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Abstract
Purpose—To use genetically engineered mouse models (GEMMs) and orthotopic syngeneic
murine transplants (OSTs) to develop gene-expression based predictors of response to anti-cancer
drugs in human tumors. These mouse models offer advantages including precise genetics and an
intact microenvironment/immune system.

Experimental Design—We examined the efficacy of four chemotherapeutic or targeted anti-
cancer drugs, alone and in combination, using mouse models representing three distinct breast
cancer subtypes: Basal-like (C3(1)-T-antigen GEMM), Luminal B (MMTV-Neu GEMM), and
Claudin-low (T11/TP53−/− OST). We expression-profiled tumors to develop signatures that
corresponded to treatment and response, then tested their predictive potential using human patient
data.

Results—Although a single agent exhibited exceptional efficacy (i.e. lapatinib in the Neu-driven
model), generally single-agent activity was modest, while some combination therapies were more
active and life-prolonging. Through analysis of RNA expression in this large set of chemotherapy-
treated murine tumors, we identified a pair of gene expression signatures that predicted
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pathological complete response to neoadjuvant anthracycline/taxane therapy in human patients
with breast cancer.

Conclusions—These results show that murine-derived gene signatures can predict response
even after accounting for common clinical variables and other predictive genomic signatures,
suggesting that mice can be used to identify new biomarkers for human cancer patients.

Introduction
Gene expression profiling has identified five molecular subtypes of breast cancer (Luminal
A, Luminal B, Basal-like, HER2-Enriched, Claudin-low) and a normal-like group, which
show significant differences in epidemiologic associations and clinical features including
survival(1-3). Mounting evidence suggests that these subtypes vary in their responsiveness
to chemotherapeutics(2, 4-6) and to biologically targeted agents(7-9). Methods for selecting
the optimal chemotherapeutic agent for each breast tumor subtype have yet to be
determined. Instead, chemotherapy choices for breast cancer patients have been mainly
empiric and based upon large clinical trials using unselected patient populations, and
population-based benefits. The Basal-like subtype of breast tumor, of which the majority are
also “triple-negative” breast cancers, is particularly challenging due to its lack of validated
biological targets (i.e. ER-, PR- and HER2 normal)(10, 11). Other breast cancer subtypes
with poor prognosis also exist including the Luminal B subtype(2, 5) and the recently
discovered Claudin-low subtype, which exhibits high numbers of tumor initiating cells(12).

Genetically Engineered Mouse Models (GEMMs) have proven valuable for validating the
causal role of oncogenes and tumor suppressor genes in cancer(13), but their use in efficacy
testing is less mature, with most studies being low-throughput efforts examining model-
specific compounds in small numbers of tumor-bearing mice (<50)(14). Recently, academic
and industry researchers have begun simultaneous efficacy testing at medium throughput,
employing larger numbers of compounds (5-50) in larger numbers of GEMMs (100-1000)
(15, 16). In particular, these efforts have attempted to mirror and inform ongoing human
clinical trials, by testing novel therapeutics in faithful murine models as “co-clinical trials”
(17). While this approach has been promising, we believe an additional untapped power of
medium-throughput GEMM testing is the ability to use murine models to identify
biomarkers of response for human cancer patients.

Previously, we performed RNA expression profiling of 13 distinct GEMMs of breast
cancer(12, 18) and compared these signatures to human expression subtypes using an
across-species expression analysis. These analyses identified murine models that faithfully
represent multiple human breast tumor subtypes including Basal-like tumors (C3(1)-T-
antigen)(19) and Luminal B tumors (MMTV-Neu)(20). No single Claudin-low GEMM was
identified, but an orthotopic, transplantable syngeneic tumor from a BALB/c TP53−/− mouse
was found to exhibit a stable Claudin-low expression phenotype(12). In this work, we used
these credentialed murine tumor models and determined their sensitivities to a variety of
chemotherapeutic and biologically targeted agents in routine clinical use. This analysis
identified a heterogeneity of responses to certain cytotoxics in the Basal-like model. We
exploited this existence of sensitive and resistant tumors from GEMMs to develop genomic
signatures of chemotherapy response, which we tested in a large, clinically annotated human
cohort of breast cancer patients.

Methods
Genetically Engineered Mouse Models

All work was done under protocols approved by the UNC Institutional Animal Care and Use
Committee (IACUC). GEMMs of strain FVB/n carrying a transgene for
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Tg(MMTVneu)202Mul/J(MMTV-Neu)(20) and C3(1)SV40 T-antigen (C3(1)-T-antigen or
C3-TAg)(21) were bred in-house and observed until the onset of a mammary tumor ～0.5 cm
in any dimension. Tumors derived from BALB/c TP53−/− orthotropic mammary gland
transplant line (T11) were passaged in BALB/c wild-type mice by subcutaneous injection of
one half million cells resuspended in matrigel into the flank as previously described(22).
Mice were randomized into treatment groups and monitored with tumor growth
measurements. Tumor volumes were measured by caliper in two dimensions and/or by
ultrasound (Vevo 770 ultrasound imaging system (Visualsonics Inc.)). Chemotherapy was
started at time zero and repeated weekly for a total of three injections over a twenty-one day
period. The mice were further assessed for long-term survival as follows: if after a one week
break from treatment a tumor increased in volume more than 1mm in any dimension, then
an additional three cycles of therapy were initiated. This continued until either the mouse
developed a tumor burden sufficient to warrant euthanasia (2 cm in any dimension or 3
tumors present) or until weight loss totaling 20% of the initial starting body mass was
observed or because of any other severe health problems. Orally administered biological
inhibitors were given continuously with no dose interruption. In the case of a
chemotherapeutic plus an oral inhibitor, the chemotherapy agent was dosed once weekly for
21 days and stopped until progression, while the small molecule inhibitors were dosed
continuously.

Compounds
Compounds were obtained from commercial sources: Carboplatin (Hospira, Inc),
cyclophosphamide (Hospira, Inc), doxorubicin (Bedford Laboratories), paclitaxel (Ivax
Pharmaceuticals, Inc), erlotinib (Genentech, Inc) and lapatinib (GlaxoSmithKline). Oral
biological inhibitors (erlotinib and lapatinib) were milled into chow by Research Diets, Inc.
while carboplatin and paclitaxel were delivered via intraperitoneal injection.

Treatments
The drug-specific approach to determine schedule and dose is described in Supplemental
Table 5. A minimum tumor volume of ～0.5cm in size was required for randomization into a
treatment group (including a control group). Combination treatments were given at the same
doses as the individual treatments. Chemotherapy was started at time zero and repeated
weekly for over a 14-day (T11/TP53−/−) or 21-day (C3(1)-T-antigen and MMTV-Neu)
period.

Pharmacokinetic (PK) Studies
PK studies were performed after administration of paclitaxel (Supplemental Figure 1),
erlotinib, and lapatinib (data not shown). For paclitaxel, seventeen transgenic FVB/n mice
bearing the MMTV-Neu transgene were administered a single intraperitoneal dose of
paclitaxel at 10 mg/kg. Plasma and tumor samples (3 mice used at each time point; 2 mice
used for the 48 hour time point) were collected at 0.083, 1, 4, 8, 24, and 48 hours after
administration and flash frozen in liquid nitrogen. The samples were analyzed via liquid
chromatography/tandem mass spectrometry (LC-MS/MS) as described previously(23). The
concentration versus time profiles of paclitaxel in plasma and tumor c plasma following IP
administration were 2.1 μg/mL ± 1.5 and 6.3 μg/mL·h respectively. The mean ± SD of
paclitaxel Cmax and AUC0-∞ in tumor following IP administration were 3.7 μg/g ± 2.1 and
42.4 μg/g·h respectively.

Response Criteria
Tumor volume was calculated from two-dimensional measurements as (Volume = [(width)2

× length]/2). The percent change in volume at 21 days was used to quantify response, except
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in the case of the T11/TP53−/− model where its faster growth rate required a 14-day
treatment response assessment. Twenty-one day response was chosen as our primary
response endpoint based on the fact that most of the untreated animals do not survive much
longer than 21 days when starting with a tumor of >0.5 cm. Survival was measured from the
first day of drug treatment.

Microarray Analysis
DNA microarray analyses of murine tumors was performed as described in Herschkowitz et
al.(12). We used using Agilent 4 × 44,000 feature mouse DNA microarrays and a common
reference strategy. For hierarchical clustering analyses, the genes/rows were median
centered and clustering of arrays was performed using Cluster v3.0(24) with correlation
centered genes and arrays, and centroid-linkage. Array cluster viewing and display was
performed using JavaTreeview v1.1.4(25).

Statistical Analyses
(A) Identification of significant differential genes in response to treatments—
We performed two unpaired two-class SAM(26) analyses to identify genes that showed
differential expressions as following: (i) between carboplatin/paclitaxel treated C3(1)-T-
antigen tumors that responded versus those that did not and (ii) between carboplatin/
paclitaxel treated C3(1)-T-antigen tumors versus those untreated. The primary SAM analysis
to identify tumor response related genes included three responding tumors (shrinkage >20%)
versus nine non-responding tumors (growth >20%). The secondary SAM analysis to identify
treatment up-regulated or down-regulated genes included seven untreated tumors versus the
twelve treated tumors. Two gene lists were obtained with a FDR of 1%: 348 genes (428
probes) showing significantly high expression in the untreated samples (called
UNTREATED) and 61 genes (74 probes) showing significantly high expression in the
samples from responders (called RESP-HIGH);the identified genes are listed in
Supplemental Table 2. Using the Mouse Genome Database(27), these lists were converted to
orthologous human genes. In order to refine the list of these candidate genes relevant to
human tumors, a hierarchical clustering analysis of these orthologous human gene lists was
performed using the 337 tumor samples from Prat et al.(1). From these clusters, we chose a
dendrogram node based on the criteria that it would include the largest number of highly
expressed genes and have a node correlation of >0.4. Supplemental Figure 2B illustrates the
gene set called UNTREATED-HUM that includes 30 unique genes. Supplemental Figure
2D illustrates the gene set called RESP-HUM that includes 12 unique genes.

In the UNC337 human tumors sets, these two gene lists showed “homogeneous” expression
patterns, and thus we decided that taking the mean of the genes within each list/dendrogram
node was the most appropriate method to assign the signature score for each tumor sample.
In brief, an UNTREATED-HUM score was assigned to each test sample by taking the mean
of the 26 genes in the list. A RESP-HUM score was assigned to each test sample by taking
the mean of the 12 genes in the list. Since we also aimed to compare the performance of
these two signatures as well as including published genomic signatures, we standardized the
signature scores with a standard deviation equivalent to 1 to bring all the signature scores to
the same scale. We applied this same methodology to two independent data sets of
neoadjuvant human tumors described below.

(B) Association of the identified signatures with tumor response for
neoadjuvant anthracycline/taxane containing chemotherapy regimens—The
performance of UNTREATED-HUM and RESP-HUM signatures to predict pathological
complete response (pCR) was first tested on 462 patients with HER2 normal tumors in
MDACC data set (Hatzis et al.(28), GEO # GSE25066) and validated on 81 patients with
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HER2 normal tumors in JSE data set (Miyake et al.(29) GEO #GSE32646). Patients on both
data sets were treated with neoadjuvant anthracycline-taxane containing regimens.
Univariable logistic regression analysis was used to assess the odds ratio and significance of
the two signatures to predict pCR. Multivariable logistic regression analysis was used to
determine the adjusted odds ratio and significance taking into account for the standard
clinical variables measured at baseline and other published genomic signatures as
appropriate. The area under the curve (AUC) value was calculated from the Receiver
Operating Characteristics analysis of the univariable and multivariable logistic model
respectively. The published genomic signatures included the PAM50 intrinsic subtypes(2),
Claudin-low predictor(1), and 11-gene proliferation signature(9); we also included
signatures developed by Hatzis and colleagues (including Hatzis Sensitivity to endocrine
therapy (SET) index, Hatzis signature chemo sensitive RCB-I predict, and Hatzis signature
chemo resistance (RCB-III predict)) that were available for the data set(28). Finally, survival
outcome data after neoadjuvant treatment was available for the Hatzis et al. data set and
Kaplan Meier analysis and log-rank test were used to determine the differential survival
estimates of the two signatures to distant relapse free survival.

Results
Sensitivity of GEMMs to chemotherapeutic agents

Our ultimate goal was to use GEMMs to develop predictors of therapeutic response for
humans. Details of the work flow are outlined in the study design Figure 1. As a first step,
we tested three different mammary cancer GEMMs with multiple therapeutics to find a
GEMM, and a drug regimen, which gave a range of responses; from this GEMM, we then
profiled sensitive and resistant tumors in order to identify a signature associated with
response. We first therefore, determined the sensitivity of three distinct GEMMs/OSTs
models of human breast cancer subtypes versus two cytotoxic chemotherapeutics and two
small molecule kinase inhibitors. The models used were C3(1)-T-antigen, MMTV-Neu, and
T11/TP53−/−, with these models chosen based on their similarity in gene expression to
Basal-like, Luminal B and Claudin-low human tumor subtypes respectively(12, 18). Tumor
volume changes at 21 days (or 14 days in the T11/TP53−/− model), and long-term survival
were the primary endpoints. Response at 21 days (or 14 days for T11/TP53−/−) was
measured for 304 treated and control mice (150 C3(1)-T-antigen, 97 MMTV-Neu, 57 T11/
TP53−/−) with the percent volume change of each model's non-treated controls (i.e. growth
rate) shown in Figure 2(bottom rows). Although there was overlap in the average growth
rates of tumors from each GEMM, the untreated T11/TP53−/− tumors grew significantly
faster than their MMTV-Neu counterparts (p<0.01, Student's t-test), with the C3(1)-T-
antigen model exhibiting an intermediate growth rate (Figure 2).

With the growth kinetics of these models established, we next tested two chemotherapeutics
that are widely used to treat many solid epithelial human cancers, namely paclitaxel and
carboplatin. Although the standard of care for most breast cancer patients is doxorubicin/
cyclophosphamide with or without a taxane (i.e. AC-T)(30), platinum agents (carboplatin/
cisplatin) are also gaining in use(31), and thus are relevant to breast cancers, especially
triple-negative breast cancers (TNBC). As a single agent, carboplatin elicited a modest but
significant responses in all three models, while paclitaxel alone elicited no response;
however, systemic and tumor drug delivery was confirmed for paclitaxel (Supplemental
Figure 1).

Next we tested the commonly used chemotherapy doublet of carboplatin/paclitaxel (CT). A
varied response profile was seen for the CT combination where the combination
demonstrated no activity in the T11/TP53−/− model, and only modest activity in the MMTV-
Neu model. Importantly, in the C3(1)-T-antigen model, a clear bimodal response was
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observed to the CT combination: ～2/3 of the tumors showed little response and ～1/3 showed
near complete regression (Figure 2A). This finding is in accord with the observation that
human Basal-like tumors exhibit a ～30-40% complete pathological response rate (pCR) to
taxane containing neoadjuvant regimens, while the other 60-70% show residual disease and
a worse overall survival (1, 5, 10).

Sensitivity to targeted agents
Two classes of biologically targeted agents are used in patients with breast cancer: agents
blocking estrogen and progesterone receptor (ER/PR) signaling (e.g. tamoxifen or aromatase
inhibitors) and drugs targeting HER2 (e.g. trastuzumab and lapatinib). Given that none of
our GEMMs were ER+ or PR+(12), we chose to focus on the HER2/EGFR family of
kinases by using the small molecule inhibitor lapatinib (which targets HER2/ERBB2
primarily(27)), and the EGFR inhibitor erlotinib(32). In the MMTV-Neu model, erlotinib
and lapatinib were both highly effective, with lapatinib causing near 100% regression in all
MMTV-Neu tumors. Conversely, neither erlotinib nor lapatinib were effective at reducing
the growth rate of the T11/TP53−/− tumors. Lapatinib was similarly ineffective in the
C3(1)-T-antigen tumors, but as was the case for the CT doublet, erlotinib showed potent
activity in a subset (～40%) of treated mice. These data show that HER2/EGFR inhibitors
exhibit potent activity in the Neu/ERBB2/HER2-driven model as expected, and provide
further evidence for at least two subtypes of C3(1)-T-antigen tumors with regard to
therapeutic sensitivity.

We also assessed the effects of anti-cancer therapies on the overall survival of tumor-bearing
mice. Baseline survival for the MMTV-Neu (29 days) and C3(1)-T-antigen models (33
days) was similar in the absence of therapy, while the T11/TP53−/− animals showed
significantly shorter median survival (15 days) (Figure 3). In the MMTV-Neu model, single-
agent lapatinib (and to some extent erlotinib) greatly extended lifespan from a median of 29
days to 154 days (Figure 3B). Conversely, no single or combination regimen was able to
extend survival in the C3(1)-T-antigen or T11/TP53−/− models.

Development of murine chemotherapy response signatures
A heterogeneous response to CT was seen in the C3(1)-T-antigen tumors that ranged from
progressive disease to complete response (Figure 2A). We sought to explore these findings
and develop a genomic predictor of this response using this GEMM by performing RNA
expression profiling of treated vs. untreated tumors. For these experiments, we treated
C3(1)-T-antigen tumors with carboplatin/paclitaxel for two or three cycles and measured
response (n=12), and then harvested the tumor for molecular analysis. In addition, an
independent set of seven untreated tumors was used as the non-treated controls
(Supplemental Table 1).

Significance Analysis of Microarray (SAM)(26) was used to derive two sets of differentially
expressed genes by (A) comparing those mice that responded to treatment (n=3) versus
those that did not (n=9), and by (B) comparing the untreated (n=7) versus treated tumors
(n=12)(Supplemental Tables 1 and 2). When testing untreated versus treated tumors at a
FDR of 1%, this analysis identified 428 probes corresponding to 348 mouse genes that were
more highly expressed in untreated tumors (called UNTREATED gene list, Supplemental
Table 2A); a Gene Ontology analysis of the UNTREATED list identified multiple
significant terms including “cellular macromolecule metabolic process”, “nucleic acid
metabolic process”, “regulation of macromolecule biosynthetic process”, “chromosome
organization”, “DNA metabolic process” and “cell cycle”. We applied a modules/signatures
analysis to the untreated versus treated tumors where we examined if 302 previously defined
expression signatures(33) varied with treatment (Supplemental Table 3). This modules/
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signatures analysis showed that multiple signatures of fibroblasts/extracellular matrix, and
signatures of the Claudin-low phenotype(1, 18) were more highly expressed after treatment,
with this last result recapitulating findings observed in post-chemotherapy treated human
tumors(34). Multiple signatures decreased after treatment including one of proliferation and
one of HER1-RAS-pathway activation. These data show that CT treatment induced
expression of genes associated with Claudin-low/mesenchymal phenotype, and reduced
cellular proliferation.

When the cohort of treated tumors was subdivided into responders versus non-responders at
a FDR of 1%, a list of 74 differentially expressed probes corresponding to 61 mouse genes
was obtained (Supplemental Table 2B). These genes were more highly expressed in the
mice that responded to treatment and the list was named RESP-HIGH. A gene ontology
analysis of the RESP-HIGH list revealed the presence of no significant GO terms after
Bonferroni or Benjamini corrections. We also applied the 302 signatures analysis above on
the responder versus non-responder sample set, and only a small number of proliferation
signatures were more highly expressed in non-responders.

Human testing of the murine chemotherapy response signatures
Next, the murine 348 gene UNTREATED and 74 gene RESP-HIGH lists were converted
into human lists using gene orthology, and both lists were then further refined using
hierarchical cluster analyses of 337 human breast tumors from Prat et al.(1) (Supplemental
Figure2). This mouse-to-human filtering was necessary because a homogenous gene list
from a cell line, or murine experiment, when applied to human primary tumors, will
typically fragment into multiple signatures/modules when using in vivo human data(35). We
observed this type of gene list heterogeneity here, and thus, from these cluster analyses we
chose a single dendrogram node that contained the highest homogenously expressed gene
set observed within this human primary tumor data set, and for each gene list separately.
This gave a set of 30 genes from the UNTREATED list that we call UNTREATED-HUM,
and 12 genes from the RESP-HIGH list that we call RESP-HUM (Supplemental Figure 2 B
and D); it should be noted that we did not test all possible dendrogram nodes, but instead
limited our analyses to a single node from each cluster analysis. These two refined gene lists
were also analyzed for GO terms with the UNTREATED-HUM list enriched for the terms
‘cell cycle’, ‘M phase’, ‘nuclear division’ and ‘mitosis’, and we also noted that 12/30 entries
were ATP-binding proteins. The RESP-HIGH was not enriched for any GO term.

We next tested both humanized gene lists for their ability to predict distant relapse-free
survival (DRFS), and most importantly, pathological complete response (pCR) using a
completely independent set of human breast cancer patients treated with neoadjuvant
chemotherapy. For both clinical endpoints, we used the Hatzis et al. data set (See Figure 1),
which is a combined data set of patients who were treated with a taxane and anthracycline-
containing neoadjuvant chemotherapy regimen(28). We first stratified patients into low-
medium-high (tertiles) groups based upon their rank-ordered mean expression values for the
RESP-HUM and UNTREATED-HUM signature and then tested these stratifications for
their ability to predict DRFS. These analyses showed that the RESP-HUM (p < 0.001) and
UNTREATED-HUM (p = 0.003) signatures were able to predict DRFS, as was pCR vs. not,
intrinsic subtype, and an 11-gene proliferation signature (Supplemental Figure 3). In
multivariable analyses, however, neither of these murine signatures added prognostic
information beyond that conveyed by the PAM50 11-gene proliferation signature(9) (data
not shown).

We then tested the humanized gene lists for their ability to predict pathological complete
response (pCR), which is the most relevant endpoint for these chemotherapy response-based
signatures. Within this patient set, 462 patients had pathological response data; 91 patients
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achieved a pCR and 371 did not (20% overall pCR rate). The pCR rates varied according to
intrinsic subtype as follows: Basal-like (n=129, 40% pCR), Claudin-low (n=70, 23% pCR),
HER2-Enriched (n=27, 19% pCR), Luminal A (n=140, 3% pCR), Luminal B (n=68, 16%
pCR), and Normal-like (n=28 total, 14% pCR). To determine the possible significance of
our two response signatures on this test set of human patients, the mean expression values
for each gene list was calculated and the distribution of values between pCR patients versus
not pCR patients determined. As shown in Table 1, when all 473 patients were considered,
the UNTREATED-HUM signature was significantly correlated with pCR (p<0.001)and the
RESP-HUM signature was trending toward significance (p=0.051). As we further stratified
patients into the five, and even six intrinsic subtypes the UNTREATED-HUM signature
continued to maintain significance. Interestingly, the RESP-HUM signature predicted pCR
more strongly in the Normal-like and Claudin-low subtypes while the UNTREATED-HUM
signature better tracked response within the Basal-like subtype (Table 1). Lastly, the triple-
negative breast cancer distinction is a highly clinically relevant group because these patients
are not candidates for the current targeted therapies in the breast clinic(10, 11); within this
group, the UNTREATED-HUM signature was also a significant predictor (p=0.003).

To more rigorously test the predictive significance of these new expression signatures,
multivariable analysis using logistic regression was performed that included the common
clinical variables, the intrinsic subtypes, the RESP-HUM and UNTREATED-HUM
signatures, and three predictive genomic signatures identified by Haztis et al. (Table 2). For
these analyses, we used the subset of patients that had pCR/response data, survival data, and
who were treated with an anthracycline and taxane chemotherapy regimen (n=441). As
shown in Table 2, multiple biomarkers were predictive in univariate analyses, but only the
UNTREATED-HUM, Basal-like, Normal-like, and one of the Haztis et al. chemotherapy
predictor signatures (i.e. RCB-III/resistance) were found significant in both the univariate
and multivariate tests. To further assess the strength of the predictive powers of these
genomic signatures, each was used to calculate an Area Under the Curve (AUC) for pCR,
both alone (univariate AUC) and in the multivariate model (Table 2). The UNTREAT-HUM
signature provided a good univariate AUC, and the multivariate model provided
improvement with a high AUC (0.879). When the three Hatzis et al. signatures were
removed from the multivariate analysis, most of the variables that were significant in the
initial MVA remained significant, and the overall model continued to show a high AUC
(0.82) (data not shown). Lastly, an additional test data set of anthracycline and taxane
treated human patients was tested, which represents 81 patients treated neoadjuvantly from
Japan(29); similar predictive results were seen for the UNTREAT-HUM signature, which
was again a significant predictor in both the univariate and multivariate analyses
(Supplemental Table 4). These data show that the UNTREATED-HUM signature (and
possibly the RESP-HUM) provided predictive information for pCR beyond 1) the
commonly used clinical variables, 2) breast cancer subtype, and 3) other genomic signatures
derived from one of the data sets tested here.

Discussion
As new agents for breast cancers are developed, validated pre-clinical models for assessing
these agents' activity alone and in combination with approved therapies are needed. In this
study, we chose genomically credentialed GEMM representatives for three human breast
tumor subtypes (Basal-like, Luminal B and Claudin-low) as our pre-clinical models. While
using single representatives of different tumor subtypes does not allow for the identification
of subtype-specific effects, we believe this approach does make future predictions of
therapeutic efficacy more robust by including results from a biologically diverse group of
tumor-bearing individuals.
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For therapeutic efficacy, each GEMM was treated with identical regimens and for most
drugs, variable responses were seen. Our findings show that the MMTV-Neu tumors were
the most responsive in general, with multiple agents being able to achieve complete tumor
regression, especially the HER2 targeted agent lapatinib. Next in sensitivities was the Basal-
like C3(1)-T-antigen model, which was generally more resistant than the MMTV-Neu
model, but in some cases complete responses were documented (CT and carboplatin/
erlotinib); interestingly, a heterogeneity of responses was common in this GEMM (Figure
2A), suggesting that two or more sub-classes of tumors may be present. Importantly, a
similar heterogeneous response pattern is seen within human Basal-like patients when
treated with comparable agents where many patients achieve a pCR and have good overall
survival, but the majority show residual disease and worse outcomes (Supplemental Figure
3C and see (5, 36)). Lastly, the Claudin-low T11/TP53−/− model was the most resistant with
only small responses seen in this model.

We ultimately chose to focus our analysis on expression-signatures associated with
chemotherapy treatment of one of our GEMMs and response for two main reasons. First, we
reasoned transcripts highly expressed in sensitive murine tumors (i.e. the RESP-HIGH list)
might also be highly expressed in sensitive human tumors; although this list was predictive
in human tumors, it was not obvious from gene ontology analysis what molecular
characteristics drive this biology, and this list was not significant when accounting for other
variables (MVA p-value = 0.058). Second, in a tumor treated in vivo, we reasoned
chemotherapy might deplete the most sensitive cells and their characteristic transcripts.
Therefore, the collection of transcripts that were highly expressed in untreated cells and
depleted with treatment (i.e. the UNTREATED list) similarly seemed rational for testing in
humans. Specifically, an analysis showed the 26-gene UNTREAT-HUM signature
(Supplemental Figure 3) was a significant predictor of response and may also provide
mechanistic insight. This 26-gene list suggests that the cells actually undergoing DNA
synthesis and mitosis (i.e. in S/G2/M-phase) are more sensitive to cytotoxic agents than cells
in other parts of the cell cycle (G0 or G1), which is a concept dating back to the 1960's
(reviewed in (37)). It is important to note that this list added independent information above
and beyond strict assessments of proliferation (e.g. an 11-gene proliferation signature that
contains Ki-67), suggesting this list may better capture specific features of the cell cycle
(e.g. length of time spent in S/G2/M) associated with sensitivity to carboplatin/paclitaxel.
The UNTREAT-HUM list is in fact a biologically rich list that contains at least two different
sets of genes/proteins that physically form a multi-protein complex, namely SMC2 and
SMC4, and MCM4 and MCM6. In addition, this list has two different E2F family members
(E2F3 and E2F8), for which a poor prognostic signature has already been linked to
E2F3(38). These data also suggest that no single gene/protein is likely to be a robust
biomarker of chemosensitivity because a multitude of genes, each involved in different
aspects of the cell cycle, were collectively identified as being predictive of response. These
new expression signatures were derived from murine models that, despite their specific
chemoresponses not being a mirror of their human counterparts (i.e. paclitaxel), added a
significant predictive component to the multivariate model that at least equaled the ability of
those tested signatures that were derived directly from this human tumor data set.

In terms of human biomarker advances, we made progress using the C3(1)-Tag GEMM. As
shown in Tables 1 and 2, the UNTREATED-HUM signature was predictive of response to a
multi-agent neoadjuvant chemotherapy regimen, not only across all HER2-normal human
breast cancer patients but also within the clinically relevant triple-negative subset, as well as
the more biologically relevant Basal-like subset. Interestingly, this UNTREATED-HUM
signature was also able to predict pCR even when accounting for intrinsic subtype, the
common clinical variables, and two other genomic signatures specifically designed to
predict neoadjuvant response (Table 2). Although the murine treatment and human treatment
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involved the use of different chemotherapeutics, both species studies used paclitaxel and at
least one DNA damaging agent (carboplatin in mice and doxorubicin/epirubicin in humans).
Overall, a multivariate model that contained the UNTREAT-HUM, the intrinsic subtypes,
and the common clinical variables showed an AUC of 0.82, which may be sufficiently
predictive to be of value for routine clinical use.

We were surprised to find that the results from mice treated with single agent paclitaxel did
not mimic the effectiveness of this drug in human breast cancer patients. Delivery of higher
therapeutic doses of paclitaxel to the mice (i.e. doses closer to those received by human
patients)may have proven more efficacious; however, our chosen formulation of paclitaxel
contained chremaphor and ethanol in amounts that precluded higher dosing. Another caveat
to our studies is that these two GEMM-derived signatures were both predictive and
prognostic; however, it must be noted that it is often difficult, if not impossible, to
disentangle these two features. For example, both ER and HER2 in breast cancer are
prognostic (they predict outcomes in the absence of therapy) and they are predictive (ER
predicts hormone therapy benefit and HER2 predicts trastuzumab benefit) and thus, our new
signatures are showing dual properties similar to those seen for the existing breast cancer
biomarkers. Much additional validation work is needed before these two murine-derived
signatures could be used to guide patient treatment. However, this study has laid the
groundwork of a general strategy for evaluating new drugs, combinations, and schedules
using GEMMs and has shown it is possible to use mice as a tool to identify a biomarker that
may be of predictive value for human cancer patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

The identification of new predictive biomarkers is a difficult task which often requires
treatment of human patients with experimental drugs. Genetically Engineered Mouse
Models (GEMM) hold the promise of providing a preclinical arena for this early drug
testing and possible biomarker discovery. A signature of chemotherapy response was
identified through the use of credentialed GEMM of mammary cancer. This signature
was then shown to predict neoadjuvant response in human breast cancer patients. If
validated in additional studies, this signature may show clinical value for selecting
patients who will benefit from neoadjuvant anthracycline/taxane regimens, and shows the
value of drug testing in mice as a means for identifying new biomarkers.
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Figure 1. Study design overview
(A). Drug treatment and genomic profiling of mouse mammary tumors for the development
of chemotherapy response signatures. (B). Testing of genomic signatures on two human
tumor neoadjuvant treatment data test data sets.
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Figure 2. Short-term treatment responses for three mouse models of mammary cancer
Box and whisker plots are shown as measures of tumor responsiveness. In each case, 2-3
cycles of therapy was administered for all chemotherapeutics (1 dose/week), while in the
case of erlotinib and lapatinib, the drug was continuously administered via the chow. Tumor
size was measured at baseline and at weekly intervals thereafter. The change in tumor
volume over a 21-day treatment period is plotted for A) C3(1)-T-antigen model, B) MMTV-
Neu model, and C) T11/TP53−/− model; note that the T11/TP53−/− model is based upon a
14-day treatment period due to its faster growth rate. Drugs that elicited a statistically
significant response as assessed by a t-test when compared versus its matched untreated
controls are identified by being underlined. The number of animals in each treatment group
is indicated in parentheses.
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Figure 3. Long term survival results for three mouse models of mammary cancer
Kaplan-Meier analyses for overall survival of tumor bearing mice was performed. A) C3(1)-
T-antigen, B) MMTV-Neu, and C) T11/TP53−/− results for chemotherapeutic treatments,
targeted agents, and combinations. A log-rank test was performed to determine significance
of all treatment groups and is shown.
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