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Background. Pseudomonas aeruginosa is a key respiratory pathogen in people with cystic fibrosis (CF). Due to
its association with lung disease progression, initial detection of P. aeruginosa in CF respiratory cultures usually re-
sults in antibiotic treatment with the goal of eradication. Pseudomonas aeruginosa exhibits many different pheno-
types in vitro that could serve as useful prognostic markers, but the relative relationships between these phenotypes
and failure to eradicate P. aeruginosa have not been well characterized.

Methods. Wemeasured 22 easily assayed in vitro phenotypes among the baseline P. aeruginosa isolates collected
from 194 participants in the 18-month EPIC clinical trial, which assessed outcomes after antibiotic eradication ther-
apy for newly identified P. aeruginosa. We then evaluated the associations between these baseline isolate phenotypes
and subsequent outcomes during the trial, including failure to eradicate after antipseudomonal therapy, emergence
of mucoidy, and occurrence of an exacerbation.

Results. Baseline P. aeruginosa isolates frequently exhibited phenotypes thought to represent chronic adaptation,
including mucoidy. Wrinkly colony surface and irregular colony edges were both associated with increased risk of
eradication failure (hazard ratios [95% confidence intervals], 1.99 [1.03–3.83] and 2.14 [1.32–3.47], respectively).
Phenotypes reflecting defective quorum sensing were significantly associated with subsequent mucoidy, but no phe-
notype was significantly associated with subsequent exacerbations during the trial.

Conclusions. Pseudomonas aeruginosa phenotypes commonly considered to reflect chronic adaptation were ob-
served frequently among isolates at early detection. We found that 2 easily assayed colony phenotypes were associ-
ated with failure to eradicate after antipseudomonal therapy, both of which have been previously associated with
altered biofilm formation and defective quorum sensing.
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treatment.

People with cystic fibrosis (CF) have chronic air-
way infections with various microbes. Among these,

Pseudomonas aeruginosa (Pa) is among the most com-
mon, and infection with Pa is associated with signifi-
cantly poorer CF lung disease outcomes [1]. Young
children with CF have a relatively low prevalence of Pa
culture positivity, but the risk increases with age, with a
peak prevalence of nearly 80% among adults with CF [2].
Due to its association with worse lung disease, Pa is a tar-
get for early antibiotic eradication therapy [3–8].

Previous studies of Pa isolates from CF infections
demonstrated that these bacteria undergo diverse phe-
notypic and genetic changes over time [9–13]. Perhaps
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the best-known change is the emergence of a colony phenotype
known as mucoidy [14]. Previous studies indicated that mu-
coidy is rare among environmental or non-CF Pa [15] and in
early CF [16], but emerges on average after approximately 11
years of infection [14]. Mucoidy has also been associated with
more severe lung disease [14, 17]. Recently, inactivating muta-
tions in lasR, which encodes a transcriptional regulator in an
intercellular signaling pathway known as quorum sensing,
have also been shown to occur frequently during chronic CF
Pa infections [10, 18, 19]. Prior studies indicated that lasR mu-
tations occurred earlier on average than mucoidy and were as-
sociated with more severe lung disease [19]. Decreases in
antibiotic susceptibilities [20] and altered production of the pig-
ment pyocyanin [21] were also associated with advanced age
and lower lung function in studies focused on those pheno-
types. Many other Pa adaptive changes, including alterations in
cell motility, metabolism, virulence, DNA mismatch repair, and
secreted molecule production, have been identified [11–13], but
less is known about their relationships with clinical outcomes.
Moreover, few studies have compared the prognostic values of
different Pa phenotypes [22, 23].

The advent of newborn screening for CF has enabled early
surveillance for Pa infection and the prompt initiation of anti-
biotic eradication therapy upon Pa detection. The ability to pre-
dict failure of eradication by measuring characteristics of
Pa isolates from early infection is therefore of interest. One pre-
vious study attempted to correlate Pa phenotypes at initial
detection with eradication after antibiotic treatments, but no
predictive characteristics were identified [22]. In addition, in
vitro antibiotic susceptibilities have been shown not to correlate
with Pa eradication after antimicrobial therapy [22, 23]. These
studies highlight the need for clinically useful predictors of
eradication, which could identify patients who might benefit
from more aggressive initial antibiotic treatment.

A recent multicenter clinical trial, the Early Pseudomonas In-
fection Control (EPIC) clinical trial [24], compared different
antibiotic eradication strategies for newly identified Pa among
children with CF. Children aged 1–12 years were randomized to
receive 1 of 2 antipseudomonal antibiotic regimens and were fol-
lowed for 18 months, with the goal of comparing safety and effi-
cacy between regimens. The trial demonstrated comparable
effectiveness across all endpoints between antibiotic treatment
strategies, including successful Pa eradication for up to 18 months
after initial antibiotic therapy [24]. However, 34% of trial partic-
ipants failed to eradicate Pa, with a subsequent Pa-positive culture
after the initial antibiotic course and during the remainder of the
18-month trial. Further studies in this subject group could not
identify baseline clinical factors or patterns of infection that pre-
dicted eradication failure [25]. This study presented an ideal op-
portunity to determine whether there are Pa characteristics that
correlate with poor microbiologic and clinical outcomes.

We therefore characterized the baseline Pa isolates from partic-
ipants enrolled in the EPIC clinical trial using a panel of 22 in vitro
phenotypic tests,whichwe selectedboth forpriorevidence that they
exhibit adaptive change in CF and because they were simple and
reproducible in high-throughput format. Our aim was to identify a
panel of useful, easily measured tests that could potentially be used
clinically to predict failure to eradicate after antimicrobial therapy.

METHODS

Cohort Selection
The study cohort was comprised of participants from the EPIC
clinical trial (Figure 1) (ClinicalTrials.gov: NCT00097773) [24].
All participants with isolates from the screening visit or from the
6months prior to enrollment (“baseline” isolates) were included in
this study. This study was approved by the institutional review
board at Seattle Children’s Hospital. Complete details regarding
the study cohort and study design are in the Supplementary Data.

Study Endpoints
The primary endpoint was time to Pa eradication failure, defined
as the first occurrence of a Pa-positive culture after the initial quar-
ter of antipseudomonal antibiotic therapy. During the clinical trial,
respiratory cultures (oropharyngeal or sputum) were obtained
during follow-upatweeks 10, 22, 34, 46, 58, and70 (<4%of children
had sputum available at each visit). Secondary endpoints included
the proportion of participants with emergent mucoid Pa and time
to pulmonary exacerbation during the 15-month follow-up period.
Details regarding the definitions of study endpoints, as well as cul-
ture processing, are in the Supplementary Data.

Phenotyping and Genotyping of Pa Isolates
All Pa clinical isolates collected at study sites were characterized
centrally in 1 laboratory after minimal passaging. Phenotypic

Figure 1. Overview of study design. Abbreviation: Pa, Pseudomonas
aeruginosa.
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analysis and lasR gene sequencing were performed using tests
found to be reproducible in multiple replicates and in high-
throughput format, using quantitative measures (including for
colorimetric analysis) when possible to minimize bias. Full details
regarding these tests are included in the Supplementary Data.

Statistical Analysis
Details of the statistical analysis approaches for estimating the
association between Pa isolate characteristics and clinical out-
comes are described in the Supplementary Data.

RESULTS

Cohort Characteristics
Of the 304 trial participants, 194 of 304 (64%) had baseline
Pa isolates available at the core microbiology laboratory (284
isolates total) and were included in the study cohort. Table 1
compares this participant subgroup with those with newly iden-
tified Pa positivity but who did not have baseline isolates avail-
able. No significant differences were found between participants

with and without available baseline Pa isolates, although slightly
more participants with first lifetime documentation of Pa had
baseline isolates available (9% more; 95% confidence interval
[CI], −2% to 20%).

Baseline Prevalence of Pa Phenotypic Characteristics
Figure 2 displays the prevalence of each tested phenotypic char-
acteristic among isolates from baseline cultures. Supplementary
Figures 1–4 display examples of phenotypes of particular rele-
vance for this study. Besides wild-type tan colony color, pyocya-
nin production during in vitro liquid growth was the most
prevalent assayed phenotype at baseline, present in 74 of 112
(66%) cultures. Mucoidy was exhibited in 17 of 194 (9%) baseline
cultures and auxotrophy by 13 of 194 (7%) cultures. Defects in
motility, including swimming (57/194 [29%]) and twitching
(31/111 [28%]), were also relatively common among partici-
pants’ baseline cultures. Defective production of the siderophore
pigment pyoverdine was identified among 81 of 112 (72%) cul-
tures. All of these phenotypes, which were variably but clearly com-
mon among the baseline isolates, have previously been associated
with adaptation to the CF airway during chronic infection [12].

Because our previous work indicated a high prevalence of in-
activating mutations in lasR early during chronic CF infections

Figure 2. Prevalence of each phenotype among baseline cultures of the
participants in the cohort (N = 194). Bars represent 95% confidence
intervals.

Table 1. Baseline Cohort Characteristics

Characteristic

Baseline Pa
Isolates
Available
(n = 194)

Baseline Pa
Isolates
Missing
(n = 110)

Male sex 96 (49%) 54 (49%)
Age at baseline, y, mean (SD) 5.5 (3.5) 5.9 (3.6)

Age distribution at baseline

1–3 y 61 (31%) 29 (26%)
>3–6 y 54 (28%) 30 (27%)

>6–12 y 79 (41%) 51 (46%)

Genotype
F508 del homozygous 96 (49%) 53 (48%)

F508 del heterozygous 78 (40%) 38 (35%)

Other/unknown 20 (10%) 19 (17%)
First lifetime Pa-positive culture 139 (72%) 69 (63%)

Any antibiotic use
Birth to prebaseline 128 (66%) 71 (65%)

Prebaseline to baseline 68 (35%) 59 (54%)

Baseline weight, kg, mean (SD) 20.1 (9.4) 21.5 (11.1)
Baseline height, cm, mean (SD) 107.9 (22.4) 109.7 (23.9)

FEV1, L
a, mean (SD) 1.5 (0.6) 1.5 (0.5)

FEV1 % predicteda, mean (SD) 94.7 (17.0) 98.5 (16.0)
Coinfection with Staphylococcus
aureus

105 (56%) 65 (61%)

Coinfection with
Stenotrophomonas maltophilia

7 (4%) 4 (4%)

Data are presented as No. (%) unless otherwise specified.

Abbreviations: FEV1, forced expiratory volume in 1 second; Pa, Pseudomonas
aeruginosa; SD, standard deviation.
a Ninety-three participants had baseline spirometry among those with baseline
Pa isolates available. Sixty-two participants had baseline spirometry for those
missing baseline Pa isolates.
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[10, 18, 19] and demonstrated associations of these mutations
with worse lung disease and subsequent emergence of mucoidy
[19], we sequenced lasR among the baseline isolates. We also
characterized several phenotypes shown previously to be con-
ferred by inactivating lasR mutations [10, 19, 26], including col-
ony autolysis and surface sheen, decreased protease production,
and increased growth in added nitrate. lasRmutations predicted
to be of functional significance were present in 26 of 110 (24%)
baseline cultures and, by comparison, autolysis and/or sheen
were present in 38 of 194 (20%) cultures, protease production
was defective in 68 of 194 (35%) cultures, and increased growth
in nitrate was found in 24 of 111 (22%) cultures. Additional
phenotypes that were particularly common at baseline included
irregular colony edges (46/194 [24%]) and wrinkly colony sur-
face (20/194 [10%]), both of which have been associated with
both lasR inactivation and increased biofilm formation [10,
27, 28]. Colony binding of Congo red dye, which stains the exo-
polysaccharides that confer both mucoidy and biofilm forma-
tion, was detected among 41 of 194 (21%) baseline cultures.

Concordance Between Pa Phenotypic Characteristics at Baseline
We characterized the relationships between pairs of assayed
characteristics at baseline (Supplementary Table 1). The most
significant findings of concordance between phenotypes oc-
curred between colony sectoring and irregular colony edges
(kappa [κ] = 0.66), lysis and/or sheen and green colony color
(the latter indicative of pyocyanin) (κ = 0.62), lasR mutations
predicted to impact function and lysis and/or sheen (κ = 0.57),
reduced swimming and reduced protease (κ = 0.56), lasR muta-
tions and green colony color (κ = 0.53), lasR mutations and re-
duced protease (κ = 0.53), reduced twitching motility and
Congo red binding (κ = 0.49), reduced swimming and reduced
twitching (κ = 0.46), reduced swimming and Congo red binding
(κ = 0.43), lysis and/or sheen and reduced protease (κ = 0.42),
and Congo red binding and wrinkly colony surface (κ = 0.41).

Association Between Baseline Pa Phenotypic Characteristics
and Failure to Eradicate After Antipseudomonal Therapy
Whereas the proportion of participants failing to achieve Pa
eradication was 34% among the entire trial population, in this
study cohort (ie, those for whom baseline isolates were avail-
able), 79 of 194 (41%) of participants failed to achieve Pa erad-
ication during the study. Table 2 displays results from a
multivariable model used to identify which baseline Pa pheno-
typic characteristics, independent of other baseline factors, were
associated with failure to eradicate. As found in the original
trial, antibiotic therapy received during the trial was not signifi-
cantly associated with microbiologic and clinical outcomes in
our study and was not included for adjustment in the final
model. Wrinkly colony surface and irregular colony edges
were each associated with significantly increased risk of failure

to eradicate after antipseudomonal therapy. Figure 3 displays
the corresponding Kaplan-Meier curves for these phenotypes.
Sensitivity analyses indicated no other significant predictors
of failure to eradicate, including coinfection with other organ-
isms and past history of Pa (Table 2). Wrinkly colonies and ir-
regular colony edges (which were not significantly correlated
with each other, Supplementary Table 1) remained the most
significant predictors of failure to eradicate even after adjust-
ment for these factors (Table 2). This sensitivity analysis was re-
peated among the subset of participants for whom baseline
spirometry was available, yielding similar results.

Associations Between Baseline Pa Phenotypic Characteristics
With Emergence of Mucoidy and Risk of Pulmonary Exacerbation
Because mucoidy has been associated with both chronic infec-
tion and poor outcomes [14, 17], we determined whether base-
line Pa characteristics were associated with subsequent
emergence of mucoidy during the 18-month study follow-up
period. The presence of either colony autolysis or sheen at base-
line was the only characteristic significantly associated with sub-
sequent emergence of mucoidy. A total of 4 of 31 participants
(12.9%) with initial isolates exhibiting autolysis and/or sheen
had new emergence of mucoid Pa during the trial, compared

Table 2. Results of Multivariable Cox Proportional Hazards
Model for Time to Pseudomonas aeruginosa Recurrence

Baseline Covariate
Hazard
Ratio 95% CI

P
Value

Unadjusted model
Wrinkly colonies 1.99 1.03–3.83 .040

Irregular colony edges 2.14 1.32–3.47 .002

Adjusted model
Wrinkly colonies 2.18 1.08–4.42 .030

Irregular colony edges 2.12 1.28–3.52 .003

Age ≤3 y . . . . . . . . .
Age >3–6 y 1.03 .56–1.92 .917

Age >6–12 y 1.37 .71–2.65 .349

Male sex 1.08 .69–1.70 .747
Genotype: F508 del homozygous . . . . . . . . .

Genotype: F 508 del heterozygous 1.44 .89–2.34 .142

Genotype: other 0.91 .37–2.22 .837
Any antibiotic use

No. of courses, birth to baseline 1.03 .93–1.13 .609

No prior Pa positivity . . . . . . . . .
Pa positive >2 y prior 0.93 .49–1.77 .828

Positive for Staphylococcus
aureus

1.22 .74–2.00 .433

Positive for Stenotrophomonas
maltophilia

0.68 .16–2.86 .598

Mucoid Pa 1.71 .84–3.46 .138

Abbreviations: CI, confidence interval; Pa, Pseudomonas aeruginosa.
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with 4 of 142 (2.8%) of those without either phenotype (10.1%
difference; P = .035). No baseline Pa phenotypes were signifi-
cantly associated with increased risk of pulmonary exacerbation
during the follow-up (not shown).

Biofilm Formation
The 2 colony phenotypes associated with failure to eradicate
after antibiotic treatment, wrinkly colony surface and irregular
colony edges, have both been associated with enhanced biofilm
formation [10, 27, 28], suggesting a mechanistic link between
these colony phenotypes that could indicate their pathophysio-
logic significance. However, because in vitro biofilm testing is
complex and lacks the reproducibility required for high-
throughput analysis, we tested a subset of isolates (n = 19 iso-
lates each with wrinkly surface, irregular edges, or neither;
total n = 57) with these characteristics for their biofilm-forming
abilities in vitro. We found no association between in vitro bio-
film formation and either wrinkly colony surface or irregular
colony edges (data not shown).

DISCUSSION

In contrast to previous reports and traditionally held concepts
[14, 28, 29, 30], we found that several Pa in vitro phenotypes
commonly considered to represent adaptation during chronic
infection occurred frequently among newly identified Pa iso-
lates from children with CF. With the goal of identifying candi-
date prognostic markers of failure of antibiotic eradication, we
assayed phenotypes chosen for prior evidence of undergoing
change during chronic CF infections and for their reproducibil-
ity, definitive endpoints, and ease of measurement in clinical

laboratory settings. Two of these phenotypes, wrinkly colony
surface and irregular colony edges, were significantly associated
with subsequent failure to eradicate after antibiotic treatment.
These results suggest that Pa isolated from CF respiratory sam-
ples during early infection may represent lineages that have
adapted to that host (perhaps in the upper airways, or undetect-
ed in the lower respiratory tract) or to another host or environ-
ment prior to acquisition. If our results are validated, these
2 easy-to-identify colony phenotypes may serve as prognostic
markers of eradication failure, potentially identifying patients
who may benefit from more aggressive eradication treatment.

A previous study attempted to relate phenotypic characteris-
tics of CF Pa isolates from initial detection with subsequent
eradication failure [22]. That study included 52 infection events,
focusing on patients with either persistent or eradicated infec-
tion, and excluding patients with intermittent Pa detection
post–antibiotic treatment. The 9 characteristics examined, in
contrast to the 22 assays used here, were generally chosen to
represent potential determinants of pathogenicity or antibiotic
resistance (eg, cytotoxicity, production of virulence factors, in
vitro susceptibilities, and mutation frequencies), rather than
prior evidence of adaptive change or clinical utility. The authors
found that eradicated isolates were less likely to be cytotoxic
than were baseline isolates from persistent infection, but they
concluded that it was not possible to predict eradication failure
using those tests.

In the current study, mucoidy, an in vitro phenotype tradi-
tionally associated with failure of antibiotic treatment, was not
significantly associated with eradication failure. This finding
contrasts with an earlier study examining aerosolized tobramy-
cin in treating Pa infection among 31 CF patients, which

Figure 3. Kaplan-Meier plot of time to Pseudomonas aeruginosa (Pa) recurrence by presence of wrinkly colonies and irregular colony edges at baseline.

628 • CID 2014:59 (1 September) • Mayer-Hamblett et al



reported that eradication was significantly less likely in patients
with mucoid isolates [23].Those results likely differed from ours
because the prior study did not focus exclusively on early infec-
tion. Similarly, another study of longitudinally collected Pa iso-
lates identified decreased exoproduct production and decreased
motility among isolates from persistent compared with cleared
infections [13]. Because that study did not focus on newly de-
tected Pa, those results could also reflect chronic infection.

Our results showed a surprisingly high baseline prevalence of
phenotypes traditionally associated with adaptive change during
chronic infection [31], including mucoidy [14, 16], defective mo-
tility [32], and altered quorum sensing [18, 19].These “early” iso-
lates could represent adaptation of previously undetected
infection in either the upper [13, 33, 34] or lower airways, despite
negative cultures; because 94% of specimens in this study were
from the oropharynx rather than sputum, our ability to detect
lower airway infection was limited [35]. Alternatively, these find-
ings may represent patient-to-patient transmission of preadapted
lineages, a possibility that seems unlikely based on previous work
suggesting acquisition from environmental sources [12].

In CF, mucoidy has been associated with failure to eradicate
with antibiotics [23]. Previous work suggested that mucoidy
tends to emerge after an average of a decade of chronic infection
[14, 19], a change traditionally interpreted to reflect a chronic
infection phenotype [1, 12]. Our finding that early Pa isolates
from 9% of participants exhibited mucoidy not significantly as-
sociated with failure to eradicate after antibiotics raises ques-
tions about the prognostic significance of this phenotype in
early infection. We also confirmed and extended our previous
study results [19] that autolysis and/or sheen (indicators of
LasR inactivation [10]) preceded the emergence of mucoidy.
Additional larger longitudinal studies will be required to clarify
the natural history of Pa adaptive changes and the relative prog-
nostic utility of each characteristic with respect to long-term
clinical outcomes.

The 2 colony phenotypes that were associated with failure to
eradicate after antibiotics, wrinkly colony surface and irregular
colony edges, have both been associated previously with altered
quorum sensing and increased biofilm formation [27, 28], sug-
gesting these colony phenotypes could be markers for 1 or both
of these other characteristics. However, we did not identify asso-
ciations between these colony phenotypes and either in vitro bio-
film formation or lasRmutation. Therefore, the mechanism with
which isolates with these phenotypes persist, if any, is not yet
clear, and the prognostic utility of these phenotypes in predicting
failure of eradication must be confirmed in a prospective study.

Prior work demonstrated that in vitro antibiotic susceptibil-
ities of Pa isolates correlate poorly with subsequent CF clinical
outcomes [36], including eradication with antibiotics [22, 23].
Thus, we did not include susceptibility testing. Similarly, we
did not assay other Pa characteristics found previously to

change during chronic CF infections, either due to difficulty
adapting those assays for high-throughput testing, expense, or
poor reproducibility. Among these characteristics are type III
secretion and cytotoxicity, metabolic changes, growth in spu-
tum or under anaerobic conditions, hypermutability, mem-
brane changes, and serum sensitivity [9, 11, 12]. We also only
assayed biofilm formation on a subset of isolates due to issues
with assay complexity and reproducibility. These characteristics
represent potential future study possibilities.

There are several potential limitations of this work. For in-
stance, recent studies showed that traditional culture methods
(ie, isolating a small number of morphologically different bac-
terial colonies) frequently underrepresent the Pa diversity in
individual samples of CF respiratory secretions during chronic
infection with respect to antibiotic susceptibilities [37], quorum
sensing [38], and other phenotypes [39, 40]. A second limitation
is that study participants with lifetime histories of Pa positivity
must have had a 2-year history of Pa-negative cultures, but re-
quired only 1 culture result in each of the 2 years. Although it is
possible that participants with a lifetime history of Pawith fewer
cultures during those 2 years could have been found to have
more advanced Pa infection if sampled more frequently, our
analyses did not identify associations between lifetime Pa histo-
ry and any outcome of interest. Last, while this study is, to our
knowledge, the largest comparative phenotypic analysis of its
kind, the sample size may still have been insufficient to identify
some relationships with failure to eradicate, emergence of
mucoidy, or exacerbations. Additional study of larger isolate
collections may clarify this issue.

In conclusion, we found that 2 easily identified Pa colony
phenotypes, wrinkly colony surface and irregular colony
edges, were associated with subsequent eradication failure. In
addition, the in vitro phenotypes exhibited by baseline isolates
suggest that Pa may have already adapted to host environments
by the time it is first detected. Further studies of the predictive
utility of these phenotypes are required to confirm these find-
ings and to determine whether these phenotypes correlate
with longer-term clinical outcomes.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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