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Abstract

Purpose—Previous studies of breast tissue gene expression have demonstrated that the

extratumoral microenvironment has substantial variability across individuals, some of which can

be attributed to epidemiologic factors. To evaluate how mammographic density (MD) and breast

tissue composition relate to extratumoral microenvironment gene expression, we used data on 121

breast cancer patients from the population-based Polish Women's Breast Cancer Study.

Design—Breast cancer cases were classified based on a previously reported, biologically-defined

extratumoral gene expression signature with two subtypes: an Active subtype, which is associated

with high expression of genes related to fibrosis and wound response, and an Inactive subtype,

which has high expression of cellular adhesion genes. MD of the contralateral breast was assessed

using pre-treatment mammograms and a quantitative, reliable computer-assisted thresholding

method. Breast tissue composition was evaluated based on digital image analysis of tissue

sections.

Results—The Inactive extratumoral subtype was associated with significantly higher percentage

mammographic density (PD) and dense area (DA) in univariate analysis (PD: p=0.001; DA:

p=0.049) and in multivariable analyses adjusted for age and body mass index (PD: p=0.004; DA:

p=0.049). Inactive/higher MD tissue was characterized by a significantly higher percentage of

†Corresponding author Correspondence to: Melissa A. Troester, Ph.D. Department of Epidemiology, CB 7435 University of North
Carolina at Chapel Hill Chapel Hill, NC 27599 (919) 966-7408 troester@unc.edu.

Conflict of interest statement: None declared

NIH Public Access
Author Manuscript
Clin Cancer Res. Author manuscript; available in PMC 2014 September 15.

Published in final edited form as:
Clin Cancer Res. 2013 September 15; 19(18): 4972–4982. doi:10.1158/1078-0432.CCR-13-0029.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



stroma and a significantly lower percentage of adipose tissue, with no significant change in

epithelial content. Analysis of published gene expression signatures suggested that Inactive/higher

MD tissue expressed increased estrogen response and decreased TGF-β signaling.

Conclusions—By linking novel molecular phenotypes with MD, our results indicate that MD

reflects broad transcriptional changes, including changes in both epithelia- and stroma-derived

signaling.
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Background

Molecular profiling of gene expression of breast cancers has demonstrated that tumors are

remarkably heterogeneous, which has profound influences on etiological and clinical

research (1, 2). More recently, molecular analyses of the microenvironment have

demonstrated similar heterogeneity (3-7), but the epidemiological, clinical and pathological

correlates of this variation are not well studied. Specifically, tandem analyses of breast

cancers and the surrounding microenvironment may reveal important stromal-epithelial

interactions. In fact, previous work suggests that stromal changes may precede tumor

invasiveness and may reflect tumor characteristics (8-13). Findings such as these have led to

speculation that the microenvironment may be dominant over tumor biology early in

progression, when invasive cancers are still forming (8-13). While the importance of tumor

microenvironment is increasingly established in the cancer biology literature (8, 14), the

epidemiologic factors that affect the microenvironment remain poorly understood.

We recently reported an extratumoral signature, so-called Active signature, classifying

extratumoral stromal microenvironments into two primary gene expression phenotypes

(Active and Inactive) based on unsupervised clustering on 72 normal tissue samples adjacent

to invasive breast cancer or ductal carcinoma in situ (Active, n=27; Inactive, n=45) (6). The

Active subtype had high expression of genes involved in activation of fibrosis, cellular

movement, increased TWIST expression and positive expression of TGF-β signatures. The

Inactive subtype expressed higher levels of cell adhesion and cell-cell contact genes.

Compared with the Inactive subtype, ER+ and hormone-treated patients with the Active

subtype had poorer overall survival, suggesting possible prognostic value. However, the

Active subtype appeared to be independent of breast cancer subtype and standard

clinicopathological parameters, such as tumor size and grade (6). These findings raise the

hypothesis that extratumoral subtypes may be host factors rather than tumor-dependent

factors.

We hypothesized that host factors influence the microenvironment that exists prior to tumor

development and that these changes may be etiologically relevant. Thus, to further evaluate

whether the Active/Inactive signature is related to tumor factors, host factors, or both, we

performed gene expression profiling on extratumoral non-neoplastic breast tissues from 121

breast cancer patients of the population-based Polish Women's Breast Cancer Study

(PWBCS) (15). In particular, based on differential expression of fibrosis, wound response,
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and cell adhesion genes in the two subtypes, we hypothesized that the Inactive

microenvironment would be associated with high mammographic density. We further

hypothesized that because mammographic density is a radiologic reflection of variations in

breast tissue composition, high mammographic density/inactive microenvironment would be

associated with high non-fatty stroma and epithelial content. PWBCS participants are well-

characterized with respect to established breast cancer risk factors, including mammographic

density, providing us with the opportunity to link the Active/Inactive molecular phenotype

with mammographic density.

Materials and Methods

Study population

The study population included 121 women from the PWBCS with available snap frozen

extratumoral breast tissues and mammographic density. The PWBCS is a population-based

case-control study conducted in two major cities in Poland (Warsaw and Łódź) during

2000-2003 (15). PWBCS cases were women aged 20-74 years with newly-diagnosed,

pathologically-confirmed in situ or invasive breast carcinoma identified through a rapid

identification system organized at five participating hospitals and via cancer registries. Fresh

tissues from invasive tumors, non-neoplastic adjacent breast tissue and mammary fat tissue

were collected at the time of breast surgery and snap frozen in liquid nitrogen. Tumor

adjacent breast tissues used in this study were <2cm from the tumor margin. Based on in

vitro evidence of their distinctive microenvironments (16), basal-like and luminal tumors

were oversampled in this study. Information on clinicopathological, demographic, and

anthropometric factors was collected from medical records and in-person interviews as

described previously (15). All of the participants provided written informed consent under a

protocol approved by the U.S. National Cancer Institute and local (Polish) institutional

review boards.

Mammographic density measurement

Pre-treatment mammograms of the unaffected breast were sent to the Ontario Cancer

Institute in Toronto, Canada where they were digitized using a Lumisys® 85 laser film

scanner. Patient identifiers were permanently deleted from the electronic images.

Craniocaudal views of digitized films were used to assess mammographic density with

Cumulus®, an interactive computer-assisted thresholding program developed at the

University of Toronto (17). One expert reader (NFB) measured absolute dense area (cm2)

and total breast area (cm2) using the methods as described previously (17); percentage

mammographic density was calculated by dividing the dense breast area by the total breast

area and multiplying by 100. A repeat set of 49 images was assessed for reliability. The

intra-class correlation coefficients for percent mammographic density, dense area, and total

breast area were 0.95, 0.93, and 0.99, respectively, documenting excellent reproducibility.

Breast tissue composition measurement

Frozen non-neoplastic breast specimens of approximately 100 mg were cut over dry ice and

then used to cut frozen sections. Sections were collected at both ends of the specimen and

then constructed into 20 μm slides. The central portion was used for RNA extraction. After
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H&E staining, the slides were scanned into high-resolution digital images using the Aperio

Scan-Scope XT Slide Scanner (Aperio Technologies, Vista, CA, USA) in the UNC

Translational Pathology Laboratory. After excluding slides with poor resolution or having

folded tissues, slides from 118 women (97.5%) were subjected to breast tissue composition

analysis. To train the composition estimator in Aperio's Genie software, 15 representative

digital slides were selected and manually annotated for epithelial area, stromal area, and

total area (mm2) using Aperio ImageScope software. These digital area-based, quantitative

estimates were used to train Aperio's Genie Classifier to partition epithelium, adipose tissue,

non-fatty stroma, and glass into percentages. Examples of annotated digital images are

presented in Supplementary Figure 1. The regular H&E counterparts of these 15 digital

slides were also evaluated by eye by a pathologist who provided semi-quantitative estimates

of the percentage of adipose tissue (10% bin width), epithelium (1% bin width), and non-

fatty stroma (10% bin width). To assess the performance of Genie classifiers, we compared

the results of three methods (by Genie, by pathologist digital slide-based, and by pathologist

regular H&E slide-based). The trained classifier was positively and strongly correlated with

manually scored area based on the digital images, for all three tissue compartments. The

trained Genie classifier was strongly correlated with pathologist review based on regular

H&E slides for stroma and adipose (Supplementary Table 1, Pearson correlation coefficient

ranged 0.95-0.96), while relatively lower for epithelium (Pearson correlation

coefficient=0.68). Compared with digital assessment, visual assessment (by human eye on

regular H&E slides) of small percentage differences is weaker, such as epithelial tissue,

which is sparse (<10%) in benign breast. Thus the digital image analysis data were used in

analyses, and the trained Genie Classifier was then applied to the remaining slides.

RNA isolation and microarrays

All microarrays on non-neoplastic breast tissue were performed at the University of North

Carolina at Chapel Hill. The central section of fresh frozen non-neoplastic tissue (as

described above) was homogenized using a MagnaLyser homogenizer (Roche), and RNA

was isolated by Qiazol extraction followed by purification on an RNeasy column as

described in Troester et al. (5). RNA quality and quantity were analyzed on an Agilent 2100

Bioanalyzer and a ND-1000 Nanodrop spectrophotometer, respectively, before running two-

color 4X44K Agilent whole genome arrays. Cy3-labeled reference was produced from total

RNA from Stratagene Universal Human Reference (spiked 1:1,000 with MCF-7 RNA and

1:1,000 with ME16C RNA to increase expression of breast cancer genes) following

amplification with Agilent low RNA input amplification kit. The same protocol was applied

to total RNA from breast tissues, with all patient samples labeled with Cy5. Data were

lowess-normalized, and probes that had a signal of <10 dpi in either channel were excluded

as missing. Probes that had more than 20% missing data across all samples were excluded

from further analysis. In expression data preprocessing, we 1) eliminated the probes without

corresponding ENTREZ ID, 2) collapsed the duplicate probes by averaging, 3) imputed

missing data using k-nearest neighbors (KNN) method with k=10, and 4) median-centered

each gene. Microarray data for 121 specimens used in this analysis are publicly available

through the Gene Expression Omnibus (GSE49175).
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Statistical analysis

Samples were classified as having Active or Inactive extratumoral subtype using

unsupervised hierarchical clustering (average linkage) on the genes in the published Active/

Inactive extratumoral signature (6). 324 of 3518 genes in the original Active signature were

excluded in the clustering analysis as they did not pass filtering criteria described above.

Consensus clustering was used to evaluate whether two clusters resulted in optimal

segregation of the sample classes (18). The Active or Inactive extratumoral subtype obtained

by clustering was validated using the Creighton correlation method (19), described in

Supplementary Figure 2. Briefly, a standard vector corresponding to all genes in the Active/

Inactive signature was constructed, with 1 assigned to up-regulated genes and -1 assigned to

down-regulated genes. A Pearson correlation coefficient was calculated for this standard

vector vs. the vector of median centered gene expression for each patient. The identities of

the 3194 genes and their corresponding standard vector for Creighton correlation in the

present study were shown in Supplementary Table 2. Patients were classified as Active if the

Pearson correlation coefficient was greater than zero, and Inactive if the coefficient was less

than zero.

The distributions of breast cancer risk factors by the Active/Inactive subtype were assessed,

including age at diagnosis (continuously and categorically as <50 y and ≥ 50 y), BMI

(continuously and categorically as <30 kg/m2 and ≥ 30 kg/m2), age at menarche (<12 y and

≥ 12 y), parity (nulliparous and parous), age at 1st full term birth in parous women (<25 y

and ≥ 25 y), use of oral menopausal hormone therapy (MHT, never and ever), menopausal

status (premenopausal and postmenopausal), family history of breast cancer in the first

degree relative (yes and no), previous benign breast disease history (defined as if a subject

ever had any biopsy or partial removal procedure, but no cancer detected; yes and no),

percentage mammographic density (continuously and categorically as <25% and ≥ 25%),

and dense area (continuously and categorically as <median and ≥ median; median=36.52

cm2). Moreover, the distributions of clinicopathologic characteristics by the Active/Inactive

subtype were evaluated, including tumor size (≤2 cm and >2 cm), histological type (ductal

and others), differentiation stage (well/moderate and poor), number of positive axillary

lymph nodes (0 and ≥1), ER status and intrinsic subtype. To identify potential confounding

factors, the distributions of clinicopathologic characteristics and breast cancer risk factors by

percent mammographic density and dense area were also examined. The corresponding

associations were evaluated using Chi-square tests for categorical variables and Student's t-

tests for continuous variables. Moreover, to assess the magnitude of association between risk

factor exposure (e.g. obese vs. nonobese) and extratumoral microenvironment subtype, we

computed odds ratios (OR) for the Inactive subtype (vs. Active, referent) and corresponding

95% confidence intervals (CI). Analysis of covariance (ANCOVA) was used to examine the

relationship between Active/Inactive subtype and mammographic density, adjusting for

potential confounders, age and BMI, continuously.

To explore the biological meaning of microenvironment subtypes, the gene expression

profile in each sample was compared to five previously reported gene expression signatures

of related phenotypes, including young age (20), obesity (21), desmoid-type fibrosis (DTF)

(22), TGF-β (6) and estrogen (E2) response (23). To ensure that each of these signatures was
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independent, overlap between gene sets was assessed and found to be small (Supplementary

Table 3). The median centered expression profile of each patient was evaluated by

calculating Pearson correlation coefficients, using the method of Creighton et al. described

above (19). More information regarding the gene ID and direction of each signature is listed

in Supplementary Table 4. The associations of existing signatures with the extratumoral

subtype (Active and Inactive), percentage mammographic density (<25% and ≥25%), and

breast tissue composition (percentage adipose, epithelium and stroma) were assessed by

Chi-square tests and Student's t-test, respectively. Non-parametric exact methods were used

when expected cell count was less than 5. Logistic regression and generalized linear

regression were used to further evaluate the associations after adjusting for age and/or BMI.

Probability values of less than 0.05 were considered statistically significant. All analyses

were performed using R (version 2.9.2).

Results

Associations between Active/Inactive subtype and breast cancer risk factors

Unsupervised hierarchical clustering (average linkage) on thê3,000 genes from the published

Active/Inactive signature was used to classify extratumoral breast tissues from 121 cases

into two homogeneous groups. Consensus clustering documented that two groups provided

an optimal segregation of the data (Supplementary Figure 3). Using the Creighton

correlation method to categorize the microenvironment subtype as described in Methods

also confirmed that the direction of association for Active and Inactive groups by clustering

was concordant with the previous publication of the signature, showing high agreement of

the two classification methods with Kappa statistic of 0.92 (p<0.0001). Approximately 49%

of patients (n=59) were Active in the current study, compared to 38% of patients (n=27) in

Roman-Perez et al. (6).

Consistent with our previous findings (6), we observed no association between extratumoral

subtype and ER status and other tumor characteristics (Supplemental Table 5). Table 1

shows the distribution of participant characteristics, overall and categorized according to

extratumoral microenvironment subtype. Of all the breast cancer risk factors evaluated,

mammographic density measures showed the strongest differences by Active/Inactive

subtype. Compared with the Active group, mean percentage density was 9% higher and

mean dense area was 8.8 cm2 more in the Inactive group (percentage density: p=0.0013;

dense area: p=0.049). Substantial (but statistically insignificant) associations were noted for

age [age <50y vs. ≥50y: OR = 2.00, 95% CI=(0.88, 4.57)] and BMI [BMI <30kg/m2 vs.

≥30kg/m2: OR = 1.76, 95% CI=(0.79, 3.93)], but no other breast cancer risk factors showed

substantial associations with Active/Inactive subtype.

We also evaluated potential confounders of the association between mammographic density

and extratumoral microenvironment subtype. Both elevated percentage density and dense

area were significantly associated with younger age, lower BMI, ever use of oral MHT and

premenopausal status (Supplementary Table 6). Of these factors, only age and BMI showed

substantial associations with extratumoral subtype. Thus, we performed multivariable

analysis to study mean differences in mammographic density by extratumoral

microenvironment subtype, controlling for age and BMI (Table 2). In multivariable models,
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percent density and dense area remained higher among the Inactive group (percentage

density: p=0.0038; dense area: p=0.049).

Biological relevance of Active/Inactive subtype

To better understand the molecular characteristics of extratumoral microenvironment

subtype and mammographic density-associated breast cancer risk, associations were

evaluated between Active/Inactive subtype, mammographic density, and biologically-

relevant, published gene expression signatures. As shown in Table 3, both the Inactive

subtype and higher percentage density (defined as ≥ 25%) were significantly positively

associated with a young-like age signature and an increased estrogen response expression

signature (E2), while they were significantly inversely associated with an obesity signature

and a TGF-β signature. After adjusting for patient age and/or BMI, most of these

associations remained statistically significant, but the association of high percentage density

with the young-like age signature and low TGF-β signature was no longer significant

(Supplementary Table 7). The previously reported signature derived from desmoid-type

fibroid tumors and indicative of fibroblast response (DTF) was only associated with lower

percentage density, but not after adjusting for BMI and age.

Associations between subtype/mammographic density and breast tissue composition

Given variation in stroma-derived signatures, we expected that stromal composition may

vary by extratumoral microenvironment subtype. Indeed, as shown in Figure 1, there were

substantial differences in breast tissue composition by Active/Inactive subtype. These

differences paralleled the differences in tissue composition by percentage mammographic

density and dense area. The percentage of adipose tissue was significantly lower and the

percentage of non-fatty stromal tissue was significantly higher among Inactive/

mammographically dense patients (Supplementary Table 8). No differences were detected in

the percentage of epithelial tissue by extratumoral microenvironment subtype or measures of

mammographic density.

Finally, because Active/Inactive subtype and mammographic density appeared to be

tracking cellular composition, the association between published gene expression signatures

and cellular composition was also considered (Table 3). Again mirroring microenvironment

subtype and mammographic density, the percentage of non-fatty stroma was associated with

young-like gene expression, decreased expression of obesity-associated genes, decreased

expression of a TGF-β signature, and increased expression of estrogen response signatures.

Epithelial composition was modestly associated with gene expression signatures for age and

obesity (higher proportion in young-like and non-obese groups) after adjusting for BMI and

age respectively (Supplementary Table 7).

Discussion

By linking gene expression patterns of non-neoplastic breast tissue from breast cancer

patients to mammographic density measures of their unaffected breast, we observed that

distinct extratumoral microenvironments were independently associated with

mammographic density. In particular, higher percentage density and dense area were related
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to the Inactive subtype. Histologically we confirmed these findings and found that the

Inactive subtype and higher mammographic density were also strongly and positively

associated with the proportion of stromal composition. Further analysis of published gene

expression signatures implicated estrogen response and TGF- β signaling pathways,

providing clues as to the biology underlying mammographic density, a strong and consistent

risk factor for breast cancer.

Mammographic density is believed to reflect the combined effects of cell proliferation and

genetic damage to proliferating epithelial cells (24). This hypothesis is supported by strong

associations between mammographic density and exogenous estrogen exposure (25, 26), and

in the current study, our data provide further molecular support for the role of estrogen in

density. We observed strong estrogen-response gene expression among those with dense

tissue and among those with the Inactive extratumoral microenvironment subtype. The

strength of the molecular relationships is striking in light of recent findings showing

relatively weak molecular evidence of estrogen response in dense breast tissue. Haakensen

found a signature of 24 genes differentially expressed between high and low density breasts,

including the gene coding for estrogen receptor (ESR1) and three uridine 5’-

diphosphoglucuronosyltransferase (UGT) family genes (27) with postulated roles in

protecting epithelial cells from genetic damage by local estrogen metabolites (27, 28).

However, in a later study, Haakensen et al. observed that while serum estradiol was

associated with mammographic density, none of the gene expression changes related to

serum estradiol was significantly associated with mammographic density (29). It is possible

that the lack of significant associations with estrogen response in previous studies is

attributable to differences in the patient populations or due to the emphasis on fewer genes.

Interestingly, we also observed a strong association between estrogen response and stromal

content (higher non-fatty stroma/lower breast adiposity) in non-neoplastic breast tissue,

while the association between estrogen response and epithelial proportion was not

significant. This null result for epithelium may be attributed to lower variation in epithelial

percentage across patients (interquartile range for percent composition was 4.4-13.2%) and

random measurement error in our estimation of epithelial percentage, but our molecular data

and the published literature underscore the importance of stroma in mammographic density

(30-32). Few gene expression studies have emphasized stromal biology in mammographic

density, but one study by Yang et al. used canonical pathway analysis of MD-associated

gene expression to identify decreased TGF-β signaling in dense breast tissue (33). Our

findings confirmed this association by showing the strong association between TGF-β

signature and adipose and stromal composition. TGF-β is an important morphogen in normal

mammary tissue, with inhibitory roles on proliferation of both ER-positive and ER-negative

cells (34). Thus, the decreased TGF-β signaling in dense tissue may be upstream of

differences in epithelial proliferation or may reflect altered stromal-epithelial interaction

during oncogenesis (35-37).

Previous models to interpret the association between mammographic density and breast

cancer risk have focused on mitogens and mutagens, where luminal epithelial cells are

central in interpreting the MD-breast cancer association. Although a breast tumor originates

from epithelial cells, the extended model suggests a more dominant role of stromal
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microenvironment and morphogenesis in tumorigenesis (38), which supports the important

role of interactions between stroma and epithelial cells in malignancy transformation

proposed in the previous studies (39). Consequently, studies focusing on the association

between mammography and breast tissue composition have helped to improve our

understanding of the MD-breast cancer association (30, 40-42). Given that the molecular

findings of this study support and extend previously proposed mechanisms, we suggest a

revised conceptual model for the MD-breast cancer association (Figure 2) (24). Indeed,

other recent data also support the fundamental importance of microenvironment in density

(43), and further suggest a critical interplay between mechanics, morphogenesis and

malignancy (44-46). Mammographic density may be a powerful biological marker in its

ability to comprehensively summarize the variation in mitogenesis, mutagenesis, and

morphogenesis of breast.

The observation that a strong component of genomic variation in breast tissue is associated

with a strong risk factor for breast cancer suggests that further investigation of normal tissue

gene expression could yield novel insights about the biology of breast cancer risk and

mammographic-density associated risk in particular. In fact, the normal tissue gene

expression seems to reflect host factors and risk factor exposure more strongly than tumor

characteristics; none of the tumor characteristics evaluated (ER status, grade, breast tumor

subtype, size, etc.) showed significant associations with the Active/Inactive subtype. While

there may be genes whose extratumoral expression is affected by tumor subtype, the set of

genes that determine the major variation (and Active/Inactive subtype) are not tumor

associated. Previous epidemiologic studies evaluating whether mammographic density is

related to breast cancer characteristics are conflicting, with some suggesting high density is

associated with more aggressive disease, and some speculating that observed associations

between MD and tumor biology may be explained by delayed diagnosis among high density

cases (i.e. masking bias) (47-50). Our current and previous research on Active/Inactive

subtypes suggests no link with tumor characteristics, supporting the latter hypothesis, that

mammographic density does not have distinct influences on etiology of subtypes.

The strong association between mammographic density and gene expression in the current

study may be a result of looking at broad transcriptional changes rather than individual

gene-level correlates of density. While a limited number (27, 33) of studies previously

addressed genomic signatures of mammographic density, these studies identified very few

density-associated genes (<100 genes), limiting their value in defining the biology of

mammographic density. Weak associations with individual gene expression changes in

previous studies may reflect low statistical power to detect a small differentially expressed

signature (51, 52), but it is striking that such a strong breast cancer risk factor should

produce such weak genomic expression, when other factors such as age and BMI have broad

effects on normal tissue gene expression (20, 21). Another explanation for the strength of

our pattern-focused analysis may be that mammographic density summarizes several

biologically complex aspects of breast physiological and pathological conditions and itself

may not represent a singular biological state. If this latter explanation were true, analysis

starting from mammographic density would be poorly correlated with individual gene

expression values, as gene-by-gene supervised analysis works best in homogeneously

defined exposures. In contrast, Active/Inactive subtype summarizes the effect of various
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factors influencing breast microenvironment (i.e. strong associations with age, obesity,

TFG-β, and E2 signatures) and therefore better captures genomic variation. Future research

should test other biological themes for their association with mammographic density and

Active/Inactive microenvironment.

Our results should be interpreted with consideration of several limitations. The non-

neoplastic breast tissues used in the present study were taken from breast cancer patients.

The influence of tumor on extratumoral microenvironment has been reported previously (5,

53) and we cannot exclude the possibility that the tissue of women with disease are

systematically different from those without disease. However, as discussed above, the

evidence that Active/Inactive microenvironment is not associated with tumor characteristics

has led us to hypothesize that Active/Inactive subtype is a host-dependent factor. Caution is

necessary when extrapolating these findings to the normal breast microenvironment of non-

diseased women. Future research on normal breast tissues from healthy women is needed

and will clarify the role of the Inactive microenvironment in disease development. Another

key limitation is sample size. We cannot rule out the possibility that negative results for

associations between extratumoral environment subtype and parity, menopause and MHT

were a result of limited power. Besides inherited factors (54), other factors also play a role

in mammographic density and would be expected to show associations with Active/Inactive

subtype (55, 56). Indeed, age and BMI, the two strongest identified endogenous factors for

mammographic density, showed substantial associations with Active/Inactive

microenvironment (estimated ORs greater than 1.5). These associations were stronger when

genomic surrogates for age and BMI, developed based on normal breast and therefore

capturing underlying biological influence on local organs, were examined. We also note that

we used mammograms of the unaffected breast to estimate density, avoiding the potential

interference of tumor. While this may have introduced some measurement error,

mammographic density is highly correlated within a woman and density in the unaffected

breast has been found to be comparable to that in the affected breast (49, 56), so this is not

expected to bias our results.

Conclusion

In summary, we evaluated extratumoral microenvironment subtype for associations with

mammographic density and breast tissue composition. Based on strong associations between

the genomic subtypes and mammographic density, it is likely that Active/Inactive subtype is

also associated with and reflective of breast cancer risk. Further research to better

understand the molecular characteristics of mammographic density and microenvironment

subtypes could identify pathways that are targetable in preventing mammographic-density

associated risk.
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Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Mammographic density is the strongest risk factor for non-familial breast cancer among

women apart from older age, but its mechanistic underpinnings are poorly understood.

We recently reported two distinct molecular subtypes of normal tissue in breast cancer

patients. We hypothesized that mammographic density would be associated with these

subtypes based on their defining molecular pathways (e.g. fibrosis and cell-adhesion).

Our results show that these well-defined molecular subtypes of normal tissue are strongly

associated with both mammographic density and breast tissue composition, establishing

novel molecular correlates of mammographic density. Many of the pathways enriched in

patients with higher mammographic density are targetable, raising the possibility of

developing prevention strategies for mitigating density-associated breast cancer risk.
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Figure 1. Breast tissue composition distribution by the Active/Inactive subtype and
mammographic density
Using quantitative analysis of digital histology images, each sample from the PWBCS for

which gene expression was measured also was assessed for composition. Non-fatty stromal

percentage was higher in Inactive subtype samples (A) and women with higher

mammographic density (percentage, B; dense area, C). In contrast, adipose concentration

was lower in the Inactive/higher density patients. Epithelial content did not vary

significantly by any of these variables.
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Figure 2. Conceptual model for potential mechanisms of the association between mammographic
density and breast cancer risk with a focus on the role of stroma
This figure is adapted from the biological model proposed by Martin et al. (24), showing the

underlying biological processes linking risk factors to breast cancer and suggesting the

surrogate role of mammographic density in these settings. The genetic and environmental

factors not only influence epithelial cell proliferation and induce genetic damage, but also

regulate the surrounding microenvironment and stromal composition. The abnormalities in

mitogenesis, mutagenesis, and morphogenesis result in breast cancer development. By

comprehensively summarizing the variation in these three aspects, mammographic density

works as an intermediate phenotype strongly indicating breast cancer risk.
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Table 1

Participant characteristics by the Active/Inactive extratumoral microenvironment subtype

Characteristics Total (n=121) n (%) Active (n=59) n (%) Inactive (n=62) n (%)
P 

*

Age at diagnosis

Mean (SD) 55.26 (9.78) 56.03 (8.72) 54.52 (10.70) 0.39

<50 y 33 (27) 12 (20) 21 (34) 0.095

≥50 y 88 (73) 47 (80) 41 (66)

BMI

Mean (SD) 27.69 (5.30) 28.49 (5.48) 26.93 (5.06) 0.10

<30 kg/m2 87 (72) 39 (66) 48 (77) 0.17

≥30 kg/m2 34 (28) 20 (34) 14 (23)

Age at menarche

<12y 40 (33) 18 (31) 22 (36) 0.50

≥12 y 80 (67) 41 (69) 39 (64)

Parity

0 26 (21) 11 (19) 15 (24) 0.46

≥1 95 (79) 48 (81) 47 (76)

Age at 1st full term birth in parous women

<25 y 52 (55) 25 (52) 27 (57) 0.60

≥25 y 43 (45) 23 (48) 20 (43)

Use of oral MHT

Never 80 (68) 37 (65) 43 (70) 0.52

Ever 38 (32) 20 (35) 18 (30)

Menopausal status

Premenopausal 34 (28) 14 (24) 20 (32) 0.30

Postmenopausal 87 (72) 45 (76) 42 (68)

Family history of breast cancer
†

No 101 (84) 48 (83) 53 (85) 0.68

Yes 19 (16) 10 (17) 9 (15)

Previous benign breast disease

No 89 (75) 45 (79) 44 (72) 0.39

Yes 29 (25) 12 (21) 17 (28)

Percentage density

Mean (SD) 27.25 (16.00) 22.56 (13.90) 31.70 (16.69) 0.0013

<25% 57 (47) 35 (59) 22 (35) 0.0086

≥25% 64 (53) 24 (41) 40 (65)

Dense area (cm2)

Mean (SD) 37.70 (24.59) 33.21 (23.08) 41.97 (25.40) 0.049

<median
‡ 60 (50) 33 (56) 27 (44) 0.17

≥median 61 (50) 26 (44) 35 (56)

Abbreviation: BMI, body mass index; SD, standard deviation; MHT, menopausal hormone therapy.
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*
P values for the comparisons between Active and Inactive subtypes were calculated by t-test for continuous variables and Chi-square test for

categorical variables. Missing values were excluded from percentage calculations.

†
Family history of breast cancer in first degree relative.

‡
Median=36.52 cm2.
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Table 2

Multivariable analysis of the association between mammographic density measures and the Active/Inactive

extratumoral microenvironment subtype

Model Mammographic density measures Active (n=59) mean (SE) Inactive (n=62) mean (SE)
P 

*

Crude mean Dense area (cm2) 33.21 (3.16) 41.97 (3.09) 0.049

Percentage density (%) 22.56(2.00) 31.70(1.95) 0.0014

Age-adjusted mean Dense area (cm2) 33.84 (3.01) 41.37 (2.94) 0.076

Percentage density (%) 23.20 (1.71) 31.09 (1.67) 0.0013

BMI-adjusted mean Dense area (cm2) 33.17 (3.19) 42.01 (3.12) 0.051

Percentage density (%) 23.60 (1.81) 30.71 (1.77) 0.0060

Age and BMI-adjusted mean Dense area (cm2) 33.41 (3.01) 41.78 (2.93) 0.049

Percentage density (%) 23.77 (1.63) 30.56 (1.59) 0.0038

Abbreviation: BMI, body mass index; SE, standard error

*
P values were calculated by t-test for univariate analysis and analysis of covariance (ANCOVA) for multivariable analysis. Age and BMI were

used as continuous variables.
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