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Abstract
Alcoholism is a chronic disorder characterized by cycling periods of excessive ethanol consumption,
withdrawal, abstinence and relapse, which is associated with progressive changes in central
corticotropin-releasing factor (CRF) receptor signaling. CRF and urocortin (Ucn) peptides act by
binding to the CRF type 1 (CRF1R) or the CRF type 2 (CRF2R) receptors, both of which have been
implicated in the regulation of neurobiological responses to ethanol. The current review provides a
comprehensive overview of preclinical evidence from studies involving rodents that when viewed
together, suggest a promising role for CRF receptor (CRFR) antagonists in the treatment of alcohol
abuse disorders. CRFR antagonists have been shown to protect against excessive ethanol intake
resulting from ethanol dependence without influencing ethanol intake in non-dependent animals.
Similarly, CRFR antagonists block excessive binge-like ethanol drinking in non-dependent mice but
do not alter ethanol intake in mice drinking moderate amounts of ethanol. CRFR antagonists protect
against increased ethanol intake and relapse-like behaviors precipitated by exposure to a stressful
event. Additionally, CRFR antagonists attenuate the negative emotional responses associated with
ethanol withdrawal. The protective effects of CRFR antagonists are modulated by the CRF1R.
Finally, recent evidence has emerged suggesting that CRF2R agonists may also be useful for treating
alcohol abuse disorders.

Keywords
Corticotropin-releasing factor; urocortin; CRF receptor; alcoholism; dependence; withdrawal;
relapse; ethanol

Corticotropin-releasing factor (CRF) is a 41-amino acid poly-peptide that is widely expressed
throughout the central nervous system (CNS) and modulates a range of neurobiological
responses through activation of the Gs-protein coupled CRF type 1 (CRF1R) and type 2
(CRF2R) receptors [1-4]. While CRF binds to both receptors, it has greater affinity to the
CRF1R [1,5,6]. CRFRs are also stimulated by the 40-amino acid urocortin (Ucn) family of
peptides, with Urocortin I (Ucn1) displaying equal affinity for both CRF1R and CRF2R, and
Urocortin II (Ucn2) and Urocortin III (Ucn3) displaying affinity primarily for the CRF2R [1,
6,7]. In rodents, expression of the CRF1R is ubiquitous throughout the brain, with high density
found in hypothalamic, cortical, and limbic regions, while CRF2R expression is limited to
specific regions, including the raphe nuclei, lateral septum, and subregions of the amygdala
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and hypothalamus [1]. Agonist binding of these receptors induces distinct outcomes with
respect to cellular signaling pathways, downstream mechanisms, and behavior [1,8,9]. CRF
and Ucn signaling through CRF1Rs and CRF2Rs have been implicated in a number of
biobehavioral processes, including regulation of the hypothalamic-pituitary-adrenal (HPA)
axis stress response, anxiety, depression, feeding, and excessive alcohol consumption [1,3,6,
10-14].

Alcoholism is a chronic and progressive disorder characterized by cyclic patterns of excessive
ethanol self-administration intermixed with periods of withdrawal and abstinence, followed
by relapse [12,15]. As such, alcoholism can be conceptualized in terms of shifts in allostatic
load, wherein repeated exposure and withdrawal from alcohol promote gradual neurobiological
alterations within the brain which translate into psychological and behavioral changes leading
to excessive uncontrolled ethanol consumption [12]. A growing literature suggests that the
central CRFR signaling system exhibits plastic changes as ethanol dependence emerges [3,
12,16,17]. In this review, we provide a comprehensive overview of preclinical evidence from
studies involving rodents that when viewed together, suggests a promising role for CRF
receptor (CRFR) antagonists (and possibly CRF2R agonists) in the treatment of alcohol abuse
disorders, including excessive ethanol intake resulting from ethanol dependence and exposure
to stressful stimuli, relapse of ethanol-seeking behavior precipitated by stress, and negative
emotional responses (such as anxiety) stemming from ethanol withdrawal. Interestingly, more
recent evidence has emerged suggesting that CRFR antagonists may be effective in treating
binge drinking prior to the development of ethanol dependence. The converging evidence
within the preclinical literature, and the continued development of improved CRFR
antagonists, make compounds aimed at CRFRs attractive targets for potential treatment of
alcohol abuse disorders and alcoholism.

The Effects of Ethanol on the CRF/Ucn System
Ethanol produces immediate effects on CRF and Ucn signaling. Acute ethanol administration
is accompanied by increases in levels of CRF [18] and CRF-like immunoreactivity (CRF-IR)
[19], as well as increased levels of CRF heteronuclear RNA (hnRNA) and messenger RNA
(mRNA) [18,20,21] in the hypothalamus. Acute ethanol administration also induces activation
of Ucn-positive cells in the perioculomotor urocortin-containing population of neurons (pIIIu,
also known as the Edinger-Westphal nucleus) [22]. With respect to receptors, acute ethanol
exposure is correlated with increased CRF1R mRNA expression in the hypothalamus [23]. No
changes in CRF2R mRNA expression or binding have been noted following acute ethanol
exposure in any brain region assessed to date [23,24]. Together, these findings show that the
CRF/Ucn system is modified in the hypothalamus and plllu during the early stages of ethanol
exposure.

With repeated administration and withdrawal, ethanol induces further alterations in the CRF/
Ucn system. For example, upregulation of CRF markers, including extracellular CRF, pre-pro
CRF mRNA, and CRF mRNA have been reported in the amygdala [25], and more specifically,
within the central nucleus of the amygdala (CeA) [26-28] in dependent, ethanol-withdrawn
rats relative to non-dependent controls. Likewise, increased levels of extracellular CRF have
been observed in the bed nucleus of the stria terminalis (BNST) [29] and enhanced CRF mRNA
expression has been noted in the paraventricular nucleus of the hypothalamus (PVN) after
chronic ethanol exposure [30,31]. Additionally, increased CRF1R expression has been
observed in the basolateral amygdala (BLA) and the medial nucleus of the amygdala (MeA)
[26], as well as the hypothalamus [32] in dependent, ethanol-withdrawn rats. Marked
alterations in CRF-induced excitability in the BNST have been observed following prolonged
exposure to ethanol [for review, see 33]. Additionally, decreases in Ucn1 fibers were noted in
the lateral septum and dorsal raphe of mice with a history of ethanol exposure [24]. Decreases

Lowery and Thiele Page 2

CNS Neurol Disord Drug Targets. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in CRF2R expression were observed in the BLA of ethanol dependent rats [26], while increases
have been observed in the dorsal raphe of mice [24], and the hypothalamus of rats [32] with a
history of ethanol exposure. Long-term investigations show that some of these neurobiological
changes in CRFR signaling persist months into abstinence, which may contribute to the
enhanced anxiety-like behaviors and stress responsiveness that are observed long after ethanol
administration has ceased [15,34-37]. Interestingly, follow-up investigations show that some
of these changes can be normalized through reinstatement of ethanol self-administration [29].
Thus, the literature suggests that chronic ethanol exposure and withdrawal promote alterations
in CRF/Ucn signaling in regions of the amygdala, the lateral septum, the dorsal raphe, and the
hypothalamus. These observations are consistent with the hypothesis that a dysregulation of
CRFR signaling emerges over the course of ethanol dependence, and that this dysregulation
may contribute to the excessive and uncontrolled ethanol intake associated with ethanol
dependence. The effects of ethanol on CRFR activity lead to the predictions that a) CRFR
antagonists may protect against excessive ethanol drinking in non-dependent animals (since
initial ethanol exposure augments CRFR signaling) and b), CRFR antagonists may protect
against dependence-induced increases of ethanol intake as well as the negative emotional
responses associated with ethanol dependence (since CRFR signaling is upregulated in
dependent animals). In general, the studies that are reviewed below are consistent with these
predictions.

Pharmacological Evidence for a Role of CRFR Signaling in Ethanol
Consumption
The Effects of CRFR Compounds on the Early Stages of Ethanol Consumption

A growing body of preclinical literature is consistent with the idea that CRFR antagonists (and
possibly CRF2R agonists) are promising targets for preventing excessive ethanol intake (see
Table 1). With respect to moderate ethanol intake in the early stages of ethanol drinking, results
from numerous investigations indicate that the involvement of CRFR signaling is limited. For
example, central administration of non-selective CRFR antagonists, such as [D-
Phe12,Nle21,38,CαMeLeu37]-rCRF(12-41) (D-Phe-CRF) and α-helical CRF(9-41) (ahCRF), does
not significantly alter ethanol consumption or self-administration in non-dependent rats or mice
with a history of ethanol exposure akin to social drinking in humans [27,38,39]. Similar results
have been obtained using peripheral administration of antagonists selective for the CRF1R,
including (N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylpheenyl)-2,5-dimethyl-pyrazolo
[1,5-a]pyrimidin-7-amine (MPZP) [40], 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-
ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine (MTIP) [41], (4-ethyl-[2,5,6-
trimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]amino-1-butanol
(LWH-63) [42], 2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-dipropylaminopyrazolo
[1,5-a]pyrimidine (R121919, also called NBI 30775) [42], and [8-(4-bromo-2-
chlorophenyl)-2,7-dimethyl-pyrazolo[1,5-a][1,3,5]triazin-4-yl]-bis-(2-methyoxyethyl)amine
(MJL-1-109-2) [42]. These observations indicate that CRFR signaling does not modulate
moderate levels of ethanol consumption in non-dependent animals.

Interestingly, recent work suggests that CRFR signaling modulates ethanol intake in non-
dependent rodents when the level of ethanol intake is high. “Drinking in the Dark” procedures
were recently described to cause significant amounts of ethanol intake in a limited period of
time by C57BL/6J mice, akin to an ethanol “binge” in humans [43-46]. DID procedures involve
giving C57BL/6J mice access to a 20% ethanol solution for 2 to 4-hours starting 3-hours into
their dark cycle. With these procedures, mice will drink enough ethanol to achieve blood
ethanol levels (BELs) of 80 mg/dL or greater and exhibit signs of behavioral intoxication after
a binge-like drinking episode [43,44]. Pretreatment with the CRF1R antagonist butyl-ethyl-
[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl]amine
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(CP-154,526) significantly attenuated binge-like drinking by C57BL/6J mice (which achieved
BELs of greater than 80 mg/dL under control conditions). On the other hand, the CRF1R
antagonist was ineffective in altering ethanol consumption in mice drinking moderate amounts
of ethanol and which achieved BELs of less than 40 mg/dL [45]. These observations suggest
that CRF1R signaling is recruited during excessive, but not moderate, ethanol drinking. More
recently, the protective effects of CP-154,526 against binge-like drinking were found to be
independent of HPA axis signaling, and central administration of the CRFR antagonist ahCRF
or the CRF2R agonist Ucn3 blunted binge-like ethanol drinking in C57BL/6J mice [47].
Additionally, microinjection of Ucn1 into the lateral septum significantly reduced binge-like
ethanol drinking in C57BL/6J mice [48]. Since Ucn1 stimulates CRF2Rs, which are abundant
in the lateral septum [1], and because activation of CRF2R with Ucn3 reduced ethanol intake
[49] and binge-like ethanol drinking [47], it is possible that Unc1-induced reduction of binge-
like ethanol drinking was modulated by the CRF2R in the lateral septum. Together, these
findings show that CRFR signaling can modulate ethanol consumption in non-dependent
animals, particularly when the levels of ethanol intake are high (and which are associated with
significant BELs as in the case of binge-like drinking mice). An interesting possibility is that
CRF1R antagonists and CRF2R agonists may be useful for treating problematic binge drinking
in humans. On the other hand, pretreatment with the CRF1R antagonist MPZP failed to alter
binge-like consumption in rats [50]. Inconsistencies between studies may be accounted for by
differences in the species used, or the use of sweetened ethanol in the rat study.

The effects of exogenous CRF on ethanol intake has also been examined, though with less
conclusive results. Central administration of CRF either had no effect on ethanol intake in mice
[39] or significantly reduced ethanol consumption by rats [51,52] that were not ethanol-
dependent. The counterintuitive results of such experiments may be explained by CRF’s dual
role in ethanol consumption and stress, as central CRF administration triggers a stress response
which can disrupt behavioral activity [53] therefore making it difficult to disseminate the
effects of stress from those of CRF on ethanol consumption in these experiments.

Finally, the effects of CRFR antagonists on stress-induced ethanol intake have also been
assessed in non-ethanol dependent rodents. Pretreatment with the CRF1R antagonist
CP-154,526 or antalarmin before exposure to stress-inducing stimuli significantly attenuated
stress-induced increases in ethanol consumption by mice [54] and stress-induced increases of
ethanol self-administration in rats [55], respectively. Additionally, antalarmin attenuated
increased ethanol drinking stemming from early life stress exposure in rats with inherently
high levels of anxiety [56]. On the other hand, pretreatment with either of two CRF1R
antagonists (R121919 or antalarmin) failed to prevent stress-induced increases of ethanol
consumption in mice [57]. While more work is necessary, these initial observations suggest
that CRF1R antagonist may be useful for treating excessive ethanol drinking triggered by
stressful life events in humans.

The Effects of CRFR Compounds on Dependence-Induced Ethanol Intake
Perhaps the most convincing evidence of a role for CRFR signaling in ethanol consumption is
revealed by investigations of animals in which ethanol dependence has been induced by
repeated exposure to, and withdrawal from, ethanol vapor or an ethanol-containing diet. A
converging body of literature indicates a pivotal role for CRF1R signaling in dependence-
induced ethanol consumption, and recent studies have suggested a role for the CRF2R. Central
administration of the non-selective CRF antagonist D-Phe-CRF into the ventricles attenuated
dependence-induced increases in ethanol consumption in rats [34], as did peripheral
administration of selective CRF1R antagonists, including antalarmin [58], MPZP [40,59],
LWH-63 [42], MJL-1-109-2 [60], R121919 [60], and MTIP [60]. Importantly, as noted above
manipulation of CRFR signaling with these antagonists did not alter ethanol drinking in non-
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dependent animals that drank moderate amounts of ethanol. Further evidence indicates that the
role of CRF1R signaling in dependence-induced increases in ethanol consumption is brain
region-specific, as microinjections of D-Phe-CRF into the CeA, but not the BNST, attenuated
increased levels of ethanol consumption in ethanol-dependent rats to the levels of non-
dependent controls [27,38]. Likewise, activation of the CRF2R by ventricular [61], or site-
directed infusion into the CeA [62] of Ucn3 also reduced ethanol consumption by ethanol-
dependent rats. Together, these observations show the CRFR antagonists (and specifically
those aimed at the CRF1R) and CRF2R agonists protect against dependence-induced increases
in ethanol drinking. Furthermore, the CeA is a key brain region in which CRF1R blockade and
CRF2R stimulation modulates dependence-induced ethanol intake.

Relative to low ethanol drinking Wistar rats, high ethanol drinking msP rats, which were
selectively bred for high ethanol intake, exhibit evidence of an inherent upregulation of CRFR
signaling in a pattern that resembles ethanol-dependent animals [63]. Thus, these animals
provide a model in which the effects of pharmacological agents can be verified in genetically
predisposed populations. Recent investigations revealed that the CRF1R antagonists MTIP
[41] and antalarmin [64] attenuated ethanol self-administration in non-dependent msP rats,
without effects in non-dependent outbred rats. Thus, alterations of normal CRFR signaling can
be achieved by ethanol dependence or genetic selection, and high levels of ethanol intake
associated with either genetic predisposition or a history of ethanol dependence can be
significantly attenuated by treating animals with CRF1R antagonists. An exciting possibility
based on these results is that CRF1R antagonists will be effective in curbing excessive ethanol
intake in genetically predisposed individuals, as well as those who are ethanol-dependent.

The Effects of CRFR Compounds on Relapse-Like Behaviors
Pharmacological evidence demonstrates a role for CRFR signaling in ethanol relapse-like
behaviors in rodents with models of reinstatement and alcohol deprivation. Reinstatement
experiments typically involve operant self-administration procedures in which rodents learn
to perform a specific behavior (e.g., press a lever) to gain access to ethanol reinforcement.
Following the establishment of stable ethanol-reinforced lever pressing, the operant behavior
is extinguished by withholding the ethanol reinforcer. Over the course of extinction, the rate
of lever pressing declines. Reinstatement of ethanol-seeking behavior is assessed by exposing
the subject to specific stimuli during extinction responding. Stimuli that can promote
reinstatement of ethanol-seeking behavior include stressful stimuli such as foot-shock or
ethanol-associated cues [65-68]. Reinstatement of ethanol-seeking behavior (e.g., increased
pressing of the lever that was previously reinforced with ethanol) is thought to model relapse
of ethanol seeking in abstinent humans, which can be triggered by stressful events or by
exposure to stimuli associated with ethanol. CRFR signaling has been shown to modulate
reinstatement of ethanol-seeking behavior, particularly reinstatement associated with exposure
to stressful stimuli. For example, central administration of the non-selective CRF receptor
antagonist D-Phe-CRF attenuated stress-induced reinstatement of ethanol-seeking behavior in
rats with a history of prolonged ethanol exposure [69] and in ethanol-dependent rats [70].
Furthermore, reinstatement of ethanol-seeking behavior is modulated by CRFR signaling
within the medial raphe nucleus (MRN), as a microinjection of D-Phe-CRF into this brain
region attenuated, while microinjection of CRF exacerbated, stress-induced reinstatement of
ethanol-seeking behavior in rats [71]. Similar results have been obtained using peripheral
administration of the CRF1R antagonists antalarmin [55] and CP-154,526 [69]. The role of
CRFR signaling is specific to stress-induced reinstatement, as D-Phe-CRF did not interfere
with reinstatement of ethanol-seeking behavior elicited by ethanol-associated cues in rats
[70]. Taken together, these observations show the CRFR signaling modulates reinstatement of
ethanol-seeking behavior triggered by exposure to stressful stimuli, but is not involved in
reinstatement induced by exposure to ethanol-associated cues. As CRF1R antagonists protect
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against stress-induced reinstatement, such compounds may have therapeutic value for
preventing relapse in ethanol dependent individuals vulnerable to stress-related disorders or in
individuals that are confronted with stressful environmental stimuli.

Forced abstinence from ethanol following a history of ethanol consumption is associated with
a transient increase in the amount of ethanol consumed upon re-exposure. This phenomenon
has been labeled the alcohol deprivation effect (ADE), and is thought to model the robust
increase in ethanol consumption that is characteristic of human alcoholics during the initial
phases of relapse [65,66,72-74]. Recent evidence suggests the involvement of CRF1R
signaling in the modulation of the ADE, as peripheral pretreatment with CP-154,526 attenuated
deprivation-induced increases in ethanol self-administration by mice with a history of ethanol
exposure without influencing self-administration of a sucrose solution [75]. Furthermore,
exacerbation of the ADE by stress exposure in rats was attenuated by pretreatment with
CP-154,526 and the CRF1R antagonist (2-(N-(2-methylthio-4-isopropylphenyl)-N-
ethylamino-4-(4-(3-fluorophenyl)-1,2,3,6-tetrahydropyridin-1-yl)-6-methylpyrimidine)
(CRA1000) [76].These studies suggest that CRF1R antagonists may be useful for curbing the
amount of ethanol that is consumed following relapse.

Pharmacological Evidence for a Role of CRFR Signaling in Withdrawal-
Induced Emotional Responses

Relapse is hypothesized to be precipitated, in part, by heightened levels of anxiety experienced
by individuals during periods of abstinence [12,15]. As such, alleviation of withdrawal-induced
anxiety and other negative emotional responses may be one strategy to reduce the risk of relapse
and thus has been the focus of many preclinical investigations (see Table 2). Dysregulated CRF
signaling contributes to increased anxiety-like behaviors experienced during acute ethanol
withdrawal [27,77] as well as during protracted abstinence [78], and a converging body of
evidence suggests that both CRF1R and CRF2R signaling modulate these effects. For example,
central administration of CRF potentiated withdrawal-induced anxiety-like behaviors in rats,
while central pretreatment with the non-selective CRFR antagonists ahCRF [79] or D-Phe-CRF
[37,80] alleviated withdrawal-induced anxiety-like behaviors. The amygdala appears to
modulate this behavior, since reductions in withdrawal-induced anxiety-like behaviors were
observed following microinjections of D-Phe-CRF into the CeA [80]. Likewise, peripheral
administration of the CRF1R antagonists MTIP [41], CP-154,526 [77,81,82], or CRA-1000
[76,77,83-85] significantly attenuated withdrawal-induced anxiety-like behavior in ethanol-
dependent rats, results which strongly suggest that CRF1R signaling is up-regulated during
periods of ethanol withdrawal. In contrast to CRF1Rs, activation of central CRF2R appears to
attenuate withdrawal-induced anxiety-like behavior, as pretreatment with the CRF2R-selective
ligand Ucn3 effectively reduced anxiety-like behavior in ethanol-dependent rats withdrawn
from ethanol [61]. Furthermore, pretreatment with the CRF2R antagonist antisauvagine-30 had
no effect on withdrawal-related anxiety-like behavior [77]. Together, these observations
suggest that CRF1R antagonists, and CRF2R agonists, may be useful treatments in the
prevention of anxiety experienced by abstinent alcoholics, which may further reducing the risk
of relapse.

Summary and Translational Perspectives
The current preclinical literature indicates a broad role for CRFR signaling in modulating a
spectrum of neurobiological responses to ethanol. Consistently, CRF1R antagonists protect
against 1) excessive binge-like ethanol consumption and increases of ethanol consumption
resulting from exposure to stressful stimuli, 2) excessive ethanol intake resulting from ethanol
dependence, 3) heightened anxiety-like behavior stemming from ethanol withdrawal, and 4)
stress-induced reinstatement ethanol-seeking behavior as well as excessive ethanol intake
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following periods of ethanol abstinence. These observations suggest that CRF1R antagonists
are attractive targets for the development of pharmacological compounds aimed at treating
ethanol abuse disorders, ethanol dependence, and relapse in abstinent alcoholics. A preclinical
literature is also emerging suggesting a potential therapeutic role for CRF2R agonists, though
this literature is limited and the role of the CRF2R requires additional characterization.

The increase of ethanol consumption in ethanol-dependent animals has been hypothesized to
be modulated, in part, by the ability of ethanol to alleviate the negative emotional responses
that result from ethanol dependence [12,16,17,86,87]. The negative emotional state associated
with ethanol dependence is thought to be modulated by increases of CRF1R signaling, and
thus the ability of CRF1R antagonists to protect against dependence-induced drinking (and
relapse in ethanol-withdrawn rodents) is hypothesized to stem from the ability of CR1R
antagonists to blunt negative affect [3]. Consistently, as noted above, CRF1R antagonists blunt
dependence-induced drinking but do not alter drinking in non-dependent animals (which
exhibit normal CRF activity).

More recently, evidence has emerged suggesting that CRF1R antagonist may also protect
against excessive binge-like drinking in non-dependent mice without altering ethanol drinking
in mice consuming moderate amounts of ethanol [45]. These observations expand the literature
by showing that CRF1R signaling is recruited during the early phases of ethanol ingestion, and
expand the potential therapeutic role for CRF1R antagonists. Frequent binge drinking during
young adulthood is associated with an increased risk for developing alcoholism later in life
[88-90] and an interesting possibility is that repeated ethanol binges lead to the development
of ethanol dependence by inducing significant allostatic neuroadaptations in CRFR signaling.
Viewed this way, repeated activation of the CRF system during binge drinking episodes leads
to a progressive and chronic upregulation of CRFR signaling which culminates in ethanol
dependence. Thus, treating binge drinking with CRF1R antagonists (or CRF2R agonists as
noted above) may be an effective strategy for preventing ethanol dependence.

While considering the potential for CRFR antagonists in the treatment of alcohol abuse
disorders and alcoholism, it is important to note potential caveats. First, CRFR signaling has
been implicated in the modulation of multiple neurobiological systems, including those that
regulate feeding, anxiety and depression, HPA axis signaling, and ethanol consumption [1,3,
91-97]. As such, careful attention must be given to potential unwanted side-effects when
assessing the therapeutic role of CRFR antagonists in treating alcoholism in clinical
populations. Second, the etiology of alcoholism is complex and multifaceted. Therefore, the
effectiveness of CRFR antagonists may be limited to specific sub-populations of clinically
diagnosed alcoholics. Similarly, CRFR antagonists are likely to be useful in treating specific
components of alcoholism. In preclinical work, CRFR antagonists protected against stress-
induced reinstatement in rats, but were ineffective in blocking reinstatement induced by stimuli
associated with ethanol [70]. Thus, CRFR antagonists may be useful for reducing the risk of
relapse trigger by stressful events, but not relapse stemming from ethanol-associated stimuli.
Third, the viability of CRFR compounds as pharmacological treatments has been historically
limited, as obstacles to clinical use include the solubility and oral bioavailability of the CRFR
compounds [41,98]. Though these issues have limited clinical testing, several new compounds
with improved bioavailability and receptor selectivity are currently being evaluated [40,41,
99,100]. Thus, the converging evidence within the preclinical literature, and the continued
development of better CRFR antagonists, make compounds aimed at CRFRs attractive targets
for treating alcohol abuse disorders and alcoholism.
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ABBREVIATIONS
PEPTIDE

CRF Corticotropin-releasing factor

Ucn Urocortin

Ucn1 Urocortin I

Ucn2 Urocortin II

Ucn3 Urocortin III

RECEPTOR

CRF1R Corticotropin-releasing factor type 1 receptor

CRF2R Corticotropin-releasing factor type 2 receptor

CRFR Corticotropin-releasing factor receptor

QUANTITATIVE MEASURE

CRF-IR Corticotropin-releasing factor-like immunoreactivity

hnRNA Heteronuclear ribonucleic acid

mRNA Messenger ribonucleic acid

BEL Blood ethanol levels

Ki Dissociation constant

IC50 Median inhibitory concentration

ADE Alcohol deprivation effect

BRAIN REGION

HPA Hypothalamic-pituitary-adrenal

pIIIu Perioculomotor urocortin-containing population of neurons

CeA Central nucleus of the amygdala

BNST Bed nucleus of the stria terminalis

PVN Paraventricular nucleus of the hypothalamus

BLA Basolateral amygdala

MeA Medial nucleus of the amygdala

NAcSh Nucleus accumbens shell

MRN Medial raphe nucleus

LS Lateral septum

DRN Dorsal raphe nucleus
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DRUG NAME

D-Phe-CRF [D-Phe12,Nle21,38,CαMeLeu37]-rCRF(12-41)

ahCRF α-helical CRF(9-41)

MPZP (N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylpheenyl)-2,5-dimethyl-
pyrazolo[1,5-a]pyrimidin-7-amine

MTIP 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-
dimethyl-imidazo[1,2-b]pyridazine

LWH-63 (4-ethyl-[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo[2,3-d]
pyrimidin-4- yl]amino-1-butanol

R121919 2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-
dipropylaminopyrazolo[1,5- a]pyrimidine

MJL-1-109-2 [8-(4-bromo-2-chlorophenyl)-2,7-dimethyl-pyrazolo[1,5-a][1,3,5]
triazin-4-yl]-bis-(2-methyoxyethyl)amine

CP-154,526 butyl-ethyl-[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7Hpyrrolo[2,3-d]
pyrimidin-4-yl]amine

CRA1000 (2-(N-(2-methylthio-4-isopropylphenyl)-N-ethylamino-4-(4-(3-
fluorophenyl)-1,2,3,6-tetrahydropyridin-1-yl)-6-methylpyrimidine)

ROUTE OF ADMINISTRATION

i.c.v. Intracerebroventricular

i.p. Intraperitoneal

s.c. Subcutaneous
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Table 1

The Effects of CRF, Ucn1, Ucn3, and CRFR Antagonists on Ethanol Consumption

Compound Receptor specificity Mode of
administration

Effect on ethanol consumption Study

CRF CRF1 = CRF2
(Ki = 11 vs. 44 nM)
[101,102]

i.c.v. -- ethanol preference [39]

i.c.v. ↓ limited access ethanol consumption
in non-dependent and dependent
animals

[48,51,
52]

Microinjection
into the MRN

↑ reinstatement to ethanol-seeking [71]

Ucn 1 CRF1 = CRF2
(Ki = 0.32 vs. 2.2
nM) [103]

Microinjection
into the LS

↓ acquisition and expression of limited
access ethanol consumption

[48]

Microinjection
into DRN

-- continuous access ethanol
consumption

[104]

Ucn 3 CRF1 > CRF2
(Ki = >100 vs. 5.0
nM) [103]

i.c.v. -- ethanol self-administration in non-
dependent animals

[61]

i.c.v. ↓ limited access ethanol consumption [49]

i.c.v. ↓ binge-like ethanol consumption [47]

Microinjection
into the CeA

↑ ethanol self-administration in non-
dependent animals

[62]

i.c.v. ↓ ethanol self-administration in
dependent animals

[61]

Microinjection
into the CeA

↓ ethanol self-administration in
dependent animals

[62]

D-Phe-CRF CRF1 = CRF2
(Ki = 20 vs. 50 nM)
[105]

i.c.v. -- ethanol self-administration in non-
dependent animals

[34]

i.c.v. ↓ ethanol self-administration in
dependent animals

[34]

Microinjection
into CeA

-- ethanol self-administration in non-
dependent animals

[27,38]

Microinjection
into CeA

↓ ethanol self-administration in
dependent animals

[27,38]

Microinjection
into lateral
BNST

↓ ethanol self-administration in non-
dependent and dependent animals

[27]

Microinjection
into NAcSh

↓ ethanol self-administration in non-
dependent and dependent animals

[27]

i.c.v. ↓ stress-induced reinstatement [69]

Microinjection
into MRN

↓ stress-induced reinstatement [71]

i.c.v. ↓ stress-induced reinstatement [70]

i.c.v. -- cue-induced reinstatement [70]

ahCRF CRF1 = CRF2
(Ki = 35 vs. 11nM)
[106]

i.c.v. -- ethanol preference of high
consuming animals

[39]

i.c.v. ↑ ethanol preference of low
consuming animals transiently

[39]

i.c.v. ↓ binge-like ethanol consumption [47]

Antalarmin CRF1 > CRF2
(Ki = 1.0 vs. >10000
nM) [107]

i.p. -- ethanol self-administration in non-
dependent animals

[58,64]

i.p. ↓ ethanol self-administration in non-
dependent msP rats

[64]

i.p. ↓ continuous ethanol consumption in
anxious animals

[56]
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Compound Receptor specificity Mode of
administration

Effect on ethanol consumption Study

i.p. ↓ ethanol self-administration in
dependent animals

[58]

i.p. ↓ stress-induced ethanol self-
administration

[55]

-- stress-induced ethanol
consumption

[57]

i.p. ↓ stress-induced reinstatement [55,64]

CP-
154,526

CRF1 > CRF2
(Ki = 0.44 vs.
>10000 nM) [41]

i.p. -- limited access ethanol consumption [45]

i.p. ↓ binge-like ethanol consumption [45,47]

i.p. ↓ binge-like ethanol consumption in
ADX animals

[47]

i.p. ↓ stress-induced ethanol consumption [54]

i.p. ↓ deprivation-induced ethanol self-
administration

[75]

i.p. ↓ stress and deprivation-induced
ethanol consumption in P rats

[76]

i.p. ↓ stress-induced reinstatement [69]

MPZP CRF1 > CRF2
(Ki = 4.9 nM at
CRF1R) [40]

i.p. -- ethanol self-administration in non-
dependent animals

[40,59]

s.c. -- binge-like consumption of
sweetened ethanol

[50]

s.c. -- binge-like self-administration of
sweetened ethanol

[50]

↓ ethanol self-administration in
dependent animals

40,58]

LWH-63 CRF1 > CRF2
(Ki= 0.68-0.7 nM at
the CRF1R) [42,
108]

i.p. -- ethanol self-administration in non-
dependent animals

[42]

i.p. ↓ ethanol self-administration in
dependent animals

[42]

MJL-1-109-
2

CRF1 > CRF2
(K1= 1.9 nM at
CRF1R) [60]

i.p. -- ethanol self-administration in non-
dependent animals

[60]

i.p. ↓ ethanol self-administration in
dependent animals

[60]

R121919 CRF1 > CRF2
(Ki= 0.24 vs. >1000
nM) [41]

i.p. -- ethanol self-administration in non-
dependent animals

[60]

-- stress-induced ethanol
consumption

[57]

↓ ethanol self-administration in
dependent animals

[60]

MTIP CRF1 > CRF2
(Ki = 0.22 vs > 1000
nM [41]

i.p. -- ethanol self-administration in non-
dependent animals

[41,60]

i.p. ↓ ethanol self-administration in non-
dependent msP rats

[41]

↓ ethanol self-administration in
dependent animals

[41,60]

CRA1000 CRF1 > CRF2
(Ki= 16-21 vs.
>10000 nM) [107]

i.p. ↓ stress and deprivation-induced
ethanol consumption in P rats

[76]

(--, no change; ↓, decrease or attenuation; ↑, increase; BNST, bed nucleus of the stria terminalis; CeA, central nucleus of the amygdala, DRN, dorsal
raphe nucleus; LS, lateral septum; MRN, median raphe nucleus; NAcSh, nucleus accumbens shell)
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Table 2

The Effects of CRF, Ucn3 and CRFR Antagonists on Withdrawal-Induced Anxiety-Like Behavior

Compound Receptor
specificity

Mode of
administration

Effect on ethanol-related behavior Study

CRF CRF1 = CRF2
(Ki = 11 vs. 44
nM) [101,102]

i.c.v. ↑ withdrawal-induced anxiety in
dependent animals

[77]

Ucn 3 CRF1 < CRF2
(Ki = >100 vs. 5.0
nM) [103]

i.c.v. ↓ withdrawal-induced anxiety in
dependent animals

[61]

ahCRF CRF1 = CRF2
(Ki = 35 vs.
11nM) [106]

i.c.v. ↓ withdrawal-induced anxiety in
dependent animals

[79]

i.c.v. -- withdrawal-induced anxiety in
dependent animals

[80]

Microinjection
into the CeA

↓ withdrawal-induced anxiety in
dependent animals

[80]

D-Phe-CRF CRF1 = CRF2
(Ki = 20 vs. 50
nM) [105]

i.c.v. ↓ enhanced withdrawal-induced
anxiety following stress exposure in
dependent animals

[37]

MTIP CRF1 > CRF2
(Ki = 0.22 vs >
1000 nM [41]

i.p. ↓ withdrawal-induced anxiety [41]

CP-154,526 CRF1 > CRF2
(Ki = 0.44 vs.
>10000 nM) [41]

i.p. ↓ withdrawal-induced anxiety in
dependent adolescent animals

[81]

i.p. ↓ withdrawal-induced anxiety in
dependent P rats

[82]

i.p. ↓ enhanced withdrawal-induced
anxiety following stress exposure in
dependent P rats

[82]

i.p. ↓ withdrawal-induced anxiety
following stress exposure in
dependent animals

[77]

CRA-1000 CRF1 > CRF2
(Ki= 16-21 vs.
>10000 nM) [107]

i.p. ↓ enhanced withdrawal-induced
anxiety following stress exposure in
dependent P rats

[83]

i.p. ↓ enhanced withdrawal-induced
anxiety following stress exposure in
dependent animals

[84]

i.p. ↓ withdrawal-induced anxiety in
dependent animals

[77,85]

i.p. ↓ enhanced withdrawal-induced
anxiety in dependent P rats

[76]

Antisauvagine-
30

CRF1 < CRF2
(IC50 = 400 vs 1.1
nM) [109]

i.c.v. -- withdrawal-induced anxiety in
dependent animals

[77]

(--, no change; ↓, decrease or attenuation; ↑, increase; CeA, central nucleus of the amygdala)
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