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SUMMARY

Blood and lymphatic vessels deliver oxygen and nutrients, remove waste and CO2, and reg-
ulate interstitial pressure in tissues and organs. These vessels begin life early in embryogenesis
using transcription factors and signaling pathways that regulate differentiation, morphogene-
sis, and proliferation. Here we describe how these vessels develop in the mouse embryo, and
the signals that are important to their development.
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1 INTRODUCTION

This article describes the development of blood and lym-
phatic vessels, two organ systems that form extensive net-
works throughout the body. Blood vessels deliver oxygen
and nutrients to virtually all cells in developing mammali-
an embryos and adults, whereas lymphatic vessels drain the
interstitial fluid that collects in tissues, and serve as a con-
duit for immune cell trafficking and fat absorption. The
mammal has been at the forefront of studies of blood and
lymphatic vessel development, starting with the seminal
studies of Florence Sabin on pig embryos in 1902 (Sabin
1902, 1917). Blood vessels of a typical adult human com-
pose 8% of body mass, and end to end would go around the
earth 2.5 times, a distance of 60,000 miles.

Blood and lymphatic vessels develop similarly to other
organs and tissues in several ways. Signals produced by
embryonic cells activate transcription factor programs to
initiate vascular development. Endothelial cells form the
inner lining of all blood vessels, and they differentiate
from mesoderm under the influence of specific transcrip-
tion factors, such as those of the ETS and Fox families, that
are expressed in response to signaling pathways commonly
deployed in development, such as BMP (bone morphoge-
netic protein), Wnt, and Notch (Lammerts van Bueren and
Black 2012). ETS/Fox transcription factors regulate expres-
sion of other transcription factors such as Scl and Fli1, and
signaling receptors such as VEGFR-2 and Tie-2. In fact,
27% of endothelial genes, including VEGFR-2 and Tie-2,
have a hybrid enhancer motif that binds both FoxC2
and Etv2 (De Val et al. 2008). Signaling pathways regulate
cellular behaviors such as division and migration. Lym-
phatic endothelial cells differentiate from venous endothe-
lial cells through a stepwise process of transcription fac-
tor expression, including COUP-TFII, Sox18, and Prox1,
and growth-factor-mediated chemotaxis and proliferation
(Francois et al. 2011). Endothelial cells also recruit other
cell types to developing blood vessels, including pericytes
and smooth muscle cells that stabilize vessels. In large ves-
sels, these mural cells form complex layers that provide
contractility and tone. Both vascular and lymphatic endo-
thelial cells form cell–cell contacts with neighboring endo-
thelial cells, and undergo migration and morphogenetic
changes as a unit to expand vessel networks as the embryo
grows and develops. Finally, stem and progenitor cells are
associated with several aspects of blood and lymphatic ves-
sel development and diseases (Bautch 2011).

However, several aspects of blood and lymphatic vessel
development are quite special. Blood and lymphatic vessels
are an integral part of virtually every organ and tissue in the
animal, so their developmental and morphogenetic pro-
grams must adapt to the signals and switches of numerous

organ-specific developmental programs. For example,
blood vessels respond to brain-derived signals to sprout
into the central nervous system and pattern in concert
with the patterning of the developing brain and neural
tube (Bautch and James 2009; Quaegebeur et al. 2011). In
contrast to the brain or the lungs, blood vessels, and to some
extent lymphatic vessels, must function as soon as they
form; blood vessels provide oxygen and nutrients to embry-
onic organs and tissues even as the vessels are developing,
expanding, and remodeling in response to ongoing devel-
opmental programs, and lymphatic vessels facilitate fluid
exchange within tissues as they expand. Ultimately, both
blood and lymphatic vessels must develop as a barrier to
unregulated exchange of materials between the inside and
outside of the vessel, yet they must also provide for regulated
movement of fluids, solids, and even cells into and out of
the vessels. For example, lymphocytes egress from blood
vessels at sites of inflammation in the adult, and then they
are cleared through lymphatic vessels. Finally, blood and
lymphatic vessels are exquisitely responsive to mechanical
cues that allow them to develop in response to the needs of
diverse environments. Blood vessels initially form a prim-
itive network or plexus, which is then remodeled by the
shear stress produced by blood flow and further stabilized
via recruitment of pericytes and sometimes smooth muscle
cells (Culver and Dickinson 2010). In adults, the lymphatic
vasculature responds to a different cue—interstitial pres-
sure, which changes the permeability of lymphatic endothe-
lial cells to increase fluid reabsorption.

This article will examine the development of blood and
lymphatic vessels during mouse embryogenesis, with brief
references to seminal discoveries in other model organisms.
Several excellent reviews have provided more depth and
detail on this subject (Risau and Flamme 1995; Risau
1997; Coultas et al. 2005; Eichmann et al. 2005). We cover
the sources and specification of blood and lymphatic vas-
cular cells, then examine how vessel networks are assem-
bled and expanded during development, and bring forth
urgent major questions and future directions of the field.

2 DEVELOPMENT OF BLOOD VESSELS

2.1 Vasculogenesis—Specification and Migration
of Angioblasts

Endothelial cells arise from mesoderm that forms at
gastrulation and migrates extensively in the early embryo.
Initial differentiation produces a precursor called the an-
gioblast. Historically, it was debated whether blood vessels
first arise in the yolk sac and then “seed” the embryo, or
whether they arise independently in both the extraembry-
onic yolk sac and the embryo proper. However, it is now
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clear that blood vessels arise more or less simultaneously
in both the embryo and the yolk sac. Within the mouse
embryo, at approximately embryonic day 7.5 (E7.5), me-
sodermal cells expressing angioblast markers begin to coa-
lesce in the paraxial region and form two cords that
subsequently lumenize (Drake and Fleming 2000; Chong
et al. 2011). A recent study identifies a repulsive signal,
Sema 3E, as important in the initial placement of the dorsal
aortas (Meadows et al. 2012). At about the same time en-
dothelial cells are specified in the nascent yolk sac. Extra-
embryonic mesoderm that emerged from the posterior
streak region condenses in discrete areas called “blood is-
lands” to form a ring around the visceral yolk sac, immedi-
ately above the embryonic–extraembryonic border (Risau
and Flamme 1995; Ferkowicz and Yoder 2005). The blood
islands contain both vascular and hematopoietic precursor
cells that do not appear to be clonal in origin (Ueno and
Weissman 2006). VEGF-A, which is secreted by both the
yolk sac endoderm and a mesothelial layer that subse-
quently forms over the hematovascular layer, is important
for the proper formation of yolk sac vessels (Miquerol et al.
1999; Damert et al. 2002).

There are multiple mesodermal sources that provide
endothelial precursor cells as embryonic development pro-
ceeds. Lateral plate mesoderm-derived angioblasts migrate
medially and contribute to the perineural vascular plexus
that surrounds the neural tube and intersomitic vessels
(Fig. 1A). Somites also produce angioblasts that migrate
medially to contribute to the perineural vascular plexus,
laterally to contribute to the limb vasculature, and ventrally
to contribute to the dorsal aorta and the developing kidney
vessels (Pardanaud et al. 1996; Ambler et al. 2001). A recent
avian study showed that cells from the posterior of each
somite contribute to both endothelial cells and smooth

muscle cells of the dorsal aorta subsequent to its initial
formation (Sato et al. 2008). Lineage tracing studies reveal
that somites contain cells that are bipotential for skeletal
muscle and endothelium, or smooth muscle and endothe-
lium (Esner et al. 2006; Lagha et al. 2009), suggesting that
somitic angioblasts arise as part of the dermomyotome.
Subsequently, most organs have a mesodermal component
or a nearby source of mesenchyme that provides angioblasts
for local vessel networks, and angiogenic sprouting pro-
duces conduit vessels and contributes to network expan-
sion (see next section). One exception is the central nervous
system (CNS), which does not have an internal source of
angioblasts. During development, angioblasts form the
perineural vascular plexus on the outer surface of the brain
and neural tube. In an orchestrated program, CNS signals
induce vascular sprouting into the neural tissue (Fig. 1B),
and subsequently pattern the vessel network within the
CNS (Bautch and James 2009; Quaegebeur et al. 2011).

Potential lineage relationship(s) between the vascular
and hematopoietic systems have been intensely investigat-
ed, starting with Florence Sabin, who observed that blood
cells and blood vessels formed in close proximity and thus
hypothesized a common precursor cell called the heman-
gioblast (Fig. 2A) (Sabin 1920). Embryonic stem cells un-
dergo a programmed differentiation in culture to produce
numerous embryonic cell types, including mesoderm that
differentiates into several lineages such as primitive hema-
topoietic cells and vascular endothelial cells (Kearney and
Bautch 2003; Keller 2005; Jakobsson et al. 2007). Keller and
colleagues showed that mouse and human embryonic stem
(ES) cells produce progenitor cells that give rise to both
hematopoietic and endothelial cells in culture and in
E7.5 mouse embryos, and Vogeli et al. lineage traced single
cells in the zebrafish embryo to provide rigorous proof for a
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Figure 1. Blood vessel development in early postimplantation mouse embryos. (A) At E8.5, angioblasts and
endothelial cells migrate medially and ventrally from lateral plate mesoderm and somites, and laterally from somites.
(B) At E9.5, angiogenic sprouting from the perineural vascular plexus (pnvp) vascularizes the neural tube.
Embryo silhouettes show pattern of trunk and intersomitic vessels in red (heart and head vessels are excluded);
maroon arrows indicate migratory streams or direction of sprouting; black line denotes pnvp; da, dorsal
aorta; lpm, lateral plate mesoderm; nc, notochord; nt, neural tube; som, somite; A, anterior; P, posterior; D, dorsal;
V, ventral.
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link between the lineages (Choi et al. 1998; Huber et al.
2004; Vogeli et al. 2006; Yang et al. 2008). Other investiga-
tors provided evidence that endothelial cells at specific sites
in mid-gestation embryos, such as the ventral floor of the
dorsal aorta, are associated with clusters of hematopoietic
cells, suggesting a lineage relationship (de Bruijn et al.
2002). Endothelial cells that give rise to hematopoietic cells
are called hemogenic endothelium, and recently this con-
cept has been verified with elegant live imaging in both
zebrafish and E10.5 mouse embryos (Fig. 2B) (Zovein
et al. 2008; Eilken et al. 2009; Bertrand et al. 2010; Boisset
et al. 2010; Kissa and Herbomel 2010). These studies show
that differentiated endothelial cells can produce hemato-
poietic cells that appear to contribute to the hematopoietic
stem cell pool, and they suggest that this process involves
transdifferentiation of single endothelial cells into hema-
topoietic cells (Zape and Zovein 2011). The data support-
ing the hemangioblast model is also consistent with
hemogenic endothelium, because the hemangioblast stud-
ies identified the progeny of single cells rather than the
mechanisms leading to these relationships. Indeed, it is
possible that both models are correct, and one recent study
using mouse ES cells provided evidence that hemangio-
blast-derived endothelial cells have hemogenic capacity
(Lancrin et al. 2009).

2.2 Sprouting Angiogenesis and Blood Vessel
Network Formation

Once the major blood vessels form via vasculogenesis,
sprouting angiogenesis leads to the expansion of vessel
networks and the formation of new connections (Risau
1997). Although vasculogenesis temporally precedes an-
giogenesis in development, the two processes often occur

simultaneously once angiogenesis commences, and many
vessel networks expand via both de novo differentiation of
endothelial progenitor cells and sprouting angiogenesis.

Angiogenesis involves the division and sprouting mi-
gration of differentiated endothelial cells. In recent years
much effort has gone into a cellular and molecular descrip-
tion of angiogenesis, starting with the seminal observations
by Gerhardt and colleagues (Gerhardt et al. 2003) in the
postnatal mouse retina that led to the concept of tip cells
and stalk cells in developing blood vessels. The retinal vas-
culature develops in the early postnatal period in the
mouse, starting with expansion from the optic nerve at
the center of the retina over the retinal tissue during the
first week; the stereotypical nature of this vessel network
allows for identification of the vascular front, which is the
part of the network that is actively expanding at any given
time (Fruttiger 2002). Proangiogenic signals, such as
VEGF-A, cause some endothelial cells in a nascent vessel
to migrate toward the cue, whereas other endothelial cells
respond by cell division but do not overtly migrate. This
heterogeneity in the responsiveness of endothelial cells was
explained by the finding that endothelial cells in developing
blood vessels show different phenotypes, and tip cells re-
spond to VEGF-A signal by initiating migration, whereas
cells behind the tip cell assume a stalk cell phenotype and
divide in response to VEGF-A but do not migrate indepen-
dently of the tip cell. Notch signaling, which is involved in
many binary developmental decisions, is also critical for tip
cell versus stalk cell phenotype (Hellstrom et al. 2007; Leslie
et al. 2007; Siekmann and Lawson 2007). Tip cells up-reg-
ulate Notch ligands such as Dll4 and signal to neighboring
cells to induce the acquisition of the stalk cell phenotype, in
part through up-regulation of VEGFR-1 (Flt-1) (Fig. 3). The
tip cell phenotype is plastic, as eventually the tip fuses to
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Figure 2. Relationships of vascular and hematopoietic lineages. (A) The hemangioblast is the hypothesized bi-
potential precursor of some endothelial and hematopoietic cells. (B) An alternative model has differentiated
endothelial cells dividing or transdifferentiating to produce hematopoietic stem cells.
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form a connection, with a new cell assuming a tip cell phe-
notype if branching continues. A recent study suggested
that there is competition for the tip cell position mediated
by VEGF and Notch; and in an in vitro model, tip cells were
replaced in a time frame of hours (Jakobsson et al. 2010).

2.3 Lumen Formation

Before blood flow commences, blood vessels must form a
lumen, and several recent studies have examined this pro-
cess in detail (Iruela-Arispe and Davis 2009). Studies in
zebrafish, a model organism amenable to live image anal-
ysis, suggested that vessel lumens form by a cord-hollowing
mechanism (Kamei et al. 2006; Blum et al. 2008). Similar
cord hollowing is also found during formation of the lu-
men in the dorsal aorta of the mouse embryo (Strilic et al.
2009). A model has been proposed whereby negatively
charged glycoproteins on the future luminal surface of
the endothelial cells provide a repulsive signal, and ensuing
contraction and cell-shape changes expand the lumen. This
hollowing process requires signaling by the small GTPase
Rho, as genetic loss of a Rho regulator prevents lumen
formation (Xu et al. 2011). Once a lumen forms, it extends
as the vessel network expands (Fig. 3). Tip cells do not have
a lumen, but the stalk cells immediately behind the tip cell
begin to lumenize in the retina. To form a lumen, endo-
thelial cells in vessels must be polarized in the apical (lu-
minal)–basal (abluminal) axis. The regulation of polarity
is critical to proper blood vessel function, and it is an area
of intense research (Lee and Bautch 2011).

2.4 Artery–Vein Differentiation and Blood Vessel
Remodeling

Another developmental program of import is the process
whereby arteries and veins are distinguished, and blood
vessels are remodeled in response to blood flow. The two
aspects of blood vessel development are linked in that sta-
bilization of at least arterial identity involves flow-mediated
input, and arteries have higher shear flow and higher cir-
cumferential strain than veins. However, the initial dif-
ferentiation of arteries versus veins initiates before and
independent of blood flow (Wang et al. 1998). In arteries,
a pathway that includes VEGF-A and Notch regulates ar-
terial identity, and the transcription factors FoxC1 and
FoxC2 regulate expression of Notch and Dll4 in arteries
(Seo et al. 2006; Swift and Weinstein 2009). In veins, the
orphan nuclear receptor COUP-TFII regulates venous iden-
tity, and acts to repress Notch (You et al. 2005). A recent in-
depth analysis of arterial and venous marker expression in
the developing mouse embryo revealed that arterial speci-
fication precedes venous specification, and provided evi-
dence that blood flow is necessary for expression of some,
although not all, arterial markers (Chong et al. 2011). In the
mouse embryo, the heart starts to beat at approximately
E8.0, but initially the heartbeats are irregular and weak,
and blood does not begin to circulate until E8.5. It is at
this time that flow-mediated remodeling begins, and it is
operative throughout life. For example, small vessels called
collaterals do not normally experience directed blood flow,
but remodel in response to directed flow on blockade
of normal conduits, such as occurs with a heart attack or
stroke (Heil et al. 2006). Several molecular complexes are
reputed to sense flow and transduce signals in endothelial
cells, including a complex of PECAM–VEGFR-2–VEcad-
herin (Tzima et al. 2005). Many mutations in the mouse are
embryonic lethal at mid-gestation with a cardiovascular
phenotype. Some of these mutations affect flow-mediated
remodeling, often downstream from heart defects (Culver
and Dickinson 2010). In general, remodeling defects result
in loss of the hierarchical organization of vessels in the net-
work from larger conduits to smaller vessels and capillaries,
lack of recruitment of support cells such as pericytes and
smooth muscle cells, and often loss of arterial identity. In-
terestingly, a recent report suggests that flow-mediated sig-
nals can switch lymphatic vessels (see next section) tovenous
blood vessels, perhaps via flow-mediated regulation of the
lymphatic transcription factor Prox-1 (Chen et al. 2012).

3 DEVELOPMENT OF LYMPHATIC VESSELS

Compared to blood vessel development, much less is
known about the process of embryonic lymphangiogenesis

Notch
signal

VEGFR-2
VEGFR-3
DII4

sFIt-1
mFIt-1

Figure 3. Blood vessel sprouting and lumen formation. As vessels
initiate sprouting, a cell (pink) adopts a tip cell phenotype, and
through signaling of the Notch ligand Dll4 to neighboring cells
sets up the stalk cell phenotype (blue), which is accompanied by
up-regulation of Flt-1. As the sprout extends, the lumen forms be-
hind the tip cell. sFlt-1, soluble Flt-1; mFlt-1, membrane Flt-1.
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(Fig. 4). Until recently, our knowledge of the genetic and
developmental paradigms that drive lymphangiogenesis
was limited because of lack of lymphatic-specific markers.
However, the discovery of a handful of genes that can
distinguish early lymphatic endothelial cells from blood
endothelial cells has provided scientists with new tools
that have helped to drive the field forward over the past
15 years.

3.1 Transcriptional Regulation of Lymphatic
Competence and Specification

Venous endothelial cells of the cardinal vein serve as the
precursors of lymphatic endothelial cells (LECs). At E9.5

of mouse development, venous endothelial cells of the
cardinal vein express the classical adult lymphatic mark-
er, lymphatic vascular endothelial hyaluronan receptor-1
(LYVE-1). However, the specification and commitment of
precursor venous endothelial cells to the lymphatic line-
age occurs through the stepwise expression of a series of
transcription factors, including Sox18, COUPTFII, and
Prox1. Although the polarized induction cues have yet to
be identified, LYVE-1+ dorsolateral cells of the cardinal
vein begin to express SRY-related HMG-box 18 (Sox18),
which in turn elicits the expression of prospero-related
homeobox domain 1 (Prox1) (Francois et al. 2008). Al-
though the functions of Sox18 can be redundant with other
SoxF family members (Sox7 and Sox17) in certain strains
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Figure 4. Stages of lymphangiogenesis. Lymphatic endothelial cells (LECs) are derived from venous endothelial
precursors during development. The expression of lymphatic-specific receptors, like VEGFR-3, allows for LEC to
migrate and separate from veins in response to chemotactic guidance cues. Following the establishment of lymphatic
sacs, a cohort of growth factors drives the proliferation and remodeling of the early lymphatic plexus from mid-
gestation through the early postnatal period. The maturation of large collecting lymphatic vessels, which include
valves and lymphatic smooth muscle cells, also occurs during the late gestation and postnatal periods. AM, adre-
nomedulin; CLR/Ramp2, calcitonin-like receptor/receptor activity modifying protein-2.
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of mice (Hosking et al. 2009), the importance of Sox18
in the lymphatic vasculature is underscored by human mu-
tations in SOX18 causing hypotriochosis–lymphdedema–
telangiectasia, which is a congenital condition character-
ized by hair loss and lymphedema (Irrthum et al. 2003).

The orphan nuclear receptor chicken ovalbumin up-
stream transcription factor II (CoupTFII) also plays an
important and synergistic role in establishing LEC specifi-
cation. CoupTFII is coexpressed with Prox1 in develop-
ing LECs at E11.5 and in vitro studies have shown that
CoupTFII directly binds to Prox1 and participates in the
activation of several lymphatic-specific gene promoters, in-
cluding Prox1 itself (Lee et al. 2009). Although the expres-
sion of CoupTFII is not restricted to lymphatic progenitors
or LECs, its expression in venous progenitors of the cardinal
vein is required for the initiation of Prox1 expression and
establishing LEC specification (Srinivasan et al. 2010).

The expression of prospero-related homeobox domain
1 (Prox1) defines LEC identity, because loss of Prox1 ex-
pression in mice results in arrested lymphangiogenesis
(Wigle and Oliver 1999). Therefore, Prox1 is necessary
for lymphangiogenesis and helps to drive the expression
of numerous lymphatic-specific genes that transform ve-
nous progenitor cells into functional lymphatic endothelial
cells. Indeed, the expression of many lymphatic-specific
or lymphatic-enriched genes can be directly attributed to
their transcriptional induction by Prox1. Moreover, the
continued expression of Prox1 in lymphatic endothelial
cells of the adult animal is required for the maintenance
of these vessels, because conditional deletion of Prox1 in
adult animals causes the reversion of lymphatic endotheli-
um to venous endothelium (Johnson et al. 2008). For these
reasons, Prox1 is often referred to as the “global regulator”
of lymphatic fate because it plays an essential role in the
establishment and maintenance of lymphatic endothelial
cells. However, it is interesting to note that the functions
of Prox1 are not exclusive to lymphatics. Recent studies
have shown that Prox1 is required for the development
and maintenance of venous valves (Bazigou et al. 2011).
In addition, Prox1 also has important roles in the develop-
ment of the retina and heart (Dyer et al. 2003; Risebro et al.
2009). Therefore, although Prox1 clearly plays central func-
tions in lymphatics, it is most likely that the specialized
fate and maintenance of lymphatic endothelial cells is a
process that is ultimately governed by several interrelated
transcriptional pathways and downstream target genes.

3.2 Lymphatic Endothelial Cell Differentiation
and Migration

Once the fate of LECs has been specified by transcriptional
regulators, they become capable of responding to external

guidance cues and growth factors. The most well-charac-
terized lymphatic growth factor is VEGF-C, which binds to
and signals through the lymphatic tyrosine kinase receptor,
VEGFR-3 (Flt-4 in mouse)—a downstream target gene of
Prox1. It is widely believed that LECs respond to peripheral
gradients of VEGF-C to migrate and separate from venous
precursor vessels; however, the source and spatial distribu-
tion of this VEGF-C gradient has yet to be determined.
Nevertheless, LECs in VEGF-C knockout mice are unable
to migrate away from veins, despite retaining their lym-
phatic identity (Karkkainen et al. 2004), and overexpres-
sion of VEGF-C in mouse skin causes lymphatic vessel
hyperplasia (Jeltsch et al. 1997). Thus, the expression of
VEGF-C plays a critical role in enabling nascent LECs to
migrate away from their originating vein.

The dorsolateral migration of LECs away from veins is
accompanied by their coalescence into primitive lymph
sacs—the earliest form of lymphatic vessel, consisting of
overlapping endothelial cell–cell junctions, a lumen, and
fibrillin-rich anchoring filaments. Because lymphatic ves-
sels lack a basement membrane, these anchoring filaments
serve the important functions of tethering lymphatic ves-
sels to the interstitial matrix and of sensing and responding
to increased interstitial pressure through an integrin-me-
diated change in cell–cell junctions.

For many years, the predominating model for early
lymph sac formation was that individual LECs migrate
away from their precursor vein and then reunite and coa-
lesce into an early lymphatic sac. However, this simple
model does not account for the heterogeneous, and yet
simultaneous, development of large lymphatic trunks ver-
sus superficial dermal lymphatics. More recent studies us-
ing ultra-high-resolution techniques have revealed a more
complex mechanism of LEC migration from the veins
(Francois et al. 2012). Some LECs—those expressing rela-
tively high levels of neuropilin-2 (a VEGF-C coreceptor)
and low levels of LYVE-1—migrate away from the precur-
sor vein as a stream of individual cells and ultimately con-
tribute to the formation of superficial lymphatic vessels. In
contrast, LECs that express low levels of neuropilin-2 and
high LYVE-1 tend to form a sheet of cells that resemble a
balloonlike structure adjacent to the vein, and these struc-
tures give rise to the larger lymphatic trunks.

In a similar fashion to the requirement of blood flow for
normal blood vascular development (described in Section
2), the complete separation of lymphatic sacs from veins
occurs between E12.5 and E14.5 in the mouse and is de-
pendent on the formation and signaling of platelet micro-
thrombi. Platelet aggregation and activation at the site of
lymph sac separation is mediated by the interaction of
podoplanin (expressed on LECs) with its receptor CLEC-2
(expressed on platelets) (Schacht et al. 2003; Bertozzi
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et al. 2010; Finney et al. 2012). As a consequence of this
ligand–receptor interaction, the activation of the tyrosine
kinase Syk and the adaptor protein SLP-76 in platelets
fulfills the separation of lymphatic sacs from the progenitor
vein (Abtahian et al. 2003). Failure of appropriate lymphat-
ic–venous separation during embryogenesis results in
blood-filled lymphatic vessels.

Interestingly, the preservation of distinct and separate
blood and lymphatic vascular systems is a process that must
be maintained postnatally. As discussed above, the persis-
tent expression of Prox1 in adult lymphatics is required for
their maintenance as lymphatic endothelial cells (Johnson
et al. 2008). Likewise, the expression of Prox1 in a small
subset of venous progenitors allows for an intercalation of
venous and lymphatic endothelial cells that form the func-
tional connection between the lymphatic and venous circu-
latory systems at the juncture of the jugular and subclavian
veins (Srinivasan and Oliver 2011). As another example,
loss of the lymphangiogenic factor angiopoietin-like pro-
tein 4 (Angptl4) results in lymphatic–venous shunts in the
small intestine of postnatal mice (Backhed et al. 2007).
Therefore, it is likely that there exist additional signaling
factors that stimulate and maintain the separation of lym-
phatic vessels from blood vessels, and likewise allow for their
connection at the junction of the thoracic duct and subcla-
vian vein.

Additional development and remodeling of the lym-
phatic vascular system occurs from E14.5 throughout the
early postnatal period. Similar to the processes that govern
the transition from early blood vasculogenesis to angiogen-
esis, early lymphatic vessels undergo a remodeling and
maturation process that includes robust endothelial cell
proliferation and lymphatic sprouting. Some lymphatic
vessels must also develop one-way valves and acquire lym-
phatic smooth muscle cells, distinguishing features of larg-
er collecting lymphatics that are required for their function
as drainage conduits. There are numerous signaling mole-
cules that regulate the later stages of lymphangiogenesis.
Although most fall within the category of cytokine-like
growth factors that signal through receptor tyrosine ki-
nases (like VEGFs, angiopoietins, ephrins, neuropilins,
and growth factors) there are also important G protein-
coupled receptor signaling molecules that play essential
functions in the later stages of lymphangiogenesis (like
adrenomedullin, CCL21, and lysophospholipids) (Dun-
worth and Caron 2009).

4 GENETIC NETWORKS IN BLOOD AND
LYMPHATIC VESSEL FORMATION

Most of the signals and pathways that regulate vascular
development are also used in multiple developmental

programs: FGF, Wnt, Notch, and BMP. In addition,
VEGF-A signaling is critical for multiple aspects of vascular
development. Lymphangiogenesis also heavily relies on the
VEGF pathway, although VEGF-C and VEGFR-3 are the
predominant players. Although much is known about the
individual functions of these signaling pathways, the chal-
lenges for the future are elucidating how these signaling
pathways interact with one another within an endothelial
cell, and the mechanisms by which different types of endo-
thelial cells respond differently to the same signals.

VEGF-A is a ligand produced in a dynamic expression
pattern throughout development by numerous tissues just
before and during vascularization, and it is a major regu-
lator of vascular development in all vertebrates. Genetic
ablation of a single allele of the ligand, and homozygous
deletion of either of two receptor tyrosine kinases (VEGFR-
1 and Flt-1 in the mouse; VEGFR-2 and flk-1 in the mouse)
is embryonic lethal with vascular defects (Fong et al. 1995;
Shalaby et al. 1995; Carmeliet et al. 1996; Ferrara et al.
1996). Alternative splicing produces three major VEGF-A
isoforms with differing affinity for extracellular matrix, and
the secretion of these from target tissues is thought to help
set up a gradient of signal that instructs new vessel growth
(Ruhrberg et al. 2002; Stalmans et al. 2002); indeed, expres-
sion of a single VEGF-A isoform is embryonic or early
postnatal lethal in the mouse for two of the three isoforms.
VEGF-A binding activates Flk-1, which activates numerous
downstream signaling pathways that contribute to prolif-
eration, migration, and survival (Koch et al. 2011). In con-
trast, Flt-1 acts as a negative regulator of the pathway during
development, and alternative splicing of the Flt-1 RNA
leads to both a membrane-localized form and a secreted
form that binds VEGF-A and inhibits binding to Flk-1
(Kendall and Thomas 1993; Roberts et al. 2004). Interest-
ingly, spatial localization of Flt-1 expression is also impor-
tant and contributes to network heterogeneity and local
sprout guidance (Chappell et al. 2009).

Our understanding of how Wnt and BMP signaling af-
fect vascular development is less complete. Wnt affects both
endothelial cell specification and vessel morphogenesis via
its canonical signaling pathway (Dejana 2010). A novel con-
nection between several chromatin remodeling complexes
and regulation of Wnt signaling in vascular development
has recently been established (Griffin et al. 2011; Curtis and
Griffin 2012). The noncanonical Wnt pathway has also been
implicated invessel morphogenesis in the developing retina,
via regulation of the VEGF receptor Flt-1 (Stefater et al.
2011). BMP is clearly important for vascular development,
although exactly how and where it affects blood vessel
formation is obscure, and different ligands appear to medi-
ate either positive (BMP2, BMP6) or negative (BMP9) re-
sponses (David et al. 2009). A recent study found that
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BMP2 was necessary and sufficient for development of the
venous plexus in zebrafish, but not required in sprouting of
the intersegmental vessels from the dorsal aorta (Wiley et al.
2011). BMP2 signaling also positively regulates sprouting
and branching of mammalian vessels in vivo and in vitro
(DM Wiley, SM Meadows, DC Chong, et al., in prep.). Other
studies suggest that Smad signaling that is presumably
downstream from BMP can also affect vessel development
in complex ways, and the input of different BMP ligands
and/or the use of different coreceptors mayaffect the overall
phenotypes (Larrivee et al. 2012; Moya et al. 2012).

Notch is critical to vascular development at several dif-
ferent stages, as it intersects with and integrates numerous
signaling inputs. Notch is involved in early arterial identity
in both zebrafish and mouse. Several Notch receptors and
ligands are specifically expressed by arterial endothelial
cells (Mailhos et al. 2001; Chong et al. 2011), suggesting
the importance of the Notch pathway in establishing artery
versus vein specification within the developing vasculature,
and Notch signaling up-regulates artery-specific markers
such as ephrinB2 (Lawson et al. 2001; Grego-Bessa et al.
2007; Siekmann and Lawson 2007). Notch is involved in
migration of somitic angioblasts to the dorsal aorta in avi-
ans, as only Notch-active somitic cells are competent for
this migration (Sato et al. 2008). Notch intersects with the
VEGF pathway to regulate arterial endothelial cell identity
during development and after the onset of blood flow
(Lawson et al. 2002; Masumura et al. 2009). Notch signaling
is also required in endothelial cells to determine the relative
level of VEGF signaling among neighbors, which allows for
adoption of a tip cell or stalk cell phenotype—loss of Notch
leads to excess tip cells and elevated Notch signaling pro-
motes the stalk cell phenotype (Hellstrom et al. 2007; Ja-
kobsson et al. 2010). In contrast, little is known about
Notch–BMP interactions. Both Notch and BMP stimulate
expression of ER71, an Ets family transcription factor that
stimulates formation of Flk-1-positive mesoderm, giving
rise to both blood and vessel progenitors (Lee et al. 2008).
In endothelial cells, cell–cell contact activated Notch sig-
naling, and this synergized with BMP signals to activate
Herp2 (Hey1), another Notch target, and block endothelial
migration (Itoh et al. 2004). Smad 1/5 and the ALK1 BMP/
TGFb receptor also intersect with Notch in complex ways
(Larrivee et al. 2012; Moya et al. 2012).

The most well-characterized lymphatic signaling path-
way is that of VEGF-C/VEGFR-3 (Flt4). However, VEGF-A
and VEGF-D also have established and potent effects in
promoting tumor lymphangiogenesis. Because VEGF pro-
teins are expressed broadly, lymphatic endothelial cells
must develop ways to distinguish their responsiveness to
VEGF ligands from those of veins and arteries. This level of
endothelial cell heterogeneity is achieved through selective

expression of VEGF receptors VEGFR-2 (Flk1) and VEGFR-
3 (Flt4), as well as their coreceptors, the neuropilins (Bah-
ram and Claesson-Welsh 2010). As a consequence, the
VEGF ligands can sense, respond, and activate different
downstream signaling pathways in lymphatic endothelial
cells compared to blood endothelial cells, and this hetero-
geneity has already been exploited for the therapeutic tar-
geting of the lymphatic vascular system in conditions of
lymphedema or tumor metastasis (Wissmann and Detmar
2006; Tervala et al. 2008).

Similarly, the function of the broadly expressed pep-
tide adrenomedullin is preferentially targeted to lymphatic
endothelial cells through expression of its receptors. Adre-
nomedullin peptide binds to a G-protein-coupled receptor,
calcitonin-like receptor (CLR), when the receptor is hetero-
dimerized with a chaperone protein called RAMP2. The
selectively enhanced expression of CLR and RAMP2
by Prox1 in lymphatic endothelial cells serves to sensitize
the lymphatic vasculature to adrenomedullin signaling,
compared to the blood vasculature (Fritz-Six et al. 2008).
Therefore, like the VEGF signaling pathway, the hetero-
geneous expression of receptors underlies much of the
responsiveness of lymphatic endothelial cells to external
growth and guidance cues.

5 COMPELLING QUESTIONS IN BLOOD AND
LYMPHATIC VESSEL DEVELOPMENT

5.1 Do Endothelial Cells from Distinct Sources Have
Similar or Different Developmental Programs?

We know that, given the right signaling inputs, most me-
soderm can give rise to vascular endothelium. However,
it is not clear whether endothelial cells differentiate using
“common” pathways or tissue-specific pathways. It is likely
that both pathways will be important. For example, VEGF-
A signaling is important for vascular differentiation at most
embryonic sites, and thus it may be a “common” differen-
tiation pathway, whereas BMP signaling seems important
in some but not all blood vessel development. This ques-
tion also relates to the next question.

5.2 Do Endothelial Cells from Different Sources
Have Different Potential and/or Functions?

The simple answer to this question may be “no,” because
endothelial cells from most tissues/organs, when trans-
planted, can adopt the functional attributes of the vessel
bed at the transplantation site, suggesting that environ-
mental cues are dominant over “source” for organ-specific
attributes such as fenestration. However, there are likely to
be exceptions, especially with regard to the potential of
endothelial cells, because that attribute is difficult to assess

Blood and Lymphatic Vessel Formation

Cite this article as Cold Spring Harb Perspect Biol 2015;7:a008268 9



rigorously. For example, there is evidence that only the
endothelial cells on the floor of the dorsal aorta have he-
mogenic potential, and one idea is that these endothelial
cells derive from a hemangioblast intermediate, and as a
result of this lineage have a potential distinct from their
neighbors that derives from a different mesodermal layer.
This concept, however, remains to be rigorously tested. Any
differences in potential and/or function attributed to lin-
eage may be influenced by epigenetic changes in the ge-
nome, and we have barely begun to understand how this
regulatory system impacts vascular development.

5.3 What Are the Factors that Control Lymphatic
Vessel Heterogeneity?

Continuing on the concept discussed above, we have de-
veloped a fairly sophisticated understanding of the genetic
program and environmental cues that govern heterogeneity
of blood endothelial cells throughout different vascular
beds. However, we have barely begun to broach this ques-
tion with regard to lymphatic vessels. A confounding issue
to tackling this question for lymphatic endothelial cells is
that lymphatic vessels participate in a wide variety of bio-
logical functions that range from lipid absorption in the gut
to immune cell trafficking and maturation in lymph nodes,
in addition to their “classical” role of mediating interstitial
fluid absorption and homeostasis. Therefore, in many
ways, the lymphatic vascular system has adopted additional
important physiological functions that are likely derived
from their anatomical position and environmental cues.
However, the factors, both genetic and environmental,
that program lymphatic endothelial cells to regulate these
diverse functions remain unknown.

5.4 What Is the Role of Stem/Progenitor Cells
in Vascular Development?

This is a controversial concept in the adult, and the exis-
tence and definition of endothelial progenitor cells has
been debated vigorously. In the developmental context,
there is no strong evidence that stem/progenitor cells play
a major role, other than the hemangioblast. However, con-
genital vascular tumors called infantile hemangiomas are
thought to arise clonally from a stem or progenitor cell,
suggesting that these entities exist normally during devel-
opment and are coopted in diseases (Boscolo and Bischoff
2009). However, it is also possible that non-progenitor cells
acquire the ability to expand clonally. A congenital mal-
formation results from a specific genetic mutation in Tie-2,
and this mutation was found in several distinct lesions in
one patient, suggesting that a circulating progenitor cell
was the mutational target (Limaye et al. 2009). Finally,

the intricate cross talk between endothelial cells and mural
cells such as pericytes that stabilizes vessels has been hy-
pothesized to hold the progenitor potential of pericytes in
“suspended animation,” and disease and/or injury may
release this block and allow pericytes to show progenitor
cell potential (Bianco 2011). It will be exciting to see how
these and other questions will be answered in the future,
and how their answers help us both better understand vas-
cular development and how to combat diseases linked to
development of blood and lymphatic vessels.
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