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Abstract
Objective—Data from electronic dosing monitors and published pharmacokinetic parameters were
used to derive medication adherence measures for immediate-release metoprolol and examine their
association with health care utilization of outpatients aged 50 years or older with heart failure.

Methods—We used a 1-compartment model and published population pharmacokinetic parameters
to estimate mean plasma metoprolol concentrations for patients treated for 6 to 12 months. In the
absence of directly measured plasma concentrations, we calculated the intended mean plasma
concentration (Cp′ave) under the assumption of perfect adherence to the prescribed dose and
frequency of administration. Projected mean plasma concentrations (Cpave) were estimated by use
of data from recorded dosing times. In addition to taking adherence (percentage of dose taken) and
scheduling adherence (percentage of doses taken on schedule), we calculated the deviation from the
intended exposure (ΔCpave = Cp′ave − Cpave) and the proportion of intended exposure achieved by
the patient (Cpave/Cp′ave). We assessed the association between the adherence measures and the
numbers of emergency department visits and hospital admissions experienced by the patients.

Results—Patients (N = 80) were aged 62 ± 8 years. Mean ΔCpave and Cpave/Cp′ave were 7.9 ng/
mL (SD, 10.7) and 0.6 (SD, 0.3), respectively. Log-linear models adjusted for patient functional
status indicated that greater deviation from the intended metoprolol exposure (ΔCpave) was associated
with increased numbers of emergency department visits (P < .0001) and hospital admissions (P < .
0001). A higher proportion of intended exposure (Cpave/Cp′ave) corresponded to a reduced number
of emergency department visits (P = .0204) and hospital admissions (P = .0093). Taking adherence
was univariately associated with both emergency department visits and hospital visits (P < .0001 and
P = .0010, respectively). Scheduling adherence was associated with the number of emergency
department visits (P = .0181) but not with the number of hospital admissions (P = .1602). Model
selection procedures consistently chose the proposed measures over taking adherence and scheduling
adherence.

Conclusion—Deviation from the intended exposure and proportion of intended exposure achieved
by the patient are valid adherence measures for immediate-release metoprolol and are associated
with health care utilization. The potential utility of these measures for other β-adrenergic antagonists
and perhaps other cardiovascular drugs should be investigated.
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Patients with chronic diseases must take medications regularly to prevent deteriorating illness
requiring costly use of health care services such as emergency department (ED) visits and
hospitalization. However, approximately half of all patients who are prescribed medications
for chronic diseases do not adhere to their prescriptions.1-3 Medication adherence is
particularly important to patients with chronic heart failure (CHF) because of the propensity
for such patients to require expensive health care services. Adherence to the prescribed regimen
by patients with heart failure varies from 10% to 85%.4,5 Indiscretions in medication adherence
or diet may result in decompensation in 44% of patients with CHF and other chronic
cardiovascular diseases.6

Adherence measurement has been greatly facilitated by electronic dosing monitors that record
the temporal pattern of medication container openings.7 Assuming that an appropriate number
of tablets are taken each time a lid is opened, aggregate adherence measures may be computed
to summarize medication event data generated by electronic monitors.8-10 Choo et al11
explored the interrelationships among these measurements and elucidated their mathematic
foundation. Because of the relationship between dosing and plasma concentration,12,13 we
believed that it would be appropriate to explore this relationship and assess its effect on relevant
patient outcomes. As such, we derived 2 adherence measures that couple electronic dosing
records with the pharmacokinetic properties of the monitored drug. In doing so, the resulting
adherence measures consider the frequency, dose administration time, dose strength, and
population pharmacokinetic parameters of the medication. We hypothesized that the proposed
measures would be associated with disease exacerbation. We tested this hypothesis in 80 older
patients with CHF treated with immediate-release metoprolol and then assessed the
associations between the new measures and the numbers of ED visits and hospital admissions
experienced by these patients.

In the past decade, several investigators have explored the use of dosing history data to improve
the estimation of drug concentration curves by measuring plasma drug concentrations.12,14,
15 Their work has highlighted the importance of dosing history data in pharmacokinetic and
pharmacodynamic studies. We took a different approach. Instead of relying on directly
measured drug concentrations, we estimated plasma concentrations by using an individual
patient’s dosing records and published population pharmacokinetic parameters. One advantage
of using published population parameters is that the resulting measures could be applicable to
nonpharmacokinetic clinical trials in which drug concentrations were unavailable.

METHODS
Setting and participants

Data were obtained from a health services research, randomized, controlled trial being
conducted in Indianapolis, Ind. The primary objective of the trial was to test the effectiveness
of a pharmacy-based intervention program aimed at improving medication adherence in older
adults with CHF.16 The study protocol was approved by the Indiana University–Purdue
University Institutional Review Board (Indianapolis, Ind).

Participants were recruited from Wishard Health Services, which serves the inner-city residents
of Indianapolis, Ind. The study population may be generally characterized as having limited
resources and being ethnically diverse. Eligible participants were English-speaking, were aged
50 years or older, had a diagnosis of CHF, and were currently taking at least 1 cardiovascular
medication, including angiotensin-converting enzyme (ACE) inhibitors, angiotensin II
receptor antagonists, β-adrenergic receptor antagonists, digoxin, an aldosterone antagonist, and
loop or nonloop diuretics. On enrollment, participants were provided with electronic monitor
lids (see below) on their prescription containers for each of the aforementioned cardiovascular
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medications. Other prescription medication containers did not have electronic monitors
affixed. Medication use was monitored for 6 to 12 months.

To test the operating characteristics of the proposed adherence measures, we used data from
the trial’s control arm for 80 subjects who had been prescribed immediate-release metoprolol,
a selective β1-adrenergic antagonist with well-established pharmacokinetics. The rationale for
using only control arm patients was to avoid any effects of the intervention, which was aimed
at improving medication adherence among participants assigned to the intervention arm.16

Electronic dosing records
We used MEMS Track V prescription container lids as electronic monitoring devices
(AARDEX Ltd, Zug, Switzerland).17 Data recorded by the MEMS monitors were extracted
into a desktop computer that in turn displayed the event patterns graphically and calculated
medication taking and scheduling adherence.7 MEMS adherence logs were validated by
pharmacists and data analysts via comparison of metoprolol MEMS dosing patterns with
patient self-reported adherence and with prescription refill adherence.18 We also verified the
phase start and end dates to ensure that the MEMS lids were correctly set. Verified MEMS
data were then exported from MEMS software to SAS (SAS Institute, Cary, NC) for further
analyses.

Pharmacokinetic adherence measures based on estimated plasma concentrations
To accommodate the pharmacokinetic properties of metoprolol, we constructed 2 adherence
measures. The first measure estimated the magnitude of the patient’s deviation from the
intended metoprolol exposure, whereas the second measure estimated adherence as the
proportion of intended metoprolol exposure achieved by the patient’s dosing pattern. Both
measures were calculated by use of published metoprolol pharmacokinetic parameters and
dosing history data recorded by MEMS. Intended drug exposure was calculated as the average
plasma concentration under perfect adherence to the prescribed regimen.

Plasma concentrations (Cp) of metoprolol and most other cardiovascular medications were not
measured. We, therefore, estimated the Cp levels by using established pharmacokinetic
parameters of metoprolol. Considering the standard 1-compartment model for the Cp level in
the ith subject, we estimated the Cp levels at preselected time points tj, where j = 0, 1, 2, …
Ji. Herein, we chose the time points at hourly intervals and at all of the recorded metoprolol
dosing times. For the ith patient, we used the first recorded dosing time as the starting point
(t0 = 0) and the last time point in the observation period as tJi, where tJi was allowed to vary
from subject to subject. We then estimated the plasma concentration of metoprolol in the ith
subject at time tj, Cp[i,t], for all of the preselected time points tj, where j = 0, 1, 2, … Ji. Using
the multidose 1-compartment model,19 we considered the iterative algorithm below. An
illustration for the use of the algorithm is provided in the Appendix.

Algorithm
Let d[i,j] be the dose amount of the medication that the ith subject took at time tj. If the patient
did not take his or her medication at the time, d[i,j] = 0. At time t0 = 0, the cumulative dose D
[i,0] is the first dose taken (d[i,0]), and the plasma concentration is as follows:

(1)

where F is the population-based bioavailability of the medication, V[i] is the volume of
distribution adjusted for the ith patient’s weight, and ka and ke are the first-order absorption
and elimination rate constants, respectively.
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At all later time points tj, where j = 1, 2, … Ji, we first calculated the cumulative dose as follows:

(2)

Then we wrote the plasma concentration at time tj as follows:

(3)

We used the above-described iterative algorithm to estimate the hourly plasma concentration
levels based on the dosing events recorded by the MEMS records. Specifically, we calculated
the values of Cp[i,j] in hourly increments after the first dosing event for the entire duration of
the study period covered by the MEMS logs. We then averaged the estimated hourly Cp[i,j]
in each study subject for the mean hourly plasma concentration for the study period. We

denoted this average as Cpave[i] for the ith subject as follows: , where
J′i was the number of hours contained in the subject’s MEMS log. Therefore Cpave[i] can be
viewed as an approximation of the mean plasma concentration of metoprolol during the study
period.

In a similar fashion, we calculated the intended plasma concentration level under the
assumption of perfect adherence to the prescribed dose and frequency of administration. We
denoted the average of hourly Cp values under the assumption of perfect adherence as Cp
′ave[i]. It should be noted that Cp′ave[i] can also be obtained by use of a steady-state equation.
19 The difference between Cp′ave[i] and Cpave[i], therefore, reflected the deviation of the
projected Cp from the intended (or prescribed) level. The greater this deviation, the poorer the
patient’s adherence to the prescribed metoprolol regimen. Hence we propose to use ΔCpave[i]
= Cp′ave[i] − Cpave[i] to measure the medication adherence of the ith patient. Unlike most of
the existing adherence measures, ΔCpave[i] also accommodates the pharmacokinetic properties
of the drug. For a drug with a longer half-life, the plasma concentration has a slower decrement
and ΔCpave[i] is less sensitive to a delayed administration. Fig 1 depicts the estimated Cp curves
of metoprolol for an abbreviated time period in 4 representative participants.

An alternative adherence measure was the ratio Cpave[i]/Cp′ave[i], which quantified the
proportion of intended plasma concentration achieved by the ith patient. A larger value for this
ratio indicated better patient adherence to the prescribed regimen.

Metoprolol
At therapeutic doses, metoprolol acts by selectively antagonizing the β1 receptor in the
myocardium, producing negative chronotropism and inotropism. Long-term use of metoprolol
in heart failure patients has been shown to be beneficial in reducing hospitalization and
mortality rates.20 Abrupt discontinuation and erratic administration of the drug, on the other
hand, are known risk factors of rebound tachycardia, hypertension, and subsequent cardiac
ischemia.21 Patients in this study took immediate-release metoprolol at doses ranging from
12.5 mg to 100 mg at a frequency of 12 hours.

We used a 1-compartment model with published pharmacokinetic parameters to estimate
plasma concentrations of metoprolol, although it more appropriately follows a 2-compartment
kinetic model. Two-compartment models could be used when kinetic data were available to
fit those models. Clearance based on differences in metabolism varies between 50 L/h and 409
L/h. In the absence of individual data, we used the population-based value of the elimination
rate constant (ke) and the 1-compartment model to estimate the plasma concentration.
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The pharmacokinetic parameters of metoprolol are well established. The drug has an
elimination half-life of approximately 3.5 hours, bioavailability (F) of 0.5, ke equal to 0.198/
h, and time to peak Cp (tmax) approximately equal to 1.5.22,23 On the basis of the following
equation, we solved for an estimate of the absorption parameter (ka) equal to 1.585/h:

By use of these parameters, we computed the values of ΔCpave[i] and Cpave[i]/Cp′ave[i] for
each of the study patients based on the dosing events recorded by MEMS.

Statistical analysis
To assess the performance of the proposed pharmacokinetic-based adherence measures, we
first examined their correlations with 2 commonly used MEMS adherence measures, namely,
taking adherence and scheduling adherence. Taking adherence was defined as the percentage
of dose taken in the observation period, whereas scheduling adherence was defined as the
percentage of dose taken on schedule (ie, ±2 hours of the desired dosing time). We then
evaluated their associations with 2 important clinical outcomes—numbers of hospital
admissions and numbers of ED visits, which are regarded as surrogate markers of disease
exacerbation. Specifically, by use of an electronic medical record system,24,25 we determined
the numbers of hospital admissions and ED visits experienced by each study participant during
the time period of observation. We then fitted log-linear models by using the numbers of
hospital admissions and ED visits as outcome variables. Important explanatory variables
considered for the model included demographic characteristics (age, race, and gender), New
York Heart Association (NYHA) classification, numbers and indicators of cardiovascular
drugs, and taking and scheduling adherence and the proposed adherence measure of
metoprolol. Race, gender, and NYHA classification were treated as categoric variables. Each
level of a categoric variable was compared with a reference level.

The effects of variables were evaluated by use of the Wald test.26 Because lengths of
observation differed among subjects, we introduced the length of follow-up period into the
model as an offset parameter.27 The 4 metoprolol adherence measures (taking and scheduling
adherence and the 2 new pharmacokinetic-based measures) were used as independent variables
for the examination of their associations with the numbers of ED visits and hospital admissions.
Our general model selection strategy was to first screen all of the independent variables for
their univariate associations with outcome variables. Then, for each outcome, we used both
forward and stepwise selection procedures to choose the final models. Because 2 new
adherence measures were proposed in this research, to assess the performance of each one
independently, we conducted 2 parallel selection processes for each outcome, one for
ΔCpave[i] and all other covariates (excluding Cpave[i]/Cp′ave[i]) and the other for Cpave[i]/Cp
′ave[i] and all of the covariates (excluding ΔCpave[i]). This resulted in the 4 final models.

Although the primary objective of this research was to develop new pharmacokinetic-based
adherence measures and use them to assess the effect of metoprolol adherence on health care
utilization, it was important to present the results within the context of other concomitantly
used cardiovascular drugs. In our study sample, 87% and 83% of the patients, respectively,
took diuretics and ACE inhibitors concurrently with metoprolol. Fewer patients were taking
angiotensin II receptor antagonists, digoxin, and spironolactone. To assess the adherence
effects of concomitant drugs, we first evaluated the taking and scheduling effects for each of
these drugs univariately via log-linear models. Taking adherence and scheduling adherence of
these other cardiovascular drugs were used in the model selection process, but none of them
were selected into the final models. We re-examined the adherence effects of diuretics and
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ACE inhibitors by including them in the final models. We did not enter diuretics and ACE
inhibitors into the final models simultaneously because the stability of the models was
undermined by strong multicollinearity from multiple factors and the much reduced sample
size (only 53 patients were prescribed metoprolol, diuretics, and ACE inhibitors
concomitantly). We do not present data on angiotensin II receptor antagonists, digoxin, and
spironolactone in multivariate models because of Journal space limitation.

RESULTS
Demographic and clinical characteristics of the study patients are listed in Table I. The mean
age (±SD) of the study participants was 62 ± 8 years, 69% were women, and 51% were
nonwhite. Approximately half (51%) of the participants had an NYHA functional class of II.
Participants were prescribed a mean of 4.3 ± 2 cardiovascular drugs, including diuretics (87%),
ACE inhibitors (83%), angiotensin II receptor antagonists (15%), digoxin (26%), and
spironolactone (15%). Mean taking adherence of metoprolol was 63%, mean scheduling
adherence was 33%, average ΔCpave was 7.87 ng/mL, and average Cpave[i]/Cp′ave[i] was 60%.
For metoprolol, correlation between ΔCpave[i] and taking adherence was −0.4718 (P < .0001)
and correlation between ΔCpave[i] and scheduling adherence was −0.3746 (P = .0005).
Cpave[i]/Cp′ave[i] correlated strongly with both taking adherence (ρ = 0.8109, P < .0001) and
scheduling adherence (ρ = 0.5918, P < .0001). The significant correlations among these 4
measures were not unexpected, because the information on the drug consumption used to
calculate taking and scheduling adherence was incorporated in the computation of ΔCpave[i]
and Cpave[i]/Cp′ave[i]. Graphic presentations of these relationships are shown in Fig 2 with
histograms (Fig 2, f and i) depicting the distributions of ΔCpave[i] and Cpave[i]/Cp′ave[i]. We
noted that ΔCpave[i] was skewed (skewness = 2.5) probably because of 2 large values in the
right tail. The rest of the distribution was relatively symmetric (skewness = 0.58). Fig 2, b and
c, showed that ΔCpave[i] was more sensitive to the dose input than was Cpave[i]/Cp′ave[i].

Univariate analysis suggested that all 4 adherence measures for metoprolol were independently
associated with hospitalizations and ED visits (better adherence corresponded to decreased
utilization), with the exception of the nonsignificant association between scheduling adherence
and hospitalization (P = .1602). Wald statistics (Coefficient/SE) corresponding to each of the
4 adherence measures showed that the values of Wald statistics for ΔCpave[i] and Cpave[i]/Cp
′ave[i] were larger than those for taking adherence and scheduling adherence, suggesting that
stronger associations existed between the 2 pharmacokinetic-based adherence measures and
the outcomes. Better adherence to diuretics, ACE inhibitors, digoxin, and spironolactone was
also independently associated with decreased utilization (Table I).

Factors significantly associated with hospital admissions and ED visits, as identified by the
final models, were tabulated in part 1 of Tables II and III, respectively. For each of the outcome
variables, we reported 2 final models, as follows: (1) a model selected from a pool of candidate
variables including ΔCpave[i] and (2) a model selected from a pool of candidate variables
including Cpave[i]/Cp′ave[i]. The reported models were chosen through a formal stepwise
model selection procedure, and the significant variables meeting the selection criteria (P ≤ .
05) were included in the final models. The forward selection process yielded the same models.

Without exception, a patient’s functional status and pharmacokinetic-based measures of
metoprolol adherence were selected into the final models, suggesting that both were strong
correlates of health care utilization in these heart failure patients. Specifically, ΔCpave was
significantly associated with the number of hospital admissions after we controlled for the
effect of NYHA classification. Exponentiating the coefficient estimate of ΔCpave, we found
the relative risk of hospitalization associated with a 1-unit increase in ΔCpave to be 1.05. In
other words, for each 1-ng/mL deviation from the intended exposure, there was a 5.0% increase

Tu et al. Page 6

Clin Pharmacol Ther. Author manuscript; available in PMC 2008 October 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in the risk of hospital admission (P < .0001). Similarly, increased Cpave[i]/Cp′ave[i] (a greater
proportional metoprolol exposure) was associated with a decreased number of hospital
admissions (P = .0093). Not surprisingly, NYHA functional classification was also found to
be significantly associated with the number of hospital admissions; compared with patients
with NYHA class IV, patients with all other classes had fewer numbers of hospital admissions.

For ED visits, ΔCpave and Cpave[i]/Cp′ave[i] were again identified by model selection
procedures as significant correlates of the number of ED visits, along with NYHA
classifications. The final models show that greater metoprolol adherence (measured by
ΔCpave and Cpave[i]/Cp′ave[i]) was associated with a reduction in the number of ED visits.
Again, taking and scheduling adherence measures did not reach the level of significance to be
selected into the final models.

In addition to the assessment of the effect of metoprolol adherence, we also examined the
adherence effects of other cardiovascular drugs. Whereas adherence effects of diuretics, ACE
inhibitors, digoxin, and spironolactone were significant in univariate analyses (Table I), none
were strong enough to be selected into final models. Furthermore, adherence to these other
drugs was not significant when we forced them into the final models (parts 2 and 3 in Tables
II and III).

DISCUSSION
The pharmacokinetic-based adherence measures ΔCpave and Cpave[i]/Cp′ave[i] account for
adherence to the regimen and pharmacokinetic properties of metoprolol. From the estimated
plasma concentration curves, it appeared that the proposed measures were sensitive to missing
doses, as well as erratic drug administration. Significant associations between the proposed
measure and ED and hospital admissions indicate their practical utility and validity.

An important feature of the proposed measures is that they can be used in nonpharmacokinetic
studies where drug levels are not measured. They also offer the flexibility to incorporate dose
changes because equations 2 and 3 allow the dose d[i,j] to vary across the time points. This is
a clinically important feature because β-blockers such as metoprolol are usually titrated to
patient response.

Unlike the taking and scheduling adherence computed by MEMS software, the
pharmacokinetic measures focus on drug exposure as opposed to the medication use behaviors
only. In doing so, they account for metoprolol’s kinetic characteristics, as well as the patient’s
adherence behaviors. Furthermore, certain medications are less forgiving than others in terms
of clinical outcomes from failure to take them.13 For this reason, we contend that the average
plasma concentration of some cardiovascular medications may prove to be a more sensitive
and objective assessment of true therapeutic exposure received by patients.

Both ΔCpave and Cpave[i]/Cp′ave[i] for metoprolol in patients with CHF were associated with
hospital admissions and ED visits. Empiric evidence suggests that associations with utilization
were stronger than those for taking or scheduling adherence. In 2 ways, ΔCpave[i] and
Cpave[i]/Cp′ave[i] measure the estimated drug exposure by comparing it with the intended
exposure. When there is a large deviation from the intended level (ie, larger ΔCpave[i] or smaller
Cpave[i]/Cp′ave[i]), disease exacerbation occurs and may result in an ED visit or hospital
admission. From a clinical perspective, poor adherence in the long run and occasional drug
“holidays” are harmful behaviors.20,28,29 Because both ΔCpave[i] and Cpave[i]/Cp′ave[i] are
calculated for an extended period of time, they are likely to be more sensitive to long-term poor
adherence than to occasional drug “holidays.” Both measures can be modified for the
examination of adherence in shorter time windows. Short-term adherence may then be linked
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to outcomes such as heart rate or blood pressure to explore the health effects of drug “holidays.”
Unfortunately, we did not have frequently measured heart rates or blood pressure.

Our data show that the proposed adherence measure ΔCpave was associated with the hospital
and ED visits whereas intended metoprolol concentration (Cp′) was not. Intended drug
concentration does not always reflect the patient’s drug-taking behavior. A patient’s intended
metoprolol concentration assumes 100% adherence. However, perfect adherence often does
not occur in the clinical setting. In our study sample of 80 patients, the mean taking adherence
of metoprolol was 63% and the scheduling adherence was 33%, suggesting a considerable lack
of adherence. When a patient fails to take the prescribed medication appropriately, the intended
drug concentration (Cp′) remains simply a target therapeutic level under perfect adherence to
the physician’s prescription. It often does not represent the patient’s true drug exposure and,
as such, will not likely be associated with the patient’s health outcomes.

In contrast, the deviation from the intended exposure (ΔCpave) incorporates the patient’s
medication adherence. Greater values of ΔCpave indicate poorer adherence. Our data suggested
that ΔCpave correlated well with other established adherence measures such as taking and
scheduling adherence. As an adherence measure, ΔCpave for metoprolol is a strong correlate
of health care utilization in older heart failure patients. Yet it would be reasonable to expect
an association between Cp′ and health outcomes in situations where there is a clear dose-
response relationship and adherence is good. Therefore the effect of Cp′ is likely to vary
depending on the specific drug, the outcome considered, and the level of adherence.

As adherence measures, ΔCpave[i] and Cpave[i]/Cp′ave[i] differed. ΔCpave[i] was an estimate
of the magnitude of a patient’s deviation from the intended drug exposure, whereas Cpave[i]/
Cp′ave[i] estimated the relative level of the intended drug exposure that had been achieved by
patients. The correlation between Cpave[i]/Cp′ave[i] and taking adherence was much stronger
than that between ΔCpave[i] and taking adherence. In addition, the range of Cpave[i]/Cp′ave[i]
remained relatively stable at all dose levels, whereas the range of ΔCpave[i] tended to vary
across the doses, although not in a monotonic fashion (Fig 2, b and c). Therefore we believe
that ΔCpave[i] might be more appropriate when dose variation is more limited. Ultimately, the
choice of an appropriate adherence measure is likely to depend on the objective of the study
and the drug under investigation.

Although it is not the focus of the current report, our data clearly show independent adherence
effects of concomitant diuretics, ACE inhibitors, digoxin, and spironolactone among patients
who were taking metoprolol. The lack of inclusion of these concomitant drugs in the final
models was likely a result of their weaker effects compared with those of the metoprolol
adherence measures. Correlations between the 2 pharmacokinetic-based metoprolol adherence
measures and the taking and scheduling adherence of other concomitant cardiovascular drugs
were relatively strong (correlation coefficients between 0.33 and 0.51); thus, when ΔCpave or
Cpave[i]/Cp′ave[i] was in the model, the other drug effects were unlikely to be significant. We
also noted that our sample represented patients who were prescribed metoprolol. The effects
of other cardiovascular drugs in this group may not be directly comparable to the effects of the
same drugs in a general patient population, in which patients may not be prescribed metoprolol.

The proposed pharmacokinetic-based measures have several limitations. First, as with other
MEMS adherence measures, they assume that the correct dose of medication was consumed
when the MEMS lid was opened. However, unlike MEMS taking and scheduling adherence,
they account for the dosage and thus provide more flexibility in handling dosage changes.
Second, the proposed measures rely on several additional assumptions, including the
correctness of the pharmacokinetic model and the appropriateness of the pharmacokinetic
parameters for a specific patient population. Although we did not have individual
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pharmacokinetic data in this study, it would be interesting to assess the performance of this
method by use of individual pharmacokinetic models. Given the recent work by Vrijens and
Goetghebeur14,15 showing the importance of dosing history data in the estimation of
pharmacokinetic and pharmacodynamic models, we believe that the explanatory power of the
proposed measures would increase significantly where plasma concentrations are available.
Third, we recognize that both ΔCpave[i] and Cpave[i]/Cp′ave[i] are pharmacodynamically naive
measures. Published findings on metoprolol suggested that after the drug is stopped a rebound
increase in cardiac sensitivity to endogenous catecholamines was likely to ensue in the
following 2 to 7 days.29 Short of a full pharmacodynamic analysis, we are investigating the
relationship between the proposed measures in shorter time windows (in which drug exposure
could be low) and clinical outcomes in the ensuing 7-day periods. Finally, the iterative
computation of the proposed measures makes them more suitable for clinical investigations
involving a small number of drugs as opposed to a general-purpose adherence measure for
clinical practice.

As proposed measures, many important aspects of ΔCpave[i] and Cpave[i]/Cp′ave[i] remain to
be studied. As mentioned previously, subject-specific pharmacokinetic models with individual
dosing logs could be used to further improve the predictive power of pharmacokinetic-based
adherence measures. Given the recent development in pharmacokinetic and pharmacodynamic
models based on dosing history data,14,15 it would be of interest to compare the predictive
powers of population-based and individual-based pharmacokinetic adherence measures. Such
a comparative study is also likely to provide some practical guidance on the balance between
the measures’ predictive power and their general applicability. Another important aspect is the
measures’ utility with regard to other cardiovascular medications, especially those drugs with
longer half-lives. We are currently studying this approach in patients prescribed carvedilol, a
3-compartment drug with a much longer half-life than metoprolol.

Notwithstanding these limitations, we conclude that by incorporating adherence and
pharmacokinetic parameters the described adherence measures could contribute to our
understanding of the relationships between medication adherence of metoprolol and health
care utilization in heart failure patients.

APPENDIX
To demonstrate the use of the iterative computational algorithm, we derived the metoprolol
plasma concentration formulas at times t0 = 0, t1 = 1.0, t2 = 1.2, and t3 = 2.0 hours in an iterative
fashion under the assumption that a patient took the medication at time t0 = 0 and t2 = 1.2 at a
constant dose amount d.

At time t0 = 0, the patient took the medication at dose d, so d[i,0] = d and the cumulative dose
D[i,0] = d[i,0] = d. From equation 1, we have Cp[i,0] = 0.

At time t1 = 1.0, the patient did not take the medication, so d[i,1] = 0. From equation 2, we
derived the cumulative dose D[i,1] = d · exp(−ka) at this time, and from equation 3, we
calculated the plasma concentration as follows:

which followed the standard 1-compartment model exactly.

Similarly, at time t2 = 1.2, because the subject took another dose of the medication, d[i,2] = d.
The cumulative dose at this time point was calculated from equation 2 as D[i,2] = d · exp
(−1.2ka) + d. From equation 3, we calculated the plasma concentration as follows:
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which again followed the standard 1-compartment model.

At time t3 = 2.0, we had d[i,3] = 0 because the patient did not take the medication at this time
point; the cumulative dose was as follows: D[i,3] = d · [exp(−2ka) + exp(−0.8ka)]. From
equation 3, we calculated the plasma concentration at this time point as follows:

where the first term in the above-described expression represented the portion of plasma
concentration contributed by the first dosing event at time t0 = 0 and the second term represented
the portion contributed by the second dosing event at t2 = 1.2. This showed how the iterative
algorithm was able to accommodate the cumulative drug effect in multiple dose regimens.
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Fig 1.
Estimated and intended metoprolol plasma concentration curves for 4 study subjects during
abbreviated time interval for exemplification. The dashed curve depicts the time course of the
estimated plasma concentration under perfect adherence and thus represents the intended
dosing pattern. The continuous curve depicts the MEMS-recorded dosing pattern. The upper
horizontal line represents the overall average value of intended metoprolol exposure (Cp
′ave[i]), and the lower horizontal line represents the hourly average metoprolol concentration
(Cpave[i]) estimated from the MEMS-recorded dosing pattern.
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Fig 2.
Scatter plot of Cpave (estimated level of hourly average metoprolol concentration in plasma)
versus Cp′ave (intended level of hourly average metoprolol concentration in plasma) (a),
ΔCpave[i] (patient’s deviation from intended level of hourly average metoprolol concentration
in plasma) versus prescribed dose (b), scatter plot of Cpave/Cp′ave (ratio of estimated and
intended levels of hourly average metoprolol concentration in plasma) versus prescribed dose
(c), scatter plot of ΔCpave[i] versus taking adherence (d), scatter plot of ΔCpave[i] versus
scheduling adherence (e), frequency distribution of ΔCpave[i] (f), scatter plot of Cpave/Cp′ave
versus taking adherence (g), scatter plot of Cpave/Cp′ave versus scheduling adherence (h), and
frequency distribution of Cpave/Cp′ave (i). r, Correlation coefficient.
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Table II
Factors associated with number of hospitalization admissions*

Variable Coefficient and SE P value

Part 1: Patients prescribed metoprolol
 Model 1: Selected model containing ΔCpave
  NYHA classification <.0001
   Class I −2.2313 (0.574)
   Class II −2.7142 (0.518)
   Class III −2.7312 (0.613)
   Class IV† 0.0
  ΔCpave for metoprolol 0.0485 (0.010) <.0001
 Model 2: Selected model containing Cpave/Cp′ave
  NYHA classification .0283
   Class I −1.1650 (0.639)
   Class II −1.5052 (0.521)
   Class III −1.6770 (0.717)
   Class IV 0.0
  Cpave/Cp′ave for metoprolol −1.9032 (0.732) .0093
Part 2: Patients prescribed metoprolol and a diuretic
 Model 1: Selected model containing ΔCpave
  NYHA classification .0008
   Class I −2.2257 (0.926)
   Class II −3.3555 (0.846)
   Class III −2.5646 (0.884)
   Class IV† 0.0
  ΔCpave for metoprolol 0.0465 (0.026) .0762
  Diuretic taking adherence −0.0386 (1.084) .9716
 Model 2: Selected model containing Cpave/Cp′ave
  NYHA classification .0108
   Class I −1.3101 (0.766)
   Class II −2.4764 (0.743)
   Class III −1.5748 (0.801)
   Class IV 0.0
  Cpave/Cp′ave for metoprolol −2.9271 (1.193) .0141
  Diuretic taking adherence 0.9630 (1.116) .3882
Part 3: Patients prescribed metoprolol and an ACE inhibitor
 Model 1: Selected model containing ΔCpave
  NYHA classification <.0001
   Class I −2.4980 (0.635)
   Class II −3.2846 (0.690)
   Class III −2.7990 (0.678)
   Class IV† 0.0
  ΔCpave for metoprolol 0.0550 (0.012) <.0001
  ACE inhibitor taking adherence −0.6179 (0.637) .3319
 Model 2: Selected model containing Cpave/Cp′ave
  NYHA classification .0097
   Class I −1.5535 (0.646)
   Class II −1.8602 (0.588)
   Class III −1.9969 (0.718)
   Class IV 0.0
  Cpave/Cp′ave for metoprolol −2.3532 (1.059) .0262
  ACE inhibitor taking adherence 0.2840 (0.930) .7601

*
Because of missing data, 75 subjects were used for the model selection process and the fitting of the final models.

†
Reference category.
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Table III
Factors associated with number of ED admissions*

Variable Coefficient and SE P value

Part 1: Patients prescribed metoprolol (N = 80)
 Model 1: Selected model containing ΔCpave
  NYHA classification <.0001
   Class I −1.6112 (0.315)
   Class II −2.2153 (0.297)
   Class III −2.6227 (0.376)
   Class IV† 0.0
  ΔCpave for metoprolol 0.0315 (0.007) <.0001
 Model 2: Selected model containing Cpave/Cp′ave
  NYHA classification <.0001
   Class I −1.0710 (0.356)
   Class II −1.5661 (0.314)
   Class III −2.1430 (0.439)
   Class IV 0.0
  Cpave/Cp′ave for metoprolol −0.8887 (0.383) .0204
Part 2: Patients prescribed metoprolol and a diuretic (n = 69)
 Model 1: Selected model containing ΔCpave
  NYHA classification <.0001
   Class I −1.9023 (0.466)
   Class II −2.5968 (0.413)
   Class III −3.1401 (0.506)
   Class IV† 0.0
  ΔCpave for metoprolol 0.0332 (0.013) .0126
  Diuretic taking adherence 0.6944 (0.492) .1579
 Model 2: Selected model containing Cpave/Cp′ave
  NYHA classification <.0001
   Class I −1.2457 (0.409)
   Class II −2.0234 (0.383)
   Class III −2.5065 (0.509)
   Class IV 0.0
  Cpave/Cp′ave for metoprolol −1.2287 (0.502) .0143
  Diuretic taking adherence 0.8155 (0.495) .0994
Part 3: Patients prescribed metoprolol and an ACE inhibitor (n = 66)
 Model 1: Selected model containing ΔCpave
  NYHA classification <.0001
   Class I −1.9710 (0.348)
   Class II −2.6699(0.361)
   Class III −3.1329 (0.436)
   Class IV† 0.0
  ΔCpave for metoprolol 0.0314 (0.007) <.0001
  ACE inhibitor taking adherence −0.2075 (0.377) .5821
 Model 2: Selected model containing Cpave/Cp′ave
  NYHA classification <.0001
   Class I −1.4599 (0.352)
   Class II −2.0296 (0.343)
   Class III −2.6683 (0.458)
   Class IV 0.0
  Cpave/Cp′ave for metoprolol −1.2461 (0.542) .0214
  ACE inhibitor taking adherence 0.1902 (0.512) .7104

*
Because of missing data, 75 subjects were used for the model selection process and the fitting of the final models.

†
Reference category.
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