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Abstract
We prove new extensions to lemmas about combinations of convergent sequences of distribution
functions and absolutely continuous bounded functions. New lemma one, a generalized Helly
theorem, allows computing the limit of the expected value of a sequence of functions with respect
to a sequence of measures. Previously published results allow either the function or the measure to
be a sequence, but not both. Lemma two allows computing the expected value of an absolutely
continuous monotone function by integrating the probabilities of the inverse function values.
Previous results were restricted to the identity function. Lemma three gives a computationally and
analytically convenient form for the limit of the expected value of a sequence of functions of a
sequence of random variables. This is a new result that follows directly from the first two lemmas.
Although the lemmas resemble standard results and seem obviously true, we have found only
similar looking and related but quite distinct results in the literature. We provide examples which
highlight the value of the new results.
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1. Introduction
Computing expectations, both analytically and numerically, remains one of the central
problems in statistics. We present three new lemmas which aid both analytic and numerical
calculation for some applications in small and large samples.

In particular, the first lemma allows calculation of the limits of expectations, when both the
function and the random variable are converging to limits. The second lemma suggests
natural transformations for the computation of expectations, a common statistical task. We
suggest transformations based on probability distribution functions and their inverses. The
required numerical functions are widely available in common statistical programming
languages. The choice automatically simplifies numerical computation of expectations by
leading to evaluating bounded functions on bounded regions. Although a transformation is a
standard numerical technique, the use of probability functions eliminates the guess work
involved in choosing the transformation, and provides an ideal match between statistical
thinking and ease of computation. The third lemma combines the results and allows one to
calculate an expectation when both the function and the random variable are converging to a
limit.

The need for the results presented here arose from a desire to derive computable expressions
for the power of certain hypothesis tests in multivariate regression with both fixed and
random predictors. We provide examples of how we used the lemmas to numerically
calculate small sample expectations, and to correctly find limiting results.
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Calculating the expected value of variables and functions can be difficult, especially in the
limit. Often either the function of integration, or the limits, or both, are unbounded. In
attempting to derive large sample properties, a sequence of cumulative distribution functions
(CDF's) may converge to a point mass, while their support converges to a set of measure
zero. The Riemann integral fails under these conditions. Thus the lemmas that follow must
be stated in terms of Lebesgue integrals computed with respect to probability measures.

Although the lemmas resemble standard results and seem obviously true, we have found
only similar looking and related but quite distinct results in the literature. All depend on
various restrictive regularity conditions that often arise in practice. For example, for a
sequence of cumulative distribution functions, {Fn}, Serfling (1, p16) proved that if Fn ⇒ F
then for any bounded continuous function g,

(1)

Pratt (2, p74) and Loeve (3, pl26) gave results similar to Equation 1. We give a more general
result in which both the integrand and the measure are converging. Gibbons and Chakraborti
(4, p37-38) mentioned a quantile transform result, without proof. They define the quantile
function using the infimum. Our Corollary 3 is a special case of their result. We illustrate the
value of the new results with three examples concerning power of certain multivariate tests.

2. Three Lemmas
Lemma 1

Consider a random variable, X, and a sequence of random variables, {X1, X2, …}, with
corresponding CDFs F, and {F1, F2, …}. Suppose Fn converges to F, and thus Xn converges
in distribution to X. Let {g1(x), g2(x), …} be a set of continuous bounded functions such
that gn(x) converge uniformly to g(x), a continuous bounded function. Assume that ∀n ∫ gn
dFn < ∞ and ∫ g dF < ∞. Taking the integrals with respect to the Lebesgue-Stieltjes
probability measures induced by F and {F1, F2, …} (5, p69),

(2)

The special case of ∫ gd Fn corresponds to a Helly theorem, (5, p192–194). Also, the results
of exercise 9-2 in Burrill (5, p195) indicate that less stringent regularity conditions would be
hard to find for the special case of ∫ gnd F.

Proof. It suffices to show that ∀∊ > 0, ∃ M(∊) > 0 such that for n > M(∊),

(3)

By assumption, gn(x) converges uniformly to g(x). Thus, ∀∊ > 0, there exists a
corresponding number M1(∊) > 0 such that for all n > M1 and for all x in the domain of g, |
gn(x) − g(x)| < ∊/2 (6, p530). Thus, for n > M1(∊),

(4)
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The last step follows because Fn is a cumulative probability distribution function, and hence
∀n, ∫ d Fn = 1. By part 3 of a theorem in Serfling (1, p16), ∀ ∊ > 0, we may conclude that ∃
M2(∊) > 0 such that for n > M2(∊),

(5)

Now, ∀∊ > 0 and ∀x in the domain of g, choose n > max[M1(∊), M2(∊)]. Then

(6)

with the inequality following from the triangle inequality.

Lemma 2
(Corollary to Lemma 2.1, 7, p243) Let X be a continuous random variable with density fx(x)
and distribution function FX(x). Let g(x) be a real valued absolutely continuous function that
is strictly monotone decreasing in x, so that g(x) > y iff x < g−1(y). Let

(7)

Proof. Note that

(8)

The result follows.

Corollary 2.1—With the same conditions as in Lemma 1, and for b > a > 0, suppose ∀x ∈
ℛ, g(x) ∈ [a, b]. Then

(9)

Corollary 2.2—With the same conditions as in Lemma 1, consider instead h(x), a real
valued absolutely continuous function that is strictly monotone increasing in x, so that h(x)
> y iff x > h−1(y). Then
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(10)

Lemma 3
Consider the continuous random variable, X, and the sequence of continuous random
variables, {X1, X2, …}, with the same assumptions as Lemma 1.Let g(x)and the set {g1(x),
g2(x), …} be real valued absolutely continuous bounded functions that are strictly monotone

decreasing in x, so that gn(x) > y iff . Suppose the sequence {g1(x), g2(x), …}
converges uniformly to g(x). Assume that ∫ g dF < ∞ and ∀n, ∫ gn dFn < ∞. For b > a > 0,
suppose ∀x ∈ ℛ, g(x) ∈ [a, b]. Then

(11)

Proof. Follows directly from Lemma 1 and Lemma 2.

Corollary 3—(Quantile transformation: see 4, §2.5, p37–38) Consider a real valued
random variable X with strictly monotone distribution function Fx(x) and density function
fx(x), defined on the interval (a, b), with −∞ < a < b < ∞. Let y = Fx(x). Then

(12)

When resorting to numerical techniques for calculating expectations, either the density or
the region of integration, or both, may be infinite. This transformation reduces the problem
to an integral of a bounded function over a bounded interval.

3. Examples
Example for Lemma 1

Glueck (8) considered taking the limit, under a sequence of Pitman local alternatives, of an
approximation for the power of the Hotelling-Lawley trace statistic, with Gaussian
predictors. The asymptotic power can be written as the expected value of a non-central F,
with respect to the distribution of a random noncentrality value. In this setting, the Riemann
integral is undefined because the support for the random noncentrality parameter converges
to set of measure zero as the parameter converges to a point. Let F(ν1, ν2N, ωN) indicate a
noncentral F random variable, with denominator degrees of freedom and noncentrality
depending on N. Suppose

(13)

Consider integrating gN with respect to Fn, the distribution function of a sum of independent
scaled χ2 random variables for which the scaling constants depend on ωN, and the degrees of
freedom depend on N. With α the type 1 error rate, ccrit chosen so that Fχ2(ccrit; ab) = 1 − α,
and limN→∞, ω = ωL,

(14)
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Example for Corollary 2.1
Glueck (8) sought a computational form for the small sample power of the Hotelling-Lawley
trace statistic, with Gaussian predictors. Suppose Fω(w) is the distribution function of ω, a
sum of independent scaled χ2 random variables. Define

(15)

with ω ∈ [0, ∞] and f chosen so that g(ω) ∈ [0, 1 − α]. Then

(16)

Example for Corollary 3
Muller and Pasour (9) defined

(17)

and considered integrating

(18)

They used a particular quantile transformation to produce a much better behaved numerical

integral. If p = Fχ2(t; ν2s), then  (p; ν2s) and dp = fχ2(t; ν2s)dt. If p0 = Fχ2(zν2s/σ2; ν2s)
then

(19)
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