvious trade-off between choosing a large enough
value of n1 to ensure a reliable estimate of σ2 and choosing the smallest possible value of n1
such that modifications to sample size, and any corresponding logistical changes to the on-
going study, can be implemented as early as possible. Examining plots of power over a wide
range of design parameters can be used to determine the smallest value of n1 retaining the
desired benefits of an internal pilot.

As with all of our previous work, the new results apply to any general linear model with
fixed predictors and Gaussian errors, and therefore include the t-test as a special case. The
properties of internal pilot designs with repeated measures or other correlated outcomes
have received only limited attention. Our current research focuses on extending the results to
internal pilot designs with repeated measures and exploring additional improvements to the
bounding test.
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Figure 1.

Plot of Type I error rate as a function of  for CLAHE example with αt = 0.0011, Pt

= 0.90, θ* = 0.10,  = 0.0065, n1 = 10, and n0 = 20, for: (a) Fixed sample design with n0 =
20: dotted line; (b) IP unadjusted test with n+,min = 10 and n+,max = ∞: dashed line; (c) IP
bounding test with n+,min = 10 and n+,max = ∞: solid line.
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Figure 2.

Plot of power as a function of  for CLAHE example with αt = 0.0011, Pt = 0.90, θ*

= 0.10,  = 0.0065, n1 = 10, and n0 20, for: (a) Fixed sample design n0 = 20: dotted line; (b)
IP unadjusted = with test with n+,min = 10 and n+,max = ∞: dashed line; (c) IP bounding test
with n+,min = 10 and n+,max = ∞: solid line
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Table 1

Internal pilot study notation for testing H0 : θ = Cβ = θ0

Symbol Definition

Design parameters α t Target Type I error rate

Pt Target power

θ * ‘Scientifically important’ value of θ

σ0
2 Variance value used for planning

n 0 Planned sample size for αt, Pt, θ*, σ0
2

Sample size allocation π Proportion of n0 used in internal pilot

n1 = πn0 Internal pilot sample size

n 1 +,min Minimum size of final sample

n +,max Maximum size of final sample

Unknown parameters σ 2 True variance

γ = σ 2 ∕ σ0
2 Ratio of true to initial variance value

θ True value of secondary parameter
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Table 2

Example computational time (min:s) required for all γ ∈ {0.25, 0.5, 1, 2, 4} using both the old and new exact
methods and ratio of maximum Type I error rate for γ ∈(0,∞) to target Type I error rate

Computing time (min:s)

α Power

Example Test n +,max n +,min Old New Old New αmax/αt

CLAHE Unadj 1.5·n0 n 1 0:27 0:01 0:12 0:01 1.70

t-test n 0 0:05 0:01 0:04 0:01 1.18

∞ n 1 0:52 0:03 0:21 0:03 1.75

n 0 0:30 0:02 0:12 0:03 1.32

Bound 1.5·n0 n 1 1:26 0:22 1:12 0:22 1.00

n 0 0:12 0:13 0:11 0:13 1.00

∞ n 1 3:13 2:33 2:40 2:34 1.00

n 0 DNC 3:05 DNC 3:10 1.00

3 Group Unadj 1.5·n0 n 1 0:12 0:01 0:10 0:01 1.11

ANOVA n 0 0:06 0:01 0:06 0:01 1.04

∞ n 1 0:52 0:02 0:36 0:02 1.11

n 0 0:46 0:02 0:31 0:02 1.05

Bound 1.5·n0 n 1 DNC 0:26 DNC 0:26 1.00

n 0 DNC 0:33 DNC 0:33 1.00

∞ n 1 1:24 0:35 1:10 0:35 1.00

n 0 1:40 0:55 1:28 0:55 1.00

DNC indicates conditions where the old bounding algorithm did not converge.
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