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INTRODUCTION

The critical importance of membrane-bound transporters in pharmacotherapy is widely 

recognized, but little is known about drug transporter activity in children. In this white 

paper, the Pediatric Transporter Working Group presents a systematic review of clinically 

relevant membrane transporters (e.g., SLC, ABC superfamilies) in intestine, liver and 

kidney. Different developmental patterns for individual transporters emerge, but much 

remains unknown. Recommendations to increase our understanding of membrane 

transporters in pediatric pharmacotherapy are presented.

SECTION I. OVERVIEW OF TRANSPORTERS IN PEDIATRICS

Transporters are membrane-bound proteins that are present in many tissues throughout the 

body, notably in the apical and basolateral membranes of organs involved in absorption and 

excretion such as the gastrointestinal tract, liver and kidney (Figure 1) (1). The biological 

role of transporters is to facilitate movement of important compounds across membranes; in 

addition to their physiological substrates, many transporters also have the capacity to 

transport drugs. It is now clear that drug transporters are critical determinants of tissue and 

cellular drug disposition, not only for the organs noted above, but also for sanctuary sites 

such as the brain (2). Moreover, the sodium taurocholate co-transporting polypeptide 

(NTCP), a hepatic bile acid transporter with affinity for some drug substrates, can act as a 

viral entry receptor for the hepatitis B virus (3). A considerable body of in vitro and animal 

work, and a growing body of in vivo adult data, have demonstrated that variations in the 

activity of drug transporters – whether on the basis of genetic differences, drug-drug 

interactions or environmental influences such as diet – impact the disposition of drugs and 

may influence drug efficacy and/or safety (2, 4). One important example is the statins, which 

are among the most commonly used medications in developed countries. It is clear that 

variations in transporter activity (e.g., OATP1B1) are key clinical determinants of statin-

related myopathy. OATP1B1 activity can be modulated by polymorphisms in the SLCO1B1 

gene. In fact, this has led to changes in the product label by drug regulatory agencies with 

respect to the maximum dosages of some statins in specific ethnic populations (5, 6). This 

point is further highlighted by the Clinical Pharmacogenetics Implementation Consortium 

Guidelines, which recommend the use of haplotypes for dosing decisions of simvastatin (7). 

While there are a growing number of examples of the importance of drug transporters in 

adult medicine, there has been relatively little work in this area with respect to children, or 

the potential impact of ontogeny of transport function on clinically relevant outcomes.

Recent data suggest that variability in drug transporter activity may be critically important 

for safe and effective anti-leukemia drug therapy in children. A high-dose methotrexate 

study performed in 1,883 acute lymphoblastic leukemia patients enrolled in a multicenter 

Children’s Oncology Group clinical trial revealed a relationship between multiple SNP 

variants in the OATP1B1 gene SLCO1B1 and high-dose methotrexate toxicity (8). The study 

demonstrated that methotrexate clearance was lower in 1,279 patients carrying one of 

several loss-of-function SNP variants of SLCO1B1. Significant correlations also were 

established between lower clearance rates after high-dose methotrexate administration in 
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older children, girls, and in patients receiving delayed infusion of the drug (8). Lower doses, 

increased hydration and/or altered urine alkalinization were recommended, although the 

extent to which these adjustments would alleviate methotrexate toxicity was not clear. The 

impact of these SLCO1B1 variants on the clearance of other drug substrates in children 

remains to be determined. Polymorphisms in the MRP2 gene ABCC2 also have been 

associated with variability in methotrexate pharmacokinetics and an increased risk for 

methotrexate toxicity including leukopenia, thrombocytopenia, anemia, oral mucositis, and 

vomiting in children with acute lymphoblastic leukemia (9, 10).

The clinical relevance of transporter genetic variability and pediatric drug therapy extends 

beyond childhood leukemia. As an example, combined polymorphisms in ABCC2 and the 

UGT1A9 and UGT2B7 genes can be important predictors of inter-individual variability in 

mycophenolic acid exposure, and have been associated with higher AUC in pediatric kidney 

transplant recipients (11). Lower morphine clearance was reported in children with defective 

OCT1 variants undergoing outpatient adenotonsillectomy. These findings are consistent 

with the role of OCT1 in the hepatic uptake of morphine (12). Racial differences in the 

allelic frequency of these variants may explain, in part, the higher incidence of morphine-

related adverse effects in Caucasian compared with African-American children. Examples 

continue to emerge demonstrating the importance of transport proteins in determining drug 

efficacy and toxicity in the pediatric population.

SECTION II. METHODS TO STUDY DRUG TRANSPORTERS IN PEDIATRICS

Researchers have used primarily two approaches to characterize the ontogeny of transporters 

in the intestines, liver, and kidneys. The first approach is the quantification of transporter 

mRNA or protein expression in surgical or postmortem samples from humans at different 

ages. Typically, these studies are small in number and are not able to control for factors such 

as race/ethnicity, sex, environmental exposures, co-morbidities and other potentially 

important variables due to the limited sample size. The second approach is the assessment of 

transporter mRNA and/or protein levels, and to a lesser extent functional changes, in animal 

models such as rats and mice at various prenatal and postnatal ages.

Transport activity has been related to protein expression levels in adult tissue samples 

assuming that the transporter is localized predominantly in the plasma membrane, and that 

there is a correlation between the protein expression level and transporter function. Given 

that transporter expression at the mRNA and protein level don’t always correlate well, it 

becomes important to understand transporter ontogeny at the protein level. Protein 

expression levels of membrane transporters have been estimated traditionally by Western 

blot analysis using highly sensitive and specific, antibody-based methods. However, mass 

spectrometry-based targeted proteomics is being used increasingly to provide a quantitative 

assessment of protein expression levels.

SECTION III. ONTOGENY OF TRANSPORTERS

Key transport proteins relevant to drug disposition in the intestine, liver and kidney were 

selected based on recent reviews by the International Transporter Consortium (see Figure 1 

for protein and gene nomenclature and localization) (1, 13). A systematic search of the 
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PubMed and EMBASE databases was performed to identify relevant published studies of 

drug transporters within these three organs. The search strategies were adapted to 

accommodate the unique searching features of each database, including database-specific 

MeSH and Emtree controlled vocabulary terms. Search queries for each transporter were 

combined with matching queries for the gastrointestinal tract (hereafter referred to as the 

intestine), the liver or the kidney. Searches were limited to the pediatric population but were 

not limited by date, language or publication status (see Appendix I for a detailed summary 

of the search strategies). The literature was reviewed, by organ, to evaluate changes in 

transporter expression with age, and the role that individual transporters may play from a 

developmental biology perspective. In addition, the age at which transporters reach adult 

levels and children “functionally” become adults with respect to transporter activity was 

evaluated, where possible, for each transporter. The following sections and accompanying 

tables summarize the relevant pediatric transporter data recovered from the literature. 

Transport proteins depicted in Figure 1 were excluded from discussion for a particular organ 

if no pediatric data were available, or if the data were so limited that a broader discussion of 

the temporal or spatial expression, or activity as a function of development was not possible. 

In all cases, human proteins are denoted by upper case text and rodent proteins by lower 

case text, with gene nomenclature in italics.

INTESTINE

We searched for human and animal studies exploring the developmental changes of the 

following intestinal transporters: MDR1 P-glycoprotein (P-gp), BCRP, MRP1, MRP2, 

MRP3, OATP2B1, OATP1A2, OCT1, MCT1 and PEPT1. Only original, peer-reviewed 

research publications that explicitly presented fetal and/or pediatric data on transporter 

expression and/or localization were included. The focus was on human data, but in the 

absence of convincing human data, relevant animal data are presented as they may provide 

an indication of the expected developmental changes in humans (Table 1). When reported, 

the intestinal localization of the protein is denoted. For the fetal studies, no precise 

localization patterns are available due to intestinal immaturity.

P-gp—P-gp was the intestinal transport protein for which there is the most data relevant to 

pediatrics. Numerous studies were evaluated to determine developmental differences in 

expression or localization of P-gp in the intestine. Collectively samples from 55 fetuses, 

ranging from 5.5 to 28 weeks of gestation, and 302 additional samples across a pediatric age 

range, were investigated in this group of studies (14–21). The majority of mRNA samples 

(upper jejunum) originated from one study in pediatric liver transplant patients, which may 

present confounding variation based on hepatic disorders (14). In most studies, P-gp mRNA 

expression was determined; localization with immunohistochemistry was only conducted in 

a small number of samples. All of the studies demonstrated large inter-individual variation. 

The overall developmental pattern of P-gp expression revealed a consistently emerging 

change from undetectable expression in the first trimester of fetal life to present and 

apparently stable P-gp expression from approximately 12 weeks of gestation onwards. Very 

limited data suggest that P-gp expression increased slowly to reach adult levels at or very 

shortly after birth. Interestingly, two studies reported higher intestinal P-gp expression in 

children with treated Crohn’s and celiac disease compared to healthy controls (15).

Brouwer et al. Page 4

Clin Pharmacol Ther. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BCRP—The localization of BCRP staining appeared stable from 5.5 to 28 weeks of 

gestation in humans (21).

MRP1—In 35 human fetal samples from 5.5 to 28 weeks of gestation, MRP1 staining was 

visualized in all samples using immunohistochemistry (21). The intensity was weak during 

early gestation, but appeared to mature to an adult distribution pattern from 7 weeks of 

gestation onwards.

MRP2—Analogous to P-gp, the mRNA expression of MRP2 appeared stable from neonates 

to adults in ileal and jejunal surgical samples (20).

OATP2B1—In contrast to MRP2, OATP2B1 mRNA expression was significantly higher in 

the samples from neonates compared to adults (20).

Other intestinal transport proteins—Human data for MRP3 and PEPT1 appear to be 

missing, but animal data are available. In rabbits, Mrp3 mRNA expression was lowest in 

newborns and subsequently increased in weanlings until reaching the highest levels in adults 

(22). The four available animal studies (three in rat; one in turkey) on PepT1 all support a 

similar developmental pattern of significant prenatal expression that reached maximal levels 

in the postnatal period, and then decreased to adult levels from weaning onwards (23–26). 

This finding seems consistent with the role of PEPT1 in the absorption of di- and tripeptides, 

which constitutes an important part of infant nutrition. Intestinal temporal and spatial 

expression data during development for OATP1A2, OCT1 and MCT1 appear to be lacking.

It is clear from the data in Table 1 that no single developmental pattern can be identified for 

all of the intestinal transporters. Different patterns are apparent based on the available, albeit 

limited human data: 1) low in the embryo and then stable from neonate to adult (e.g. P-gp, 

MRP2); 2) high at birth and decreasing in the first months of life (OATP2B1).

LIVER

For the liver, all transport proteins designated by the International Transporter Consortium 

as important for disposition of drugs and endogenous substances were reviewed (1, 13). 

These include the efflux transporters P-gp, BCRP, MRP2, MRP3, MRP4, MRP6, MATE1, 

BSEP, the uptake transporters NTCP, OATP1B1, OATP1B3, OATP2B1, OAT2, OCT1, and 

the bidirectional transporters OAT7 and OSTα/β. Similar to the other organs, this review on 

hepatic transporters exclusively focuses on human data, if available, but resorts to animal 

data in the absence of any relevant human information (Table 2). Similar to intestinal 

transporters, most published data on the ontogeny of hepatic transport proteins is available 

for efflux transporters, particularly P-gp.

P-gp—Hepatic P-gp was already detectable in the wall of bile canaliculi in early fetal life at 

14 weeks by immunohistochemistry and at the mRNA level (18). Although expression was 

low initially, it seemed to increase throughout fetal development and was considered 

moderate at the protein level by fetal week 19 (16, 27). mRNA expression for P-gp 

increased throughout childhood development. In a study with 61 liver specimens, mRNA 

expression levels were 20- to 30-fold lower in the fetal and neonatal age group compared to 
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adults. mRNA expression, however, rapidly increased in the early months of life: in infants 

(1–12 months), mRNA was only 5-fold lower compared to adults, and in children and 

adolescents it was indistinguishable from adult expression (20). These observations are 

supported by less extensive studies from others (28), and also revealed a similarly high inter-

individual variability in expression in children compared to adults (20, 29). The limited 

results on P-gp protein expression, however, do not corroborate the reported age-dependent 

P-gp mRNA expression. P-gp protein was detectable in samples as early as 1 month (29), 

and relative protein expression was not significantly different in 65 liver specimens from age 

groups 0.3–0.7, 0.7–2, 2–5, and 5–12 years (30). This observation may not be surprising in 

light of the observed lack of correlation between mRNA and protein levels for P-gp in adult 

liver (31). P-gp protein expression quantified by LC-MS/MS was not associated with age in 

64 liver specimens in the age range of 7–70 years (32). Thus, further studies are needed to 

clarify whether the age-dependent differences in mRNA expression translate into differences 

at the protein and ultimately the functional level for P-gp in the liver.

BCRP—BCRP was detectable by immunohistochemistry in fetal liver specimens from 5.5 

to 28 weeks (21), and mRNA expression increased from 18–22 week fetal samples to adults 

(33). A comparison of relative protein expression between 5 neonates and 5 adult livers by 

Western blot analysis indicated no detectable difference (34), although mRNA expression 

seemed to increase between neonates and older children (28). In 50 livers from age 7 to 70 

years, BCRP protein expression was correlated neither with age nor with mRNA expression 

(35). These results together suggest that hepatic BCRP is expressed early during human 

development and does not undergo relevant developmental changes after term birth.

MRP2—Similar to P-gp, MRP2 has been detected by immunohistochemistry in the bile 

canalicular membranes of 14-week old fetuses, with a tendency for higher expression levels 

in older fetal liver (27) and adults (33, 36). The differences in age-dependent expression 

seem to be similar to P-gp in fetal liver (30-fold lower mRNA expression), but were 

substantially more pronounced in neonates (200-fold lower mRNA expression) and infants 

(1–12 months) (100-fold lower mRNA expression) compared to adults (20, 28). These 

substantial differences at the transcriptional level seem to translate into developmental 

differences in MRP2 protein expression: MRP2 protein levels determined by Western blot 

were significantly lower in liver specimens from children younger than 8 months (n=24) 

compared to older children up to 12 years (n=59) (30). Later in childhood development, 

however, MRP2 protein expression assessed by mass spectrometry was independent of age 

in 51 liver specimens in the age range of 7–63 years (37).

BSEP—At gestational weeks 14–20, BSEP was detectable by immunohistochemistry (36), 

and mRNA expression increased from neonates to older children (28) and adults (33). 

Functional studies in isolated sandwich-cultured fetal and adult hepatocytes suggest that the 

biliary excretion index for taurocholate is substantially higher in adults compared to fetal 

hepatocytes. This higher functional activity for the BSEP substrate taurocholate could be 

explained by a higher expression level of BSEP in adult cells, assuming that there is a 

correlation between BSEP mRNA and protein expression (33).
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NTCP—NTCP was detectable by immunohistochemistry in fetal liver specimens at 14–20 

weeks of gestation (36), and mRNA expression was reduced substantially to 4% of adult 

values in fetal livers of 18–22 weeks of gestational age (33). At the protein level postpartum, 

NTCP expression in neonates was comparable to that in adults (34). Thus, there also seems 

to be no developmental maturation of NTCP expression after birth in humans. Rodent data 

suggest, however, that acquisition of functional transporter activity lags behind the 

developmental trajectories of mRNA and immunoreactive protein, and is not present until 

glycosylation is mature (38).

OATPs—mRNA for the OATP isoforms OATP1B1, OATP1B3, and OATP2B1 was 

detectable in fetal hepatocytes by gestational weeks 18–23, and was significantly higher in 

adults compared to fetal livers for OATP1B1 and OATP2B1 (33). In a limited number of 

neonatal and adult liver specimens (n=5 each), no relevant difference was observed in 

OATP1B1 or OATP1B3 expression as determined by Western blot analysis (34). mRNA 

expression in 45 liver specimens, however, was found to be highly age-dependent. For 

OATP1B1, mRNA expression was 20-fold lower in fetal liver, 500-fold lower in neonates, 

and 90-fold lower in infants compared to adults (20). For OATP1B3, mRNA expression was 

30-fold lower in fetuses, 600-fold lower in neonates, and 100-fold lower in infants (1–12 

months) than in adults (20). These data are supported by Western blot analyses based on 

relative protein quantification in 78 liver samples that suggest a low expression from birth to 

age 6 years with increased expression thereafter for OATP1B1, and high expression for 

OATP1B3 at birth which declines over the first month of life, and then rises again by age 6 

years OATP1B2 (39). In 64 livers from age 7 to 70 years, relative protein expression of 

OATP1B1, OATP1B3, and OATP2B1 as assessed by mass spectrometry did not correlate 

with age (32). OCT1. There is only very limited human data on the ontogeny of hepatic 

OCT1. In human hepatocytes from pediatric and adult livers, there was no significant 

difference in the mRNA expression of OCT1, but OCT1-mediated transport seemed lower in 

pediatric compared to adult hepatocytes (40).

Other liver transport proteins—For MRP3, MRP4, MRP6, MATE1, OAT2, OAT7, 

and OSTα/β, there are no or only very limited data available on the human ontogeny of these 

transporters. Thus, observations from rodent species also are provided in the following 

section, although there is so far no indication that rodent protein, and especially mRNA 

expression profiles, are in any way predictive of human transporter ontogeny.

MRP3—In humans, MRP3 mRNA expression was significantly lower in fetal hepatocytes 

by gestational weeks 18–23 compared to adults (33). Similarly, Mrp3 in fetal rat liver 

progressively increased from about 10% to over 30% of the maternal mRNA levels from 

day 15 of gestation to day 20, and increased to near 90% of the maternal level at day 21 and 

after birth (41). This is consistent with increased mRNA expression observed from neonates 

to older children and adults in a small set of human specimens (perinatal n=6, children n=8, 

adult n=6) (28).

MRP4—In humans, mRNA expression for MRP4 did not show any significant differences 

in fetal hepatocytes by gestational week 18–23 compared to adults (33), or when comparing 
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neonates to older children and adults (28). These observations are supported by mRNA 

expression in mice (42, 43).

MRP6—Similar to MRP3, MRP6 mRNA expression increased in humans from neonates to 

older children and adults in a small set of subjects (28). In rat liver, Mrp6 mRNA expression 

was detectable on embryonic day 16 at 5% of adult levels, and increased to 40% at birth, but 

did not reach adult levels until postnatal day 29 (44).

MATE1—mRNA expression for MATE1 increased in humans from neonates to older 

children and adults in a very small set of subjects (28). Mate1 mRNA expression was absent 

on embryonic day 7.5 in mice (45).

OAT2—Similar to MRP3 and MRP6, OAT2 mRNA expression increased from neonates to 

older children and adults in a small set of human subjects (28).

OAT7—No information could be found on the ontogeny of OAT7 in humans or rodents.

OSTα/β—mRNA expression was detectable for OSTα and OSTβ in pediatric liver with an 

age around 1 year (46). Although Ostα mRNA is expressed at low levels in liver throughout 

development from day -2 to day 45 in mice, Ostβ mRNA markedly increased to 4.5-fold of 

prenatal levels with a peak around 1 day after birth (47).

Overall, there are limited data available on the human ontogeny of hepatic transport 

proteins. The emerging picture, however, suggests that there may be substantial differences 

between transporters in the time course of development and expression. Some transport 

proteins such as P-gp, BCRP, and NTCP are expressed early in childhood development, 

while others such as OATP1B1, BSEP and MRP2 seem to exhibit delayed maturation and 

reduced expression levels compared to adults during at least the first months of life. In 

general, differences seem to be absent between older children and adults. This conclusion is 

supported by the notion that localization of the canalicular transporters (BSEP, P-gp, MRP2) 

in pediatric liver (6–17 months) had reached a similar level and pattern as adult liver 

indicating that the pediatric liver around 1 year of age has obtained a mature canalicular 

structure (46).

KIDNEY

The drug transporters generally considered in the context of kidney development were: P-gp, 

BCRP, OAT1, OAT3, OCT2 and MATEs. Data on MRP2, MRP4, OATPs, OAT2, OCT1, 

OCTNs and URAT1 (Rst) also were evaluated when presented in literature regarding the 

aforementioned transporters. Currently, there is relatively little information regarding drug 

transporter expression, at either the mRNA or protein level, or function in the human 

developing kidney. Given the paucity of human data, the studies described in Table 3 and 

Appendix 2 also include the considerable data on the ontogeny of drug transporters in the 

developing rodent (rat, mouse) kidney. In a limited number of instances, there are also data 

on postnatal developmental function of particular transporters, for instance, in a knockout 

mouse model or a study on the developmental clearance of a drug (digoxin) or probe 

substrate (p-aminohippurate, PAH) in rodents. Although there are differences in individual 
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transporter expression patterns (eg. P-gp, Bcrp, Mrp2, Mrp4, Mate1, Oat1, Oat3, Oct2, 

Octn1, Octn2, Urat1), these rodent studies generally indicate low expression of various 

transporters in the late stages of kidney development, followed by a rapid rise in expression 

after birth, and a further increase in expression (and function) during postnatal maturation 

(48–50). Please see Table 3 and Appendix 2 for additional rodent information.

P-gp—In humans, P-gp transcript and protein levels have been analyzed in fetal and adult 

kidney (17, 18). P-gp expression is detectable as early as 11 weeks of gestation (18). In the 

fetal kidney, RT-PCR of tissue obtained by laser capture microdissection revealed 

transcripts in the renal tubule (17).

It is important to note that developmental biology studies suggest that there may be some 

significant differences in postnatal nephron development and maturation between mice, rats 

and humans, as well as between sexes. Of note, recent mRNA data regarding the 

developmental expression of renal transporters in humans (51), presented as an abstract, 

appears largely consistent with patterns reported in rats (52).

In summary, information on the ontogeny of human drug transporters is scarce in the case of 

the kidney. A major knowledge gap exists regarding gene expression, protein abundance and 

actual transporter activity in humans. This information is essential to understand how 

maturational changes impact the role that these transporters play in normal growth and 

development, and to accurately predict the impact of changes due to pathophysiological 

conditions on drug disposition, efficacy and toxicity of medications. This knowledge is 

requisite to the development of personalized drug therapy in children.

SECTION IV. COMPARATIVE DEVELOPMENT OF ORGAN FUNCTIONS

The majority of the data regarding transporter ontogeny has been obtained from 

developmental studies in rodents, although some literature does exist for larger species. The 

ability to extrapolate across species, namely rodents to larger species (e.g. primates) and 

humans, can be limited, however, by variation in the developmental timing of key 

anatomical, physiological, biochemical, and physicochemical events, as well as significant 

functional variance in isoforms. These differences arise from comparative differences in the 

gestational length and the timing of parturition between the different species and humans. 

The conventional approach is to compare developmental milestones relative to birth 

(prenatal versus postnatal); however, this may not always be appropriate. For example, in 

contrast to humans and porcine models, newborn rodents exhibit relatively immature 

intestines with few villi and little evidence of crypt formation (53, 54). The timing of tissue 

maturation between rodent species is also dependent upon the organ. As an example, 

nephrogenesis is largely complete prior to birth in mice, which is similar to humans, but 

continues in rats during the postnatal period (55). For this reason, the study of transporter 

ontogeny would be improved by reporting perinatal findings as days post-conception, rather 

than days relative to parturition. By viewing development as a continuum instead of 

arbitrary categories (such as neonatal, infant, etc.), there will be greater potential to translate 

rodent and other mammalian studies to humans. One caveat to this approach is that some 
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transporters increase in expression upon commencement of feeding as has been observed for 

Ntcp, Bsep, and Mrp4 in the neonatal livers of mice (42).

It should be noted that another considerable limitation occurs when contrasting mRNA 

expression data, because linearity in protein transcription and inferred function cannot be 

assumed. As mentioned in the Methods section, advances in quantitative proteomics using 

LC-MS/MS have led to a significant increase in our ability to quantify drug transporter 

protein abundance in adult samples. While a number of technical challenges still exist with 

this methodology, the application of quantitative proteomic approaches to ontogenic studies 

with pediatric tissues will yield more useful data for establishing predictive developmental 

PBPK models. One major limitation is that the availability of human pediatric tissue 

specimens is limited, and shared pediatric biobanks need to be established. The application 

of quantitative proteomics in animal tissue developmental studies would provide greater 

insight into the utility of scaling across species to predict the function of drug transporter 

activity in pediatric patients.

There is also the potential for significant confounding variables to limit the ability of cross 

species comparisons with humans, particularly with respect to pediatric populations. Of 

considerable concern is the health of the patients in which the specimens were obtained. A 

significant portion of the human pediatric tissue biopsied specimens originate from patients 

who suffer from co-morbidity or are collected postmortem. Collection procedures and 

timing also can impact tissue quality and subsequent expression data. Most animal studies 

are conducted under controlled conditions, whereas human tissue specimens are collected 

from patients who will have varying xenobiotic and dietary exposures. These confounding 

factors cannot be readily normalized for in many cases. Another emerging issue is that 

mRNA expression of housekeeper genes can vary significantly, thus calling into question 

quantitative data from qRT-PCR studies normalized to one control (56, 57). These concerns 

may be alleviated by use of RNA-sequencing to quantify human transporter ontogeny, as 

has been performed in rodents (47).

There has been limited use of cell-based systems and mathematical models to describe the 

ontogeny of transporters. However, there may be the potential to complement in vivo rodent, 

other species, and human biopsy studies with human embryonic or induced pluripotent stem 

cells undergoing differentiation to hepatocytes, enterocytes, and renal tubule cells. While 

these cellular systems are artificial and lack the holistic development of an organism, they 

may be a mechanistic tool to probe the effects of exogenous factors such as hormones, 

drugs, and exposures on the sequence and timing of transporter expression. Initial studies 

have begun to profile the expression and activity of transporters in hepatocyte-like cells 

derived from human embryonic and induced pluripotent stem cells (58), although 

comparisons to juvenile human livers are needed. In addition, there is a need to develop 

mathematical and statistical modeling approaches that integrate transporter ontogeny with 

the maturation of physiological processes, such as tubule reabsorption or intestinal secretion. 

This effort would provide researchers with the ability to ‘translate time’ between species by 

developing algorithms that compare and predict development (59, 60). Moreover, this 

approach can integrate the ontogeny of multiple tissues in parallel and provide a more global 

view on whole organism development. A computational and systems biology approach 
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could be used to integrate genomic, epigenetic, proteomic, and pharmacokinetic endpoints 

(e.g., changes in pH, plasma membrane composition, expression of drug metabolizing 

enzymes) to better assess the ontogeny of transport systems (61). The utility of data driven, 

physiologically-based pharmacokinetic models generated in this fashion would help to 

improve new pediatric drug translation from discovery to the clinical stages (62).

SECTION V. EMERGING AREAS AND MAJOR CHALLENGES IN STUDYING 

PEDIATRIC DRUG TRANSPORT

Developmental programming and regulation of transporters

Little is known about the factors that govern the regulation of transporter expression and 

activity (e.g., induction and inhibition of transporters as a function of gestational age) during 

growth and development. The age-related variation in mRNA expression of the transcription 

factor PXR correlated with P-gp expression in a small number of fetal, neonatal, younger 

and older adult samples of human liver, kidney and intestine (17). This finding suggests a 

role for transcription factor-mediated regulation of age-related transporter expression. 

Moreover, the mechanism of age-related changes in transcription factors may be related to 

DNA methylation; in fetal liver, hypermethylation of important cytochrome P450 (CYP) 

3A4 transcription factor binding sites has been observed, consistent with low CYP3A4 

expression before birth (63, 64). Endocrine changes in adolescents may impact drug 

transporter expression through hormonal and growth factor regulation of relevant 

transcription factors To date, studies focused on the endocrine regulation of transporters 

have largely evaluated adult rodents (65, 66) and serve as a basis for future work that should 

be expanded to hormonal fluctuations during human development. Clearly, considerable 

work is needed to understand the factors that regulate drug transporters during human 

growth and development.

Pharmacogenomics

Genetic variation may add to the age-related variation in drug transporter expression and 

function. In contrast to adults, pharmacogenomic drug transporter studies in children are 

rare. The available studies have been performed primarily in age ranges at which full 

maturation of transporters can be expected, and results in general are similar to adults (12, 

67). Further studies in children are needed to elucidate the interplay of age and genetic 

variation. Decreased transporter expression due to genetic variation may not become 

apparent until expression is at least at adult levels (68).

Impact of disease, drug interactions and/or environmental exposure

Other factors impacting drug transporter activity are disease, drug-gene interactions, drug-

drug interactions (DDIs), food-drug interactions as well as exposures to environmental 

chemicals. In adults, the impact of liver disease has been investigated, but the findings may 

not be applicable to children, as the underlying disease may be very different: e.g., alcohol-

induced liver steatosis is not a pediatric disease, while biliary atresia is the most prevalent 

disease in children who receive a liver transplant. As underlying liver disease may impact 

transporter expression (69, 70), these pathophysiological differences mandate studies in 
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pediatric patients. In one study, MRP2, BSEP and MDR3 expression in livers from patients 

with pediatric biliary atresia taken at post-natal age 1–2 months was much higher than both 

fetal and adult expression levels, but unfortunately no age-matched controls were studied 

(36). Hence, it is unclear whether the observed differences can be attributed solely to the 

disease or whether age-related changes also played a role. DDIs also may be different in 

children due to developmental changes in drug disposition pathways; furthermore, the 

potential for a specific DDI may change during growth and development (71). Finally, as 

nutrition changes during childhood, the impact of frequent milk or different types of formula 

feedings and fruit juice on drug transporter expression and function must be considered.

Development of human-relevant cell/in vitro and preclinical/in vivo transport models that 
are representative of the pediatric population in health and disease

Once transport protein expression and function have been characterized across the pediatric 

age spectrum in healthy and diseased tissue, an important next step will be to develop 

human-relevant in vitro models, such as cell lines, embryonic stem cells, or modified 

primary cells, that mimic transporter expression and function at various ages. Such systems 

could be useful to predict drug disposition and DDIs in pediatrics. The utility of preclinical, 

in vivo transporter models as a predictive tool is less clear due to significant species 

differences in the expression and function of some transport proteins and regulatory 

machinery, and lack of established correlations between transporter data from animal 

models and humans.

Development of systems-based, mechanistic modeling approaches to integrate in vitro 
data and physiological processes to predict transporter-mediated changes in drug 
disposition as a function of age and disease

Physiologically-based pharmacokinetic models (PBPK) link information about the 

anatomical and physiological structure of the body with the physicochemical and 

biopharmaceutical properties of the drug to predict drug disposition in the body. PBPK 

models are established tools for predicting human pharmacokinetics based on preclinical 

data from animals and in vitro studies (72, 73). Successful applications include scaling the 

human pharmacokinetics from healthy volunteers to patient populations (e.g., liver cirrhosis) 

by accounting for changes in physiology (74, 75). PBPK models are being applied 

increasingly in scaling adult pharmacokinetics to pediatric populations. This has been 

demonstrated for compounds eliminated primarily by metabolism, where the ontogeny has 

been better characterized than for some transporters, (76, 77). The use of modeling and 

simulation methods in pediatric drug development was endorsed at a recent United States 

Food and Drug Administration (FDA) Clinical Pharmacology Advisory Committee meeting 

(78), and also is recognized by the agency as a potentially useful tool in the design of 

pediatric clinical trials and helping to expedite pediatric drug development (79). Between the 

years 2008 and 2012, the FDA’s Office of Clinical Pharmacology received 33 New Drug 

Application/Investigational New Drug submissions containing PBPK models; six of them 

were pediatric submissions (80). The main applications of pediatric PBPK models in these 

submissions included dose selection, study design, informing enzyme ontogeny using 

benchmark drugs, and facilitating covariate analysis. The applications in pediatric drug 

development generally start with development and validation of an adult model (frequently 
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utilizing in vitro characterization of the drug’s interaction with enzymes and/or transporters) 

followed by scaling to pediatric populations by accounting for ontogeny of relevant 

physiological processes across the age continuum from neonates (including premature 

neonates) to adults. However, currently there is limited availability of transporter 

information for modeling and simulation (e.g., PBPK modeling) of drug disposition, tissue 

exposure, and pharmacodynamic response in pediatrics. A possible approach to circumvent 

this issue is to utilize available pediatric clinical data for a variety of drugs to estimate the 

ontogeny of relevant enzymes and transporters. In one example, the ontogeny of renal 

transport was estimated from age-dependent renal clearance of a model compound known to 

be a substrate for the same renal transporter as the investigated drug (81). In another 

example, a pediatric population model for zidovudine was constructed by utilizing a 

previously derived pediatric covariate model for morphine glucuronidation (82). Finally, it is 

worth noting that systems biology approaches, as well as methods for integration of “omics” 

data from multiple levels of analysis (e.g., genomics, transcriptomics, proteomics, 

metabolomics) are advancing rapidly, and there is an ongoing effort to apply these 

approaches to the adult and developmental contexts (83). While distinct from the usual 

methods used in PBPK, it is anticipated that these approaches may begin to converge in the 

near future, providing a deeper understanding of pediatric drug disposition.

Limited availability of quality pediatric tissue (all age groups) for protein quantification and 
assessment of transporter function

One of the major roadblocks to drug transporter research during human growth and 

development is the dearth of quality pediatric tissue. Current tissue sources include left-over 

tissue from surgery and biopsies, as well as postmortem tissue from organ transplants and 

autopsies. Collaboration between clinicians with access to these tissue sources and 

researchers in need of tissue appears to be a major obstacle. In order to overcome these 

logistical challenges, a clear understanding and commitment on both sides regarding the 

respective challenges and solutions may be the first step to increase the availability of 

quality pediatric tissue. For example, the logistics of collecting a sample, including asking 

for informed consent, retrieving a dry ice container, transporting tissue to a storage facility, 

and collecting clinical data seems relatively straightforward, but is challenging when success 

depends on busy clinical staff to organize all these details. Also, a few inches of residual 

intestine may be very reasonable to obtain in adults, but cannot be considered ‘leftover’ in 

neonates with a considerably shorter intestinal length. Timely handling of postmortem 

pediatric tissue is particularly challenging due to parents, who may need time to say 

goodbye when a child passes away, and the availability of autopsies only during the day. 

Furthermore, the availability of tissue may be limited compared to adults because the death 

rate among children is much lower than among adults, there may be reluctance on the part of 

parents to give consent for autopsy, and there are relatively few liver transplants from 

pediatric donors.

Ethical and practical challenges with performing non-therapeutic studies in minors

Research that does not potentially benefit the participating child (‘non-therapeutic’) is 

subject to several limitations (84), most importantly, the restrictions of minimal risk (a slight 

increase over what is ordinarily encountered in daily life) and minimal burden. These ethical 
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limitations, which are intended to protect the individual child, limit the possibility of 

performing non-therapeutic pharmacokinetics and/or DDI studies related to drug 

transporters in minors. Giving a child a therapeutic dose of a drug solely for these purposes 

will, in many places, not be considered minimal risk. However, in some centers this 

approach is acceptable when the child will receive the drug later for therapeutic reasons. 

One solution is to study the disposition and effect of the drug in the context of clinical drug 

treatment. This may introduce unwanted complexity to studies, such as variation due to 

underlying disease and/or co-medication, and the need for more sophisticated 

pharmacokinetic analyses. Microdosing may overcome these limitations, but can only be 

used for drugs that exhibit dose-linearity (85). Other challenges include the need for 

repeated blood sampling as well as limitations with blood volumes. These can be overcome 

by using indwelling catheters already in place for clinical care, low volume drug assays, and 

population pharmacokinetic analyses.

Lack of transporter-specific probes to assess in vivo function

In vivo probes for individual drug metabolizing enzymes (e.g., midazolam for CYP3A4, 

dextromethorphan for CYP2D6/CYP3A4 and caffeine for CYP1A2) have facilitated 

investigations about the impact of growth and development, and the effects of 

pharmacogenomics and disease, on drug metabolism. These critical tools have led to new 

knowledge. A similar approach is more challenging for drug transporters, as specific probes 

for individual transporters are lacking. Most drugs are substrates for multiple transporters, 

which enable alternate transporter pathways to compensate in case the primary transporter is 

absent or has reduced activity. Nevertheless, pharmacogenomic studies on individual 

transporters have elucidated differences in drug disposition, efficacy and safety in adults. 

This approach may aid in studying the developmental changes of these transporters in vivo. 

The use of microdosing in pediatric patients has been explored and may provide a basis for 

developing a better understanding of drug disposition and metabolomic profiling. While it is 

important to continue to analyze mRNA and protein expression levels of transporters in 

developing organs like the liver, kidney and intestine, ultimately this must be related to 

physiological processes mediated by these particular transporters. Because of unique safety 

concerns about using exogenous compounds as functional probes in the pediatric population, 

continued exploration of endogenous metabolites and other markers that can serve as 

surrogates for assessing transporter function during organ development and maturation is 

needed. The relevant sets of endogenous metabolites may be specific to each organ, and to 

particular developmental points, reflecting unique patterns of transporter expression and 

aspects of organ-specific physiology.

SECTION VI. CONCLUSIONS

Many fundamental and clinically relevant questions remain unanswered about the human 

ontogeny of drug transporters. As information highlighting the importance of drug 

transporters in adult medicine continues to emerge, this critical knowledge gap in the 

pediatric population becomes even more evident. In order to achieve safe and effective drug 

therapy for children, it is imperative that developmental patterns of transporter gene 

expression and protein abundance are elucidated, and that drug transporter function is 
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defined across the age spectrum. Recommendations are provided (Table 4) to address some 

of the major challenges in obtaining this information. Fundamental and applied knowledge 

about the human ontogeny of drug transporters is absolutely essential to ultimately achieve 

personalized pharmacotherapy in pediatric patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Abbreviations and notations used throughout the text, tables and figures are defined as 

follows

ABC ATP-binding cassette

AUC area under the curve

BCRP (ABCG2) breast cancer resistance protein

BSEP (ABCB11) bile salt export pump

CYP Cytochrome P450

DDI drug-drug interaction

IHC immunohistochemistry

MATE (SLC47A) multidrug and toxin extrusion protein

MDR1 P-glycoprotein (P-gp ABCB1) multi-drug resistance 1 P-glycoprotein

MRP (ABCC) multidrug resistance-associated protein

NTCP (SLC10A1) Na+-taurocholate co-transporting polypeptide

OAT (SLC22A) organic anion transporter

OATP (SLCO) organic anion transporting polypeptide

OCTN (SLC22A) organic cation/ergothioneine transporter
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OCT (SLC22A) organic cation transporter

OSTα/β organic solute transporter

PAH p-aminohippurate

PEPT (SLC15A) peptide transporter

PXR pregnane X receptor

SLC Solute carrier

PBPK physiologically based pharmacokinetic

UGT UDP-glucuronosyltransferase

URAT1 urate transporter 1 (SCL22A12)
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Figure 1. Human Transport Proteins for Drugs and Endogenous Substances
Schemes depict localization of transporters [protein (gene) nomenclature] on the apical 

(luminal) and basolateral membrane of human intestinal epithelia, hepatocytes, and kidney 

proximal tubule cells. Developmental changes have been reported for some human 

transporters (green circles), but no information, or only limited data are available for other 

transporters (purple circles). Yellow circles depict other drug and/or endogenous substrate 

transporters that were not included in the present literature search. Transporters 

recommended for evaluation in the 2012 FDA Draft Drug Interaction Guidance include: 

MDR1 P-glycoprotein (P-gp; ABCB1), breast cancer resistance protein (BCRP; ABCG2); 

two members of the organic anion transporting polypeptide (OATP) family [OATP1B1 

(SLCO1B1), OATP1B3 (SLCO1B3)]; two members of the organic anion transporter (OAT) 

family [OAT1 (SLC22A6), OAT3 (SLC22A8)]; and organic cation transporter 2 [OCT2 
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(SLC22A2)]. Transporters proposed for prospective investigation in drug development 

include: multidrug and toxin extrusion protein 1 and 2 [MATE1 (SLC47A1) and MATE2-K 

(SLC47A2)]. Transporters recommended for retrospective inhibition studies based on 

preclinical and clinical observations include: multidrug resistance-associated protein 2 

[MRP2 (ABCC2)] and bile salt export pump [BSEP (ABCB11)]. Other transporters that are 

of importance include: peptide transporter 1 and 2 [PEPT1 (SLC15A1) and PEPT2 

(SLC15A2)]; ileal apical sodium/bile acid co-transporter [ASBT (SLC10A2)]; 

monocarboxylic acid transporter 1 [MCT1 (SLC16A1)]; OCT1 (SLC22A1); heteromeric 

organic solute transporter (OSTα–OSTβ); sodium/taurocholate co-transporting polypeptide 

[NTCP (SLC10A1)]; OATP2B1 (SLCO2B1)); OAT2 (SLC22A7); OAT7 (SLC22A9); MRP3 

(ABCC3); MRP4 (ABCC4); MRP6 (ABCC6); OAT4 (SLC22A11); urate transporter 1 

[URAT1 (SCL22A12)]; organic cation/ergothioneine transporter 1 and 2 [OCTN1 

(SLC22A4)] and OCTN2 (SLC22A5)]; OATP4C1 (SLCO4C1); and OAT3 (SLC22A8). 

Adapted from Giacomini et al. (1) and Zamek-Gliszczynski et al. (13).
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P-
gp
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R

N
A
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 d
et
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d 
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 a
ll 
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e 
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m
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E

xp
re
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n 
w

as
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w
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n 
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m
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e 
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in
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at
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.0
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e 
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s 
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at
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o 

si
gn
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at
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n 
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 f
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w
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n 
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 m
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at
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at
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R
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at
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 p
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 d
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 p
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n
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 o
ld

, n
=

1
A

du
lt,

 n
=

1
ne

on
at

e,
 b

ut
 e

va
lu

at
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 d
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 c
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re
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w
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 b
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at
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l b
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in

 
ch

ild
re

n 
w

ith
 tr
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e 
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m
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d 
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co
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.
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 d
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 d
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 d
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.0

09
 to

 1
.4

21
 in

 th
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at
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’s
 d
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p 
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in

 th
e 

C
ro

hn
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3
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N
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 d
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 d
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g
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 p
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 c
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w
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g 
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m
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lt 
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e 
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R
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; p
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l m
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u 
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at
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 f
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 c
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m
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 d
ay

s 
ol

d 
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D
uo

de
nu
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: p

ro
xi
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 d
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py

lo
ri

c 
an
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T
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 d
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 p
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e 
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e 

va
ri

ab
le

 f
ro

m
 c
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ft
er
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ir
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th
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e 
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 p
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no
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d 

Pe
pT

1 
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m
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 th

e 
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us
h 
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rd
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 s
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y 
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w
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e 
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ith
el
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m
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A

t d
ay
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1 
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st
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l (
w

ea
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ng
) 

th
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tio
n 

of
 

Pe
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 d
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t d
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 b
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, c
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m
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N
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t b
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ej
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 b
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, f
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 d
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 d
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r 
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d 
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1 
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n 
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e 
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w
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 f
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h
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w
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R
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 d
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 d
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 c
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 o
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br
an
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 d
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g 
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d 

m
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e 
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2 
w
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 d
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e 
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r 
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w
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k 
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d 
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w
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 d
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w
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 m
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w
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l: 
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at
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R

T
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C
R
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E
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w
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 d
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e 
in

 th
e 
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k 
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du
al
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w
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6]
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P-
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M
R
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O

A
T
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B

1
O

A
T
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B

3

H
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os
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N
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Fe
ta
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9 
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3 
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)
Pe
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at
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=
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 y
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A
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=
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m
R

N
A
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R

T
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C
R

)
m

R
N

A
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or
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p 
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 f
et
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eo
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ta
l g

ro
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s 
w
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0–
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 f
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d 
lo

w
er
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an
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lts
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xp

re
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io
n 
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 in
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s 
w
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w
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lts
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w
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o 
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 b
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w
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n 
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ild
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n 
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s 

an
d 
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ul

ts
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R
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R

N
A

 
w
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ld
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w
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et
al

, 2
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ol

d 
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w
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 n

eo
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l, 
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d 
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w

er
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m
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d 
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lts
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A

T
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B
1 
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 2
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w
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 f
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d 
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w
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d 
90

-f
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co

m
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d 
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lts
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A

T
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B
3 

m
R

N
A
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 3
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ld
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w
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 in

 f
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al
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-f

ol
d 
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w

er
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eo

na
ta

l a
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d 
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w
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r 
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m
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d 
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du
lts

.
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0]
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M
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E
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C
R

P
B
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P

M
R
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M

R
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M
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M

R
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T
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O
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T
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 d
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R
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 c
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w
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-g
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 M

R
P2
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R
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R
P6

, N
T

C
P,

 O
A

T
2,

 O
A

T
P1

B
1,

 
O

A
T

P1
B

3,
 O

C
T

1,
 B

C
R

P,
 B

SE
P,

 a
nd

 M
A

T
E
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 M

R
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 e
xp

re
ss

io
n 

w
as

 h
ig

h 
in

 n
eo

na
te

s,
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ut
 lo

w
er
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 o

ld
er

 c
hi

ld
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[2
8]
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n
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H
um

an
 P

os
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or
te

m
N
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1–
6 

m
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th
s

m
R

N
A
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N
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th

er
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n 
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)
P-
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 r
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ul
at

ed
 d
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el
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m

en
ta

lly
. P

-g
p 

m
R

N
A
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 p
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te
in

 
w

er
e 
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en
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t 1
 m

on
th

 p
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at
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.

[2
9]
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hu

et
z

P-
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M
R

P2
H

um
an
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g 

an
d 

Po
st

m
or
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m

N
=
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=
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: n

=
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ei
n 
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iv
e 
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ei
n 

ex
pr

es
si

on
 w

as
 n

ot
 s

ig
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fi
ca

nt
ly

 d
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fe
re
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m
on

g 
th

e 
st

ud
ie

d 
ag

e 
gr

ou
ps

. F
or

 M
R

P2
, p

ro
te

in
 le

ve
ls

 w
er

e 
si

gn
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ic
an

tly
 lo

w
er

 
in

 in
fa

nt
s 

un
de

r 
8 

m
on

th
s 

co
m

pa
re

d 
to

 o
ld
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 c
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n.

[3
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C
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n 

ex
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oc
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te

d 
w
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e 
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 th

e 
st

ud
ie

d 
ag

e 
ra

ng
e.

[3
2]

Pr
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ad
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 r
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P
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w
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=
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=
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t f
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 c
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at
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 d
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 d
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M
S)

B
C

R
P 

pr
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ra
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 f
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R
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H
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=
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 p
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w
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=
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R
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R

T
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C
R
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T
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f 
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n.
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p
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n

N
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1
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m
R

N
A
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N
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n 
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R
N

A
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ch
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lt 
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 a

t d
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or
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nl
y 
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%

 o
f 
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e 
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m
m
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or

ea
ct
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n 
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 w
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r 
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s 
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 m
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w
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4 

w
ee

ks
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f 
ag

e 
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e 
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m
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e 
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at
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n.

[3
8]

H
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r

O
A

T
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B
1

O
A

T
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3

H
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an
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m
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0.
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=
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8
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=
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A
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6 
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w
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d 
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on
 th
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ea
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A

T
P1

B
3 

ex
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d 
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 e
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re

ss
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n 
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 b
ir

th
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ch
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ed
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ve
r 

th
e 

fi
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t m
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s 
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 li

fe
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nd
 th

en
 in

cr
ea

se
d 

ag
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n 
in

 th
e 

pr
e-
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ol

es
ce

nt
 p

er
io

d.

[3
9]

T
ho

m
so

n

O
A

T
P1

B
1

O
A

T
P1

B
3

O
A

T
2

O
C

T
1

H
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an
H

ep
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yt
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 f
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 p
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nd
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ul

t d
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s
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R

N
A

T
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un
ct
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n

N
o 

di
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er
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e 
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 f
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ll 
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sp
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. U
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e 
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tiv
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f 
O

A
T
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B
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an

d 
O

C
T

1 
w
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ig
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ca

nt
ly
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w

er
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 p
ed
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el
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iv
e 

to
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du
lt 

he
pa

to
cy

te
s.
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A

T
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B
3 

w
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ig
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ly
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ig
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r 
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 p
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ep
at

oc
yt
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.

[4
0]

H
ay

as
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M
rp

3
R

at
E

m
br

yo
ni

c 
da

ys
 1

5.
5,

 1
7,

 1
9,

 2
0,
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 a
nd

 n
ew

bo
rn

 (
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 d
ay

s 
ge

st
at

io
na

l a
ge

)

m
R

N
A

 (
R

T
-P

C
R

)
M

rp
3 

ex
pr

es
si

on
 p

ro
gr

es
si

ve
ly

 in
cr

ea
se

d 
fr

om
 ~

10
%

 to
 o

ve
r 

30
%

 f
ro

m
 d

ay
 

15
 to

 d
ay

 2
0 

of
 g

es
ta

tio
n,

 a
nd

 in
cr

ea
se

d 
to

 n
ea

r 
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%
 o

f 
m

at
er

na
l e

xp
re
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io

n 
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 d
ay
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1 

an
d 

af
te

r 
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rt
h.

[4
1]

St
-P

ie
rr

e

M
rp

4
M

ou
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Po
st

na
ta

l d
ay

s 
−

2,
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, 1
, 3

, 5
, 1

0,
 

15
, 2

0,
 3

0,
 4

5
m

R
N

A
 (

bD
N

A
 a

ss
ay

)
m

R
N

A
 e

xp
re

ss
io

n 
fo

r 
M

rp
4 

w
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 c
on

si
st

en
t f

ro
m
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 d

ay
s 
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re
 b

ir
th
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5 
da

ys
 o

f 
ag

e,
 e

xc
ep

t f
or

 a
 m

od
er

at
e 

in
cr

ea
se

 o
n 

da
y 

1 
of

 a
ge

.
[4

2]
C

ui

M
rp

4
M

ou
se

Po
st

na
ta

l d
ay

s 
−

2,
 0

, 5
, 1

0,
 1

5,
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3,
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, 3

5,
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0,
 4

5
m

R
N

A
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bD
N

A
 a

ss
ay

)
M

rp
4 

m
R

N
A

 e
xp

re
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io
n 

w
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 m
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im
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 a
t b

ir
th

 a
nd

 d
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re
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 ~
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%

 b
y 

2 
w

ee
ks

 o
f 

ag
e,

 b
ut

 w
as

 r
el

at
iv

el
y 

co
ns

ta
nt

 th
er

ea
ft

er
.

[4
3]

M
ah

er
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Table 4

RECOMMENDATIONS

• Build multidisciplinary, international collaborative networks to facilitate collection and sharing of data on pediatric transporters, 
including expertise in preclinical studies (e.g., knockout and in vitro models), pediatrics, clinical pharmacology, 
pharmacogenomics, pharmacometrics, and pharmacovigilance

• Establish central (perhaps regional) tissue repositories where surgical and postmortem samples can be stored with clear guidelines 
for tissue collection and handling to preserve sample integrity

• Continue to support the training of scientists in pediatric clinical pharmacology with expertise in transporters, pharmacogenomics, 
pharmacometrics, and pharmacovigilance

• Increase the awareness of clinicians regarding the importance of transporters in pediatric drug disposition

• Identify examples relevant to pediatric pharmacotherapy where developmental differences in transporter expression or activity 
could translate into clinically relevant effects

• Work with professional groups to develop guidelines on how drug therapy may be altered due to variations in transporter 
expression or activity

• Identify selective and specific biomarkers for transporter activity in pediatric patients

• Investigate basic developmental mechanisms regulating transporter expression and activity in the different organs in pediatric 
health and disease

• Develop pediatric-relevant in vitro/in silico and systems biology models to predict transporter function in the context of overall 
drug disposition
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