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Abstract
Cells use signaling networks consisting of multiple interacting proteins to respond to changes in their
environment. In many situations, such as chemotaxis, spatial and temporal information must be
transmitted through the network. Recent computational studies have emphasized the importance of
cellular geometry in signal transduction, but have been limited in their ability to accurately represent
complex cell morphologies. We present a finite volume method that addresses this problem. Our
method uses Cartesian cut cells and is second order in space and time. We use our method to simulate
several models of signaling systems in realistic cell morphologies obtained from live cell images and
examine the effects of geometry on signal transduction.
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1 Introduction
Cells must be able to sense and respond to external environmental cues. Information about
external signals, such as hormones or growth factors, is transmitted by signaling pathways to
the cellular machinery required to generate the appropriate response. Defects in these pathways
can lead to diseases, such as cancer, diabetes, and heart disease. Therefore, understanding how
intracellular signaling pathways function is not only a fundamental problem in cell biology,
but also important for developing therapeutic strategies for treating disease.

In many pathways, proper signal transduction requires that both the spatial and temporal
dynamics of the system are tightly regulated [1]. For example, recent experiments have
revealed spatial gradients of protein activation in migrating cells [2]. Mathematical models can
be used to elucidate the control mechanisms used to regulate the spatiotemporal dynamics of
signaling pathways, and recent computational studies emphasize the importance of cellular
geometry in signaling networks [3,4]. For computational simplicity, many of these
investigations assume idealized cell geometries [4,5], whereas others approximate irregularly
shaped cells using a “staircase” representation of the cell membrane [6]. Both finite element
and finite volume methods have been used to simulate spatial models of biochemical reaction
networks [4,7]. For finite element methods, which typically require a triangulation of the
computational domain, grid generation can be a challenge. This becomes especially true if the
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boundaries of the computational domain are moving. To overcome this issue, we developed a
finite volume method that utilizes a Cartesian grid. Our numerical scheme is based on a cut
cell method that accurately represents the cell boundary using a piecewise-linear
approximation. This approach allows us to achieve second order accuracy in space and time.
Our method also provides an appropriate framework for addressing moving boundary problems
using level set methods [8,9].

2 Mathematical Formulation
Spatial models of biochemical reaction networks are typically represented using partial
differential equations consisting of reaction and diffusion terms. For simplicity we restrict
ourselves to two spatial dimensions x and y. For a given chemical species, the reaction terms
encompass processes such as activation, degradation, protein modifications and the formation
of molecular complexes. These reactions typically include nonlinear terms, such as those
arising from Michaelis-Menten kinetics. In a system consisting of n chemical species, the
concentration of the ith species ci evolves in space and time according to the following equation:

(1)

where J = −Di∇ci is the flux density, Di is the diffusion coefficient, and the function fi(c)
models the reactions within the cell that affect ci. The elements of the vector c are the
concentrations of the n chemical species. Reactions also may occur on the cell membrane
yielding mixed-type, nonlinear conditions on the boundary ∂Ω,

(2)

Eqs. (1) and (2) are solved subject to appropriate initial conditions ci(x, y, 0) for each species
in the system.

3 Numerical Methods
Our goal is to develop a simulation tool that can accurately and efficiently solve spatial models
of signaling and regulatory pathways in realistic cellular geometries. We obtain the
computational domain from live-cell images. The model equations are solved on a Cartesian
grid by discretizing the Laplacian operator, which models molecular diffusion, using a finite
volume method.

3.1 Computational domain
Fig. 1 shows a grayscale image of a mouse fibroblast [2]. Because the original image is noisy,
the image was smoothed by convolving it twice with the standard five point Gaussian
smoothing filter. After smoothing, a suitable thresholding value was picked, and the front was
computed by an iso-contour finder. A signed distance function is constructed with the
smoothened boundary using Fast Marching Methods [10]. The zero level set of the signed
distance function yields piecewise linear segments used to define cut cells (Fig. 2).

3.2 Discretization of the Spatial Operator
We utilize a Cartesian grid-based, finite volume algorithm originally presented in [11] to
discretize the diffusion operator arising from Eq. (1). Finite volume methods store the average
value of the concentration over a computational grid cell at the location (i, j). That is,
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(3)

where Vi,j is the volume of the (i, j) grid cell. Inserting Eq. (3) into Eq. (1) produces

(4)

The divergence theorem allows us to convert the above volume integral into a surface integral,

(5)

For interior grid cells, we have

(6)

where  and . Approximation of the integrals in Eq. (6) with the
midpoint rule yields

(7)

By approximating the gradient terms with centered differences, we arrive at the standard five
point Laplacian.

The cut cell method generalizes as follows. The boundary of the computational domain is
approximated as a piecewise linear segments (Fig. 2, dashed line), and grid cells that the
boundary passes through are referred to as cut cells. The volume of a cut cell is computed by
recasting the volume integral as a boundary integral:

(8)

where the integral on the right can be computed exactly for the polygon. Each segment is
evaluated, then summed. The center of mass can also be computed using a boundary integral,
for example:

(9)

Next, we construct the integral on the right side of Eq. (5) for a cut cell. In general, there are
up to five surface integrals to approximate. Let al,m ∈ [0, 1] represent the portion of each of
the four cell edges covered by the cut cell and af be the length of the line segment representing
the boundary. Then Eq. (7) becomes
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(10)

Let Fi±1/2,j = −ai±1/2,jΔyJx(xi±1/2, yj) and Fi,j±1/2 = −ai,j±1/2ΔxJy(xi, yj±1/2). With this notation,
we rewrite the previous equation as

(11)

We refer to the F’s as the surface fluxes (Fig. 3). On a full edge with al,m = 1 the surface flux
is calculated with centered differences. For example, in Fig. 3, we have

(12)

The flux gradient across a cut edge, e.g. (xi−1/2, yj), is approximated by a linear interpolation
of two gradients, which are computed by centered differences. A linear interpolation formula
between two points y1 and y2 as a function of a parameter μ ∈ [0, 1] is

(13)

In the case of a cut cell edge, μ = (1 + al,m)/2. For example, to construct Fi−1/2,j in Fig. 3, the
gradient at (xi−1/2, yj) and (xi−1/2, yj−1) is used,

(14)

To calculate the flux through a boundary, e.g. , we compute the gradient along a line normal
to the boundary and centered at the boundary midpoint. To find function values on the normal
line, we interpolate using three equally spaced cell centered points (Fig. 4). If the normal line
is oriented with an angle of π/4 < |θ| < 3π/4 relative to the horizontal grid lines, horizontal
grid points are used to compute the values on the line. Otherwise vertical points are used. The
two points computed along the normal line and the value on the boundary are then used to
construct a quadratic polynomial. The concentration gradient is calculated by differentiating
the quadratic polynomial and evaluating the result at the boundary point cf,

(15)

where  and  are the interpolated values along the normal line and d1 and d2, respectively,

are the distances of these two points from the boundary. The flux  in Eq. (11) is calculated
by multiplying Gf by the area of the cut-cell edge af and the diffusion coefficient D. Then the
boundary condition Eq. (2) becomes the algebraic equation
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(16)

Because all gradients are constructed with second order methods, the overall discretization
scheme is second order in space. Further discussion on the accuracy of the spatial discretization
scheme can be found in [11].

3.3 Time Discretization
Because of the boundary conditions in Eq. (2), operator splitting methods are limited to first
order accuracy. Therefore we treat Eqs. (1) and (2) as a differential-algebraic system of non-
linear equations. The general form of differential-algebraic system is

(17)

where C is a 2n × 1 vector. The first n entries in the differential-algebraic system of equations
are formed by the discretization of Eq. (1) for the chemical species concentrations, and the (n
+1)th to 2nth entries arise from the boundary conditions given in Eq. (2).

This formulation in conjunction with the discretization of the spatial operator presented in the
previous sections allows us to use the DASPK solver described in [12]. Backward
differentiation formulas are used to solve Eq. (17) with methods up to fifth order accurate in
time. The resulting nonlinear system of equations is solved with a modified Newton’s method,
given by

(18)

where α is a constant that changes when the order or step size changes, β is a vector that depends
on the solution at previous time values, and γ is a constant chosen to speed up convergence.
Note that each step of the Newton iteration requires inverting the matrix

(19)

We store this matrix in sparse triple format, and use routines from SPARSKIT [13] to solve
the linear system iteratively. The Generalized Minimal Residual (GMRES) method [14] with
an incomplete LU (ILU) preconditioner is used to solve the linear system. The combination of
the second order accurate cut cell discretization of the Laplacian operator with the fifth order
accurate DASPK time integrator yields an overall second order method with no splitting error.

4 Results
4.1 Convergence Tests

To demonstrate the accuracy of our method on a domain containing all types of cut cells, the
convergence of our method is compared against an exact solution on a circle. The exact solution
to the diffusion equation with a zero Dirichlet boundary condition can be found in terms of
Bessel functions. Let λ denote the first root of the Bessel function J0(x), and r be the radius of
the circle. Then the expression:
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(20)

is an exact solution to the diffusion equation. Fig. 5 shows the initial condition and the computed
solution at t = 0.2 using the constants D = 0.05 and r = 0.3. For visualization purposes, the
computational domain and boundary points are triangulated using Triangle [15]. The error in
the infinity norm over time is shown in Fig. 6. These results demonstrate the second order
accuracy of the numerical method.

Next we tested a nonlinear system in which a protein C can exist in two distinct chemical states:
active and inactive. The reactions that convert the protein between the two states are assumed
to follow Michaelis-Menten kinetics, which describes the kinetics of many enzymatic reactions
including phosphorylation and dephosphorylation events [16]. The protein C is deactivated in
the interior of the computational domain according to the following equations:

(21)

where Ci and Ca are the concentrations of inactive and active protein, respectively, k2 is the
maximum deactivation rate, and Km2 is the Michaelis constant. Activation occurs on the
boundary, ∂Ω, according to the following boundary conditions:

(22)

where k1 is the maximum activation rate and Km1 is the Michaelis constant. The equations are
solved in the domain

(23)

The initial concentration of inactive protein is assumed to be constant and equal to 1. There is
initially no active protein. Fig. 7 shows a plot of the concentrations at t = 0.25.

We compute the error as the difference between successive refinements of the grid. That is, E
(x, y, t) = cΔx(x, y, t) − cΔx/2(x, y, t). Since the grids do not align, the values on the finer grid
are averaged before subtracting the value on the courser grid. E(x, y, t) is defined on interior
values of the course grid. By computing the error with this method, Fig. 8 shows second order
convergence in the infinity norm for the chemical species Ci. The convergence plot of Ca was
identical. The time step was set to Δx/4.

4.2 A two compartment model
In this model, we have two compartments: the cytoplasm and nucleus. The cellular geometry
was taken from a yeast cell undergoing chemotrophic growth in the direction of a pheromone
gradient [17]. The nucleus is modeled as a circle located toward the front of the cell. The model
consists of two species, A and C, with inactive and active forms. Protein C is allowed to enter
and exit the nucleus, whereas protein A is restricted to the cytoplasm. Initially both A and C
are in their inactive forms. At t = 0, the reaction that activates A is initiated. This is meant to
model the cell receiving an external signal. Once A is activated it is assumed to interact with
the cell membrane, causing a reduction in the protein’s diffusion coefficient. Active A can then
activate C. The active form of C is only deactivated within the nucleus. This simple model
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captures some of the signaling events that occur during the pheromone response of yeast. If
we denote the concentration of a chemical species with brackets, the equations for the
cytoplasmic species are:

where the asterisks denote the active form of the protein, D1 is the diffusion coefficient in the
cytoplasm, D2 is diffusion coefficient in the membrane, and the k’s represent the reaction rates.
Subscripts indicate cytosolic and nuclear species. The boundary conditions at the cell
membrane are no flux for all chemical species. The nuclear boundary conditions for A species
are also no flux, whereas C species are allowed to move through the nuclear membrane and
satisfy the conditions

Nuclear C* is deactivated according to the equations

Simulation results are shown in Figs. 9 and 10. All reaction constants were set to one, D1 =
0.1, D2 = 0.01, and Δx = 1/100. The initial values were zero except for [Ac] (x, y, 0) = [Cc] (x,
y, 0) = 1. The system reached steady state at t = 10. The execution time of the simulation was
22 seconds on Mac Pro desktop computer with dual-core 2.66 GHz Intel Xeon processors. The
model simulation suggests a spatial activation gradient can be generated by the position of the
nucleus. The inactivation of C in the nucleus leads to a higher concentration of active protein
in the rear of the cell in spite of a uniform spatial signal from active A.

4.3 Rho family GTPase Model
The Rho family of GTPases regulates many cellular functions, including polarization and
motility. We created a model with three key members of this family, Cdc42, Rac, and Rho
(Fig. 11). In our model, an extracellular signal triggers the activation of Cdc42 protein on the
cell membrane,

(24)

In the cell interior, active Cdc42 is inactivated. A positive feedback loop increases the activation
of Cdc42,
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(25)

Rac is activated by Cdc42, and a positive feedback loop increases the concentration of active
Rac. Active Rho increases the deactivation of Rac in the cytosol,

(26)

Rho is activated by the active form of Rac and deactivated in the interior,

(27)

The boundary conditions for Rac and Rho species are no flux. The steady state distribution at
t = 2.0 is displayed in Fig. 12. To achieve these results a step size Δx = 1/100 and a diffusion
coefficient D = 0.1 were used. The reaction constants from the simulation are listed in Table
1. The initial concentration of inactive chemical species was set to one and zero for active
species. The execution time was 39 seconds on a Mac Pro desktop computer with dual-core
2.66 GHz Intel Xeon processors.

In this model, a gradient is formed by protein activation on the membrane. The gradient is
propagated to the downstream signaling components Rac and Rho. Fig. 12 shows that filopodia
and thin protrusions have higher activation levels due the increased ratio of cell membrane to
cell volume in these regions [4].

5 Discussion
We have developed an accurate and efficient cut-cell method for simulating spatial models of
signaling pathways in realistic cellular geometries. Our algorithm builds upon previous work
on embedded boundary methods [11,18–20].

These methods have been implemented in two and three dimension for Poisson’s equation, the
heat equation, and hyperbolic conservation laws. In [18], a second order implicit method was
used to update the heat equation in time [21]. In our method, we use a implicit nonlinear solver
to avoid operator splitting error. The capability to solve systems of nonlinear reaction-diffusion
equations with nonlinear, mixed-type boundary conditions also distinguishes our method from
previous work on embedded boundary methods. The underlying Cartesian-grid based finite
volume discretization allows us to use advection schemes originally developed for hyperbolic
conservation laws to simulate active transport or motility. In future reports, we will show how
level set methods [8,9] can be combined with biochemical reaction networks to investigate the
effect of moving boundaries on cell signaling. Future work also includes a three dimensional
implementation of our fixed boundary algorithm.
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Fig. 1.
Grayscale image of a mouse fibroblast taken from supplemental data in [2] (left) and the
smoothened boundary (right).
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Fig. 2.
Computational boundary (dashed line) with an assumed higher order representation of the cell
boundary drawn as a solid line.
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Fig. 3.
Diagram of fluxes for cut cells where shaded boxes indicate cells that are inside the boundary.
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Fig. 4.
Circles indicate interpolated values that depend on the square grid values.
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Fig. 5.
Initial condition for the diffusion equation (left) and computed solution at t = 0.2 (right).
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Fig. 6.
Error in the infinity norm for the diffusion equation.
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Fig. 7.
Concentrations of inactive (left) and active (right) species at t=0.25 with the coefficients D =
0.1, k1 = k2 = S = 1.0, and Km1 = Km2 = 0.2.
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Fig. 8.
Ci error in the infinity norm
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Fig. 9.
Steady state concentration of inactive C in the cytoplasm and nucleus.
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Fig. 10.
Steady state concentration values for inactive C species (left) and active C species (right).
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Fig. 11.
Schematic of Interactions
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Fig. 12.
Steady state distribution of protein concentration amounts in a fibroblast. The boundary was
taken from a live cell image [2].
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