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Abstract

Purpose—Lung squamous cell carcinoma (LSCC) currently lacks effective targeted therapies.

Previous studies reported overexpression of HEDGEHOG (HH)-GLI signaling components in

LSCC. However, they addressed neither the tumor heterogeneity nor the requirement for HH-GLI

signaling. Here, we investigated the role of HH-GLI signaling in LSCC, and studied the

therapeutic potential of HH-GLI suppression.

Experimental Design—Gene expression datasets of two independent LSCC patient cohorts

were analyzed to study the activation of HH-GLI signaling. Four human LSCC cell lines were

examined for HH-GLI signaling components. Cell proliferation and apoptosis were assayed in

these cells after blocking the HH-GLI pathway by lentiviral-shRNA knockdown or small molecule

inhibitors. Xenografts in immunodeficient mice were used to determine the in vivo efficacy of GLI

inhibitor GANT61.

Results—In both cohorts, activation of HH-GLI signaling was significantly associated with the

classical subtype of LSCC. In cell lines, genetic knockdown of SMO produced minor effects on

cell survival, while GLI2 knockdown significantly reduced proliferation and induced extensive

apoptosis. Consistently, the SMO inhibitor GDC-0449 resulted in limited cytotoxicity in LSCC

cells, whereas the GLI inhibitor GANT61 was very effective. Importantly, GANT61 demonstrated

specific in vivo anti-tumor activity in xenograft models of GLI-positive cell lines.

Conclusion—Our studies demonstrate an important role for GLI2 in LSCC, and suggest GLI

inhibition as a novel and potent strategy to treat a subset of LSCC patients.
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Introduction

Lung cancer is the leading cause of cancer-related death worldwide. Squamous cell

carcinoma (LSCC) comprises ∼30% of non-small cell lung cancers and is associated

strongly with smoking. Although oncogenic alterations have been gradually described in
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LSCC, druggable targets have not been identified, resulting in lack of effective targeted

therapies (1). Analysis of gene expression of resected tumors has classified LSCC into four

mRNA expression subtypes, defined as classical, primitive, secretory and basal (2). The

oncogenic drivers and potential cells of origin of tumors within these subtypes are likely

different (2, 3). However, the practical application of these expression subtypes in clinical

care has not been determined.

Recently, growing evidence has suggested aberrant activation of the HEDGEHOG (HH)

signaling pathway in lung cancer, which plays a critical role during lung development (4, 5).

Canonical HH signaling is initiated by the binding of HH ligands (SONIC, INDIAN and

DESERT HEDGEHOG) to a 12-transmembrane receptor PATCHED (PTCH), which

relieves the catalytic inhibition of SMOOTHENED (SMO), a 7-transmembrane G-protein

coupled receptor (GPCR)-like signal transducer. SMO de-repression triggers a series of

intracellular events, resulting in the activation of downstream target genes through the zinc-

finger transcription factors GLI1, GLI2 and GLI3 (6). GLI activation is complex with

regulation at both the transcriptional and post-translational levels (7). GLI2 appears to be the

primary activator of HH signaling in cancer, with GLI1 as a transcriptional target of GLI2

(8-10). GLI2 and GLI1 also induce transcription of overlapping and distinct sets of

downstream targets (11). Several components of the HH pathway (PTCH, GLI1, GLI2,

HHIP) are GLI transcriptional targets that induce positive or negative feedbacks (7). GLI

targets mediate various cellular responses, notably enhanced cell proliferation and survival

by upregulating D-type cyclins and anti-apoptotic proteins (12-14). Finally,

phosphatidylinositol 3-kinase (PI3K)/AKT and RAS-MEK signals have been described as

non-canonical HH activators in cancer (15-17).

Dysregulation of the HH pathway has been implicated in a variety of cancers (18). Although

the involvement of HH signaling in small-cell lung cancer is well established (4, 5), the role

of this pathway in non-small cell lung cancer remains poorly understood. However, multiple

lines of evidence point to the potential importance of HH signaling in LSCC.

Immunohistochemical studies in patient specimens reported the overexpression of HH

signaling components (19, 20). Microarray analysis identified hyperactive HH signaling in

LSCC (21). HH-GLI signaling has also been implicated in squamous cancer of other organs

(22-24) . Despite these studies, very little is known regarding the specific role of HH

signaling in regulating cellular survival and proliferation in LSCC.

Targeted inhibitors of the HH pathway have become available recently. Because of its

accessibility on the membrane and its importance in regulation of the pathway, SMO has

been the primary focus in the development of small molecule inhibitors of the HH pathway.

GDC-0449 (vismodegib; Genentech) is an orally administered agent that selectively

suppresses SMO activity and was the first SMO inhibitor to progress to clinical trials. It has

produced promising antitumor responses in patients with advanced basal cell carcinoma and

medulloblastoma (25, 26), but resistance has been reported (27, 28). The resistance to SMO

inhibitors highlights the therapeutic need to target downstream effectors to maintain robust

on-target responses. In a cell-based screen of GLI-mediated transcription (29), the small

molecule GANT61 was identified as a specific inhibitor of GLI1 and GLI2. It suppresses the

DNA binding capacity of GLIs and inhibits GLI-mediated transcription. GANT61 reduces
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proliferation and induces apoptosis in a GLI-specific fashion in prostate cancer (29), colon

carcinoma (30, 31), oral squamous cell carcinoma (23), pancreatic cancer (32),

neuroblastoma (33), and chronic lymphocytic leukemia (34). In this study, we investigate

the role of HH-GLI signaling in LSCC and assess the clinical feasibility of using GDC-0449

or GANT61 to treat LSCC.

Materials and Methods

RNAseq and microarray analysis

RSEM values (35) for 178 tumor samples from The Cancer Genome Atlas (TCGA) LSCC

study (3) were converted to expression measurements by replacing values equal to zero with

the smallest non-zero value, taking a log2 transformation. After median centering by gene,

heatmaps of the expression values from TCGA (3) and microarray data from 56 LSCC

samples collected at the University of North Carolina (2) (UNC cohort) were produced with

R 2.15.1 (36) and the gplots package. Hypotheses were subsequently tested: One-sided

Wilcoxon Rank Sum tests were used to test the null hypothesis that the mean expression

levels of PTCH1, GLI1, GLI2, GLI3, and SUFU are the same in the classical subtype as all

other subtypes combined. For PTCH1, GLI1, and GLI2, the alternative hypothesis was that

the expression levels are higher in the classical subtype, whereas for GLI3 and SUFU the

alternative hypothesis was that the expression levels are lower in the classical subtype. A

Bonferroni adjustment was applied to correct for multiple comparisons.

Two-sided Wilcoxon Rank Sum tests were used to test the null hypothesis that GLI1 and

GLI2 expression values were equal in the TCGA and UNC cohorts. Spearman correlation

coefficients were computed based on the uncentered expression values of GLI1, GLI2,

TP63, PIK3CA, and SOX2 in both cohorts. The resulting unadjusted p values were used to

assess the significance of these associations (Supplementary Table 2).

Gene expression data from 20 LSCC cell lines was obtained from the Cancer Cell Line

Encyclopedia (CCLE) (37). After median centering the expression values by gene, the

centroid classifier from (2) was used to predict expression subtypes for each line by finding

the nearest centroid using a distance metric equal to one minus the Pearson correlation

coefficient. Gene expression heatmaps were then produced using R2.15.1 (36) and the gplots

package.

Cell culture and reagents

NCI-H520, NCI-H2170, NCI-H226 and SK-MES-1 cells were obtained from ATCC. Cell

lines were routinely verified by morphology and growth characteristics, and verified

biannually to be mycoplasma-free. NCI-H520, NCI-H2170 and NCI-H226 cells were

maintained in the RPMI 1640 medium containing 10% FBS. SK-MES-1 cells were

maintained in MEM medium containing 10% FBS, 0.1 mM non-essential amino acids, 1.0

mM sodium pyruvate. Antibodies: SHH, PTCH, SMO (Santa Cruz); GLI2, GAPDH

(Abcam); GLI1 (Novus Biologicals); Cleaved Caspase-3, Cleaved PARP (Cell Signaling

Technology); CCND1 (BD Biosciences). Compounds: GANT61 (Sigma) and GDC-0449

(Chemietek).
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Lentiviral production and transduction

Lentiviral shRNA clones (Sigma Mission RNAi) targeting SMO, GLI2 and the non-

targeting control (SHC002) were purchased from Sigma-Aldrich. 293T cells were plated in

10-cm plates 24 hours prior to transfection in DMEM medium containing 10% FBS without

antibiotics. 5 μg shRNA plasmid, 4 μg psPAX2 and 1 μg pCI-VSVG packaging vectors

(Addgene) were co-transfected into 293T cells using Lipofectamine 2000 Reagent

(Invitrogen). Viral supernatants were collected, centrifuged and filtered with 0.45 μm PES

Sterile Syringe Filter. Target cells were plated and incubated at 37°C, 5% CO2 overnight,

and changed to medium containing lentivirus and 8 μg/mL polybrene. Control plates were

incubated with medium containing 8 μg/mL polybrene. Cells were changed to fresh culture

medium 24 hours after infection. Puromycin selection (5 μg/ml) was started 48 hours post

infection and continued for 4∼5 days until no viable cells were observed in control plates.

Once decreased expression of the targeted gene was confirmed, cells were used for

subsequent experiments. Stable expression of non-targeting control, SMO or GLI2 shRNAs

was ensured by culturing cells in the presence of puromycin.

The shRNA sequences:

SMO sh1 (5′- CCGGCCTGATGGACACAGAACTCATCTCGAGATGAGTTCTG

TGTCCATCAGGTTTTT-3′)

SMO sh2 (5′- CCGGCATCTTTGTCATCGTGTACTACTCGAGTAGTACACGA

TGACAAAGATGTTTTT-3′)

SMO sh3 (5′- CCGGGTGGAGAAGATCAACCTGTTTCTCGAGAAACAGGTTG

ATCTTCTCCACTTTTT-3′)

GLI2 sh1 (5′- CCGGCCAACGAGAAACCCTACATCTCTCGAGAGATGTAGGGT

TTCTCGTTGGTTTTTG-3′)

GLI2 sh2 (5′-CCGGCACTCAAGGATTCCTGCTCATCTCGAGATGAGCAGGAA

TCCTTGAGTGTTTTTG-3′)

GLI2 sh3 (5′-CCGGGCTCTACTACTACGGCCAGATCTCGAGATCTGGCCGTA

GTA GTAGAGCTTTTTG-3′)

Assessment of cell viability and caspase 3/7 activity

Cell viability and caspase 3/7 activity were determined by using ApoLive-Glo Multiplex

Assay (Promega) according to the manufacturer's instructions. Briefly, cells were seeded in

96-well clear-bottom white plates at a density of 10,000 cells per well and incubated with

complete medium overnight at 37°C, 5% CO2. The following day, cells were changed into

0.5% FBS-containing medium with either DMSO control or drugs at designated

concentrations (0.1% final DMSO concentration) as triplicates and treated for 96 hours. At

the end of treatment, viability reagent was added into all wells and gently mixed. After 1.5-

hour incubation at 37°C, fluorescence was measured at the wavelength set 355EX/ 520EM by

a FLUOstar Omega Microplate reader. Later, Caspase-Glo® 3/7 Reagent was added to all

wells and gently mixed. Luminescence was measured after 1-hour incubation at room
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temperature. The reading of blank control was subtracted from readings of other wells as the

background in the data analysis.

RNA isolation and quantitative PCR

Total RNA was isolated using the Qiagen RNeasy Mini Kit, treated with DNase I

(Invitrogen) and converted to cDNA using iScript cDNA Synthesis Kit (BIO-RAD). Real-

time PCR was performed using TaqMan Gene Expression Master Mix on an Eppendorf

Mastercycler, and raw data were analyzed by Realplex software. TaqMan probes for SHH,

PTCH1, SMO, GLI1, GLI2, HHIP and GAPDH were purchased from Applied Biosystems.

Western analysis

Total cellular lysates were prepared by using RIPA buffer (Sigma) with protease inhibitor

cocktail (Sigma) and PhosSTOP (Roche). Protein concentrations were determined by Micro

BCA Protein Assay Kit (Thermo Scientific). Proteins were separated on the NuPAGE

4-12% Bis-Tris Gel (Life Technologies) and transferred using Invitrolon PVDF Filter Paper

Sandwich. Membranes were blocked with 5% nonfat dry milk or 5% BSA in 0.1%TBST for

1 hour in room temperature, then incubated with primary antibody overnight at 4°C. They

were subsequently washed with 0.1%TBST and incubated with the secondary antibody for 1

hour at room temperature. Western Lightning- ECL (PerkinElmer) was used to develop the

membranes.

Xenograft and tumor treatment

106 NCI-H520 cells, 106 NCI-H2170 cells or 5×106 NCI-H226 cells were suspended in a

total volume of 100 μl of a 1:1 mixture of RPMI 1640 medium: Matrigel (BD Biosciences).

Cells were injected subcutaneously in the right posterior flank of 6∼8 week C.129S7 (B6)-

Rag1tm1Mom/ J (Rag1-/-) mice. Tumors were grown until they reached a median size of

≈250 mm3 (NCI-H520), ≈230 mm3 (NCI-H2170), and ≈150 mm3 (NCI-H226). Animals

were randomly divided into groups and treated with solvent only (corn oil: ethanol, 4:1) or

GANT61 in solvent (50 mg/kg). Treatments were given every other day for 20 days by

intraperitoneal injection. Tumor volumes were calculated by the formula 0.52×length×

(width)2. At the end of treatment, tumors were removed, weighed and processed for

subsequent analysis. All animal experiments were approved by and conformed to the

policies and regulations of Institutional Animal Care and Use Committees at Duke

University.

Results

Activation of HH-GLI signaling is associated with the classical subtype of human LSCC

To ascertain whether HH signaling is upregulated in a particular subset of LSCC patients,

the RNA expression data of 178 patient samples from the Cancer Genome Atlas (TCGA)

LSCC study (3) was queried. As Figure 1A demonstrates, the expression of HH target genes

(PTCH1, GLI1, GLI2) was significantly higher, while expression of negative regulators

(GLI3, SUFU) was substantially lower in the classical subtype in comparison to the other

subtypes. One-sided Wilcoxon Rank Sum Test confirmed these observations

(Supplementary Table 1) even after applying a Bonferroni adjustment for multiple
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comparisons. Similar expression patterns were seen in an independent cohort of 56 LSCC

samples collected at the University of North Carolina (2) (UNC cohort) (Supplementary

Figure S1A). In both cohorts, GLI2 mRNA level was significantly higher than GLI1 (Figure

1B, Supplementary Figure S1B). Samples with high GLI2 expression were mainly found in

the classical subtype although occasionally in other subtypes. When taking the 75th

percentile of all GLI2 expression values in a given cohort as the threshold for high GLI2,

55% (TCGA cohort) and 52% (UNC cohort) of all classical subtype samples exhibited high

GLI2 expression (Figure 1C, Supplementary Figure S1C).

Strong positive correlations between GLI2 and the prominent markers for the classical

subtype (SOX2, TP63 and PIK3CA) on chromosome 3q were observed in both cohorts

(Figure 1D∼F, Supplementary Figure S1D∼F). However, GLI1 was only associated with

classical chr3q genes in the TCGA cohort (Supplementary Figure S1G∼I), suggesting that

GLI2 is highly likely to be the major signaling transducer in LSCC. Spearman correlation

coefficients between GLI2/ GLI1 and the classical subtype markers with corresponding p

values were provided in Supplementary Table 2.

HH-GLI signaling components are expressed in human LSCC cell lines

The difficulty of growing human LSCC cells in vitro limits available primary cancer cells.

Therefore, we chose the four most widely used human LSCC cell lines to analyze active HH

signaling: NCI-H520 and NCI-H2170, derived from primary tumors; and NCI-H226 and

SK-MES-1, derived from metastatic pleural effusions. By real-time PCR (Figure 2A) and

Western blots (Figure 2B), high levels of SHH were detected only in NCI-H520, whereas

PTCH1 and SMO were expressed universally across all four lines. Neither GLI1 nor GLI2

was detected in NCI-H2170. In the remaining three lines, GLI1 was expressed at a low

level, whereas high levels of GLI2 were consistently detected at both the mRNA and protein

level. To ascertain whether these cell lines represent different LSCC subtypes by mRNA

expression, gene expression profiles from CCLE (37) were analyzed. NCI-H520 and NCI-

H2170 were predicted to be classical subtype, and NCI-H226 and SK-MES-1 as secretory

subtype. Gene expression of the subtypes between the cell lines and patient tumors is

consistent over the validation gene set (Supplementary Figure S2).

shRNA knockdown of SMO produces minor effects on LSCC survival

The universal expression and the ability to target SMO with multiple available inhibitors

prompted us to investigate the importance of SMO in LSCC cells. Lentiviral mediated

expression of independent SMO shRNA constructs successfully reduced the SMO mRNA

level by 70∼90% in four cell lines (Figure 3A). However, only minor effects on cell

viability and apoptosis were observed in these cells (Figure 3B, C). SMO knockdown caused

a moderate decrease of PTCH1 mRNA in NCI-H520 and NCI-H226 (Figure 3D), but no

significant reduction of HHIP mRNA in any of four lines (Figure 3E). These data suggest a

minimal role for SMO in regulating LSCC survival via the canonical HH pathway.

Interestingly, loss of SMO did not reduce GLI2 mRNA level in three GLI-positive cell lines.

Instead, we noted a slight increase of GLI2 mRNA (Figure 3F), which may be caused by

compensatory upregulation of GLI2 by other SMO-independent mechanisms.
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Targeting GLI2 with shRNAs inhibits LSCC cell growth and induces extensive apoptosis

Since GLI1 is hardly detectable and high level of GLI2 is consistently expressed in three cell

lines and across human LSCC tumors, we focused on GLI2. Independent lentiviral-based

GLI2 shRNAs achieved satisfactory knockdown of GLI2 protein in all three GLI2-positive

lines (Figure 3G). Knockdown of GLI2 reduced the protein level of the GLI target CCND1

(Figure 3G), corresponding to a strong inhibition of cell proliferation and survival (Figure

3H). Loss of GLI2 also induced extensive apoptosis, demonstrated by elevated caspase 3/7

activity (Figure 3I), and the detection of cleaved caspase-3 and cleaved PARP (Figure 3G).

These data suggest an important role of GLI2 in regulating LSCC cell survival, raising the

possibility that GLI2 is a therapeutic target in human LSCC.

GLI inhibitor (GANT61) leads to significant growth inhibition and apoptosis, and
demonstrates greater efficacy than the SMO inhibitor (GDC-0449)

To investigate the feasibility of pharmacologically targeting SMO or GLI proteins in LSCC,

we studied the therapeutic potential of a clinically available SMO inhibitor, GDC-0449, and

a GLI inhibitor, GANT61. To maintain physiologic relevance and minimize off-target

toxicity, we assessed the efficacy of GDC-0449 and GANT61 in four LSCC cell lines at the

concentrations of 2.5, 5 and 10 μmol/L. Cells were treated in triplicate with either DMSO

control, GDC-0449 or GANT61 for 96 hours, and then assayed for viability and caspase 3/7

activation.

As Figure 4A and 4B demonstrate, GDC-0449 showed limited growth inhibition and

apoptosis induction only in NCI-H520 and NCI-H226 cells at 10 μmol/L despite the

universal expression of SMO. Consistently, GDC-0449 only caused modest reduction of

PTCH1 mRNA in NCI-H226 cells (Figure 5A). Among three GLI-positive cell lines,

GDC-0449 led to slight decrease of GLI2 mRNA in NCI-H226 and SK-MES-1 (Figure 5B),

again suggesting a minimal role of SMO in mediating HH-GLI signaling in LSCC.

In contrast, GANT61 demonstrated greater efficacy in a dose-dependent manner in all GLI-

positive cells. The originally reported IC50 of GANT61 to reduce GLI-luciferase reporter

activity is ≈5 μmol/L(29), and 5∼30 μmol/L is commonly used (29-31). In our studies, the

IC50 of growth inhibition for three GLI-positive lines was ≈5 μmol/L (Figure 4C). Both

NCI-H520 and NCI-H226 showed a 55% reduction at 5 μmol/L and 90% reduction at 10

μmol/L in cell survival. SK-MES-1 displayed approximate 40% and 60% decrease in

viability at 5 and 10 μmol/L, respectively. As expected, GANT61 exhibited little

cytotoxicity in GLI-negative NCI-H2170 cells. Consistently, increased apoptosis was seen

in GLI-positive cell lines at corresponding GANT61 concentrations: NCI-H520 (1.8∼2.3

fold), NCI-H226 (2.8∼4 fold) and SK-MES-1 (2.4∼2.6 fold), but not in GLI-negative NCI-

H2170 (Figure 4D).

Real-time PCR demonstrated significant reduction of HH downstream targets (GLI2,

PTCH1 and HHIP) in NCI-H520 with a greater decrease in NCI-H226 and SK-MES-1 in

comparison to DMSO control (Figure 5C∼E). Western analysis confirmed the reduction of

GLI2 protein in GANT61-treated cells (Figure 5F). Cleaved caspase-3 and cleaved PARP

were detected in cells receiving GANT61 (Figure 5F). The protein level of CCND1 was also
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decreased by GANT61 treatment, indicating impaired cell proliferation in addition to

increased cell death (Figure 5F).

Taken together, our results suggest that targeting HH signaling at the level of GLI proteins

may be more effective than targeting either the ligand SHH or the receptor SMO in LSCC,

potentially due to the existence of the ligand or receptor independent pathway activation.

GANT61 suppresses GLI-positive tumor progression in vivo

Currently, there are no available transgenic murine models that faithfully recapitulate human

LSCC. Recently, patient-derived xenograft models of LSCC have shown promise, but have

not yet achieved satisfactory progress. Therefore, we used a xenograft model of

representative human LSCC cell lines to determine the efficacy of GANT61 in vivo. GLI-

positive NCI-H520 or NCI-H226 and GLI-negative NCI-H2170 cancer cells were injected

subcutaneously into the right flank of immune deficient Rag1-/- mice. Mice were randomly

divided into two groups when tumors reached median size ≈250 mm3 for NCI-H520 (n=8

for each group), ≈150 mm3 for NCI-H226 (n=5 for each group) and ≈230 mm3 for NCI-

H2170 (n=5 for each group). We began treatment with either solvent control or GANT61 at

a previously described dose of 50 mg/kg (29) by intraperitoneal injection every other day.

During a 20-day treatment period, suppression of tumor growth was observed in the groups

receiving GANT61 (Figure 6A and 6B) for both NCI-H520 and NCI-H226. In contrast, no

significant difference of tumor growth was found in the NCI-H2170 xenograft (Figure 6C).

GANT61 led to a significant 40% reduction of tumor weight for both GLI-positive cell lines

in comparison to solvent control, but had no effects on GLI-negative NCI-H2170 tumors

(Figure 6D∼F), suggesting specific anti-tumor efficacy of GANT61. No adverse side

effects, such as weight loss, ulcerations, or general illness of the animals, were observed.

Real-time PCR analysis confirmed that GANT61 reduced the mRNA level of GLI target

genes PTCH1 and HHIP in NCI-H520 and NCI-H226 xenografts, but not in NCI-H2170

tumors (Figure 6G∼I).

Discussion

Aberrant HH signaling has been implicated in a diverse spectrum of human cancers.

Previous studies have reported hyperactive HH signaling in a subset of LSCC, but they

failed to address the complexity and heterogeneity of the disease. Four distinct molecular

subtypes, which have different survival outcomes, patient populations, and biological

processes, were identified by gene expression-subtype signatures (2). In the recent study of

TCGA (3), we found that the HH activation is associated with the classical subtype (∼36%

of LSCC). A consistent pattern was observed in an independent UNC microarray dataset (2).

This observation is consistent with previous immunohistochemical studies (19, 20), which

showed high activation of HH signaling in approximately 27% of LSCC patients. Among all

four subtypes, the classical subtype (2, 3) has the highest proportion of smokers and the

heaviest smoking history, as well as the greatest overexpression of three known oncogenes

on 3q26 amplicon: SOX2, TP63 and PIK3CA (2, 3).

While GLI2 was consistently highly expressed in the classical subtype, strong positive

correlations between GLI2 and the three best-known markers of the classical subtype on
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chromosome 3q were observed, together suggesting a critical role of GLI2 in LSCC, as

found in SCC in other organs (22-24). Interestingly, the expression of ligand SHH within the

classical subtype varied markedly and was not significantly different between subtypes. The

expression patterns of other two HH ligands, IHH and DHH, were similar to SHH

(Supplementary Figure S1J). These data indicate the existence of ligand-independent GLI

activation in the classical subtype. Genetic alterations, including loss of PTCH function,

constitutively active SMO, and amplification of GLI1/GLI2 have been reported to activate

downstream HH signaling independent of ligands in various cancers. Moreover, GLI

function can be modulated in a SMO-independent manner by PI3K/AKT (15), RAS-MEK

signaling (16, 17), which may contribute to the hyperactive HH-GLI signaling in LSCC in

addition to canonical HH signaling.

Recent development of multiple SMO inhibitors for human administration prompted us to

test the potential clinical application to treat LSCC patients by targeting SMO. However,

shRNAs knockdown of SMO showed only minor effects on LSCC cell survival and

apoptosis, with little effect on HH downstream target gene expression. Consistently,

GDC-0449 produced limited cytotoxicity despite the universal expression of SMO,

suggesting the existence of SMO-independent regulation of GLI signaling. The strong and

unique expression pattern of GLI2 prompted the query whether it is necessary for LSCC

tumor progression. Knockdown of GLI2 induced apoptosis and significant growth inhibition

in GLI2-positive LSCC cells, demonstrating an essential role of GLI2 in regulating cell

viability and death. Importantly, the GLI inhibitor, GANT61, effectively blocked GLI-

mediated signal transduction and suppressed tumor growth both in vitro and in vivo. Recent

studies in neuroblastoma (33) and chronic lymphocytic leukemia (34) also showed that

GANT61 effectively suppressed tumor progression in cancers insensitive to SMO inhibition.

Interestingly, amplification of GLI2 or CCND1 have been proposed as additional

mechanisms responsible for resistance to SMO inhibitors (27), and GANT61 treatment

significantly reduced expression of GLI2 and CCND1 in LSCC cells.

GANT61 is a relatively new member in the HH inhibitor family, since most known HH

pathway antagonists focus on the transmembrane activator SMO. Other readily available

agents that inhibit GLI2 are rare. Arsenic trioxide (ATO), which is FDA-approved treatment

for acute promyelocytic leukemia, has recently been described as a potent HH inhibitor.

ATO has been shown to inhibit HH signaling by inhibiting GLI2 ciliary accumulation and

promoting its degradation (38), and inhibit tumor growth in cancers with known drug-

resistant SMO mutations and in the context of GLI2 overexpression (39). Due to the

likelihood that compounds suppressing HH pathway-dependent proliferation in one cell type

may be inactive in others, the clinical relevance of ATO in LSCC treatment is currently

under investigation.

A recently emerging idea in clinical treatment is to combine several anti-tumor agents that

specifically target different signaling pathways. It has been reported that GLI function can

be modulated in a SMO-independent manner by PI3K/AKT signaling (15). Pharmacologic

inhibition of PI3K/AKT signaling reduced tumor growth in GDC-0449-resistant

medulloblastoma (27). Several inhibitors of the PI3K pathway are undergoing clinical

evaluation. PIK3CA copy number gains and loss of PTEN function are prevalent in the
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classical subtype of LSCC, where the activation of HH signaling was observed. This

coexistence raises the possibility that a combined therapy may be more beneficial than a

monotherapy to enhance efficiency and overcome drug resistance.

Treatment options for LSCC overall are disappointing. Different from standard-of-care

chemotherapy or small molecule inhibition of kinase signaling cascades, we present a

potential strategy to treat a subset of LSCC patients by targeting the GLI transcriptional

network. Our studies also highlight the need for agents that suppress GLI effectors with high

efficacy and selectivity.
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Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Targeted therapeutics for lung squamous cell carcinoma (LSCC) are currently lacking. In

this study, we have analyzed molecular subtypes of LSCC and identified overexpression

of HEDGEHOG family members in the classical subtype. In representative LSCC cell

lines, genetic deletion of SMOOTHENED (SMO) produced minor effects on cell

survival, while GLI2 knockdown greatly reduced cell viability and induced extensive

apoptosis. Using both in vitro and in vivo approaches, we evaluated therapeutic efficacy

of GDC-0449, a clinically-available SMO inhibitor as well as GANT61, a targeted GLI

inhibitor. GANT61 was significantly more effective than GDC-0449 in reduction of

proliferation and induction of apoptosis. We report SMO-independent regulation of GLI

in LSCC, and present a potential strategy of targeting GLIs to treat a subset of LSCC

patients.
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Figure 1. HH pathway components are overexpressed in the classical subtype of LSCC in the
TCGA cohort
A. Heatmap of HH signaling components. Tumor samples are displayed as columns,

grouped by gene expression subtypes. Selected HH genes are rows. Displayed genes of HH

pathway except SHH, showed highly significant association with gene expression subtype

(p<0.001) (Supplementary Table 1). B. GLI2 expression is significantly higher than GLI1

(p=4.2×10-5). C. Gene expression values were plotted according to subtypes, and the 75th

percentile of all GLI2 expression is shown as a horizontal red line. D∼F. Scatterplots of

gene expression measurements between GLI2 and SOX2 (D), TP63 (E) and PIK3CA (F).

Spearman correlation coefficients and corresponding p values were provided in

Supplementary Table 2.
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Figure 2. HH signaling components are expressed in human LSCC cell lines
A. Real-time PCR for indicated genes, with GAPDH as the quantitative control. B, Western

Blot for the SHH-GLI pathway components, with GAPDH as the loading control. Classical

subtype: NCI-H520 and NCI-H2170; Secretory subtype: NCI-H226 and SK-MES-1.
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Figure 3. SMO plays a minor role while GLI2 is required for LSCC survival in vitro
A. Change of GAPDH-normalized SMO mRNA level by real-time PCR following lentiviral

shRNA knockdown. Non-targeting shRNA control (shNT) or 2 independent shRNAs (SMO

sh1, 2, 3) targeting SMO were used in each cell line. B∼C. Measurements of viability (B)

and apoptosis (C) in cells after SMO knockdown. Data were normalized to shNT control and

represent the mean ± SD of 3 independent experiments. D∼F. Real-time PCR showing the

GAPDH-normalized mRNA level of PTCH1 (D), HHIP (E) and GLI2 (F) after SMO

knockdown. G. Western blots showing GLI2 knockdown by independent shRNAs (GLI2

sh1, 2, 3). GLI2 shRNAs significantly reduced GLI2 protein levels, in comparison to the

shNT control. GLI2 knockdown also caused induction of cleaved caspase-3, cleaved PARP

and reduction of CCND1. GAPDH was used as the loading control. A representative

Western blot from 3 independent experiments is shown. Knockdown of GLI2 in LSCC cells

significantly reduced proliferation (H) and induced apoptosis (I). Data were normalized to

shNT control and represent the mean ± SD of 3 independent experiments. (Two-tailed t test,

**: p<0.01; ***: p<0.001)
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Figure 4. GANT61 is more effective than GDC-0449 in reducing cell survival and inducing
apoptosis
A∼B. 96-hour treatment of GDC-0449 generated limited growth inhibition (A) and

apoptosis (B). Only moderate cytotoxicity was observed in NCI-H520 and NCI-H226 cells

at 10 μmol/L. C∼D. 96-hour treatment of GANT61 significantly reduced cell survival (C)

and induced extensive apoptosis (D) in all GLI-positive cell lines. GLI-negative NCI-H2170

was not affected by GANT61. Data were normalized to DMSO control and represent the

mean ± SD of 3 independent experiments. (Two-tailed t test, *: p<0.05; **: p<0.01; ***:

p<0.001)
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Figure 5. GANT61 is more efficient than GDC-0449 in suppressing the expression of GLI target
genes
A∼B. Real-time PCR of GAPDH-normalized mRNA level of PTCH1 (A) and GLI2 (B) in

cells treated with DMSO or 10 μmol/L GDC-0449 for 96 hours. C∼E. 96-hour exposure to

10 μmol/L GANT61 reduced mRNA levels of GLI targets. Gene expressions were

normalized to endogenous GAPDH in each cell line. Data represent the mean ± SD of 3

independent experiments. (Two-tailed t test, *: p<0.05; **: p<0.01; ***: p<0.001) F. 96-

hour treatment of 10 μmol/L GANT61 reduced protein levels of GLI2 and CCND1, and

induced cleaved caspase-3 and cleaved PARP. GAPDH was used as the loading control. A

representative Western blot from 3 independent experiments is shown.

Huang et al. Page 18

Clin Cancer Res. Author manuscript; available in PMC 2015 March 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. GANT61 treatment suppressed GLI-positive tumor progression in vivo
A∼C, Growth of NCI-H520 (A, n=8), NCI-H226 (B, n=5), and NCI-H2170 (C, n=5)

xenografts (mean ± SD). D∼F, Measurement of tumor weight at the end of treatment for

NCI-H520 (D, n=8), NCI-H226 (E, n=5), and NCI-H2170 (F, n=5). Shown is the mean ±

SD. G∼I, Quantification of PTCH1 and HHIP mRNA by real-time PCR in treated tumors

for NCI-H520 (G, n=4), NCI-H226 (H, n=5), and NCI-H2170 (I, n=5). Values were

normalized against GAPDH. Shown is the mean ± SD of independent tumors in each group.

In A∼I, data were analyzed by two-tailed t test. (*: p<0.05; **: p<0.01; ***: p<0.001, NS:

not significant.)
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